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Abstract

Proton (1H) Magnetic Resonance Spectroscopy (MRS) is a non-invasive tool capable of 

quantifying brain metabolite concentrations in vivo. Prioritization of standardization and 

accessibility in the field has led to the development of universal pulse sequences, methodological 

consensus recommendations, and the development of open-source analysis software packages. 

One on-going challenge is methodological validation with ground-truth data. As ground-truths 

are rarely available for in vivo measurements, data simulations have become an important tool. 

The diverse literature of metabolite measurements has made it challenging to define ranges to be 

used within simulations. Especially for the development of deep learning and machine learning 

algorithms, simulations must be able to produce accurate spectra capturing all the nuances of 

in vivo data. Therefore, we sought to determine the physiological ranges and relaxation rates of 

brain metabolites which can be used both in data simulations and as reference estimates. Using 

the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, 

we’ve identified relevant MRS research articles and created an open-source database containing 

methods, results, and other article information as a resource. Using this database, expectation 

values and ranges for metabolite concentrations and T2 relaxation times are established based 

upon a meta-analyses of healthy and diseased brains.
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1. Introduction:

In vivo MRS can measure levels of metabolites in the brain non-invasively, allowing 

the abnormal biochemical and cellular processes of disease to be interrogated. The 
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most prominent signals in the 1H spectrum are the methyl singlets associated with 

N-acetylaspartate/N-acetylaspartylglutamate (tNAA), creatine-containing compounds (tCr), 

and choline-containing compounds (tCho). Substantial multiplet contributions to the 

spectrum are also seen from myo-inositol (mI), glutamate (Glu), glutamine (Gln), gamma-

aminobutyric acid (GABA), glutathione (GSH), and lactate (Lac). A handful of other 

metabolites can be quantified, including but not limited to: aspartate (Asp); ascorbate 

(Asc); scyllo-inositol (sI); serine (Ser); glycine (Gly); and taurine (Tau) [1–3]. For each 

of these metabolites, there exists a diffuse literature of measurements made using different 

methodologies in healthy controls and various populations of neurologic, psychiatric, 

and neurodevelopmental disease. Consensus on the physiological ranges for metabolite 

concentrations and relaxation values has yet to be determined.

Quantification of metabolite levels by MRS is challenging and a variety of methods 

are used to convert detected signal voltages into concentration-like measurements. These 

are all relative – that is, they rely upon the collection of a reference signal. Phantom-

replacement [4] and synthetic referencing [5] are cumbersome and not widely used, so 

internal signal referencing predominates [6,7]. Among the potential reference signals, there 

is no clear and unambiguous ‘best’ option, each having advantages and disadvantages. 

Metabolite-metabolite referencing (most commonly to creatine) has the advantage of being 

simultaneously acquired and relatively unaffected by changing amounts of cerebrospinal 

fluid (CSF) within the measurement volume [8]. However, metabolite-water referencing is 

now the consensus-recommended approach, based upon the high SNR of the water signal 

and its role as the solvent [7,9,10]. Concentrations can be inferred from signal ratios and an 

assumption of the MR-visible water concentration, and can be expressed in molal (mol/kg 

solvent), molar (mol/dm3) or institutional units (i.u.) [7,9–11]. Correction for the varying 

water signal relaxation rates and visibilities in gray matter (GM), white matter (WM) 

and CSF is usually also performed on the basis of segmented structural images [12]. The 

relaxation of metabolite signals is usually corrected on the basis of literature reference 

values [12,13].

Generating realistic synthetic in vivo spectra is desirable for the development and 

validation of MRS quantification methods. Simulations that produce spectra that are fully 

representative of in vivo data, in terms of metabolite concentrations, macromolecular 

background, spectral baseline, artifacts and other nuances of MRS, will improve validation 

of classical methods and permit the development of deep learning techniques. Density 

matrix simulations based upon prior knowledge of metabolite chemical shifts and coupling 

constants [14–19] can generate metabolite basis spectra. However, deriving the metabolite 

component of a synthetic spectrum from simulated basis sets additionally requires 

specifying appropriate metabolite concentrations and lineshapes (combining relaxation 

behavior and field inhomogeneity). The International Society for Magnetic Resonance in 

Medicine (ISMRM) ‘Fitting Challenge’ was one of the first efforts to create realistic 

synthetic spectra to test the performance of different modeling software packages [20], 

specifying a single metabolite T2 value of 160 ms and, ‘normal ranges,’ for metabolite 

concentrations. While there have been a few disease-specific meta-analyses of MRS 

literature [21–25], there has not been a meta-analysis of the healthy and ‘control’ literature 

nor a cross-diagnosis comparison of the MRS literature. Therefore, in this manuscript we 
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describe an open-source database which can be used to identify trends among the MRS 

literature and provide a meta-analysis to better inform future efforts to generate synthetic 

data that represent brain MRS in health and disease.

2. Methods:

In the current study, we have developed a comprehensive open-source database that includes 

metabolite relaxation and concentration values. This collates the results of nearly 500 

MRS papers, tabulating metabolite concentrations and relaxation rates for the healthy brain 

and a wide range of pathologies. Each entry also includes the publication information, 

experimental parameters, and data acquisition methods. To demonstrate the utility of this 

database, we performed three separate analyses: 1) an investigation into healthy brain 

metabolite concentrations; 2) a model of how these concentrations change in 25 clinical 

populations; and 3) a model to predict and account for variable metabolite T2 results.

2.1 Search Methods:

In building the database, publications were identified to determine eligibility for inclusion 

according to Preferred Reporting Items for Systematic reviews and Meta-Analyses 

(PRISMA) guidelines [26,27]. Searches were conducted on PubMed, Web of Science, and 

Scopus databases. Separate searches (each search phrase is included in Supplementary Table 

1) were carried out to specifically identify publications that either quantified metabolite 

concentrations or T2 relaxation times, herein referred to as the concentration study and 

relaxation studies, respectively. The original search for both was conducted in August of 

2021. In order to include literature published throughout 2021, an additional follow-up 

search was conducted in March 2022. No limitation for publication date was specified for 

searches; only articles available in English were included. A PRISMA flowchart that reflects 

the process of building concentration and relaxation databases is shown in Figure 1.

For both the concentration and relaxation studies, only in vivo brain 1H-MRS data from 

primary sources were considered. Duplicate records (i.e., abstracts/titles) identified from 

more than one database, reviews, meta-analyses, re-analyses, and book chapters were 

excluded during the “Removed Before Screening” step of the “Identification” stage. 

Conference posters were generally also excluded at the “Removed Before Screening” step 

since they are not peer-reviewed (with exceptions made, where information was otherwise 

scarce). During the “Screening” stage, “Records Excluded” were those identified as the 

wrong field of study (e.g., NMR Spectroscopy for food science), X-nuclei (e.g., 13C, 31P, 
17O, 15N, 23Na, etc.), non-spectroscopy MR methods (e.g., anatomical, functional, diffusion, 

etc.), or that did not study the brain. For the Concentration study, “Records Excluded” also 

included animal studies. All reports (i.e., research articles) were able to be retrieved for the 

remaining screened records. Finally, during the “Assessed for Eligibility” step, the “Reports 

Excluded” step reflects articles that did not include the mean and standard deviation for 

at least one metabolite concentration quantified in molar (moles/liter), molal (moles/g), or 

institutional units (i.u.), or referenced to total creatine (1/tCr), nor transverse relaxation times 

T2 or rates R2. Mean and standard deviation were calculated for reports listing median 

and quartile results, using the methods outlined in [28,29] to handle normal and skewed 
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distributions, respectively. Distributions were classified as normal or skewed by comparing 

the upper and lower quartile-to-median ranges; if the range between the median and the 

lower quartile was similar to the range between and the median and the upper quartile 

(<50% difference), then the distribution was classified as normal, otherwise it was classified 

as skewed. Articles that presented values in the form of bar or scatter plots were included 

by manually determining mean and standard deviations with the assistance of an in-house 

Python software package that maps pixel values to figure axes. Authors were contacted by 

email ` if they collected relevant data, but did not list their results; these included authors 

that only provided statistical results (e.g., t-statistic, p-value, etc.), non-standard units (e.g., 

arbitrary units), or normalized measurements (e.g., relative to baseline, z-scored, etc.).

Due to the high volume of articles (10,506) returned for the concentration study, articles 

were initially limited to 2018–2021. Where necessary, articles were retrieved from earlier 

years to ensure that three or more studies were included for less commonly studied 

clinical populations or difficult-to-measure metabolites (e.g., ascorbate) – this provided an 

abbreviated subset of 1,863 articles in the “Identification” stage. Of the original 1,863 

articles, 571 articles were “Removed Before Screening” leaving 1,292 articles. After 

screening, 790 records remained and the corresponding report was retrieved. A total of 

348 articles were determined to be eligible for inclusion in the database and analysis.

While this work aims to determine MRS features in the human brain, the relaxation study 

included all species as a handful of metabolites have not yet been well studied outside of 

animal models. A total of 870 articles were returned by the database searches during the 

“Identification” stage. Of the original 870 articles, 234 were “Removed Before Screening.” 

The remaining 636 records were “Screened” and 294 were removed in the “Records 

Excluded” step. 342 reports were then retrieved and assessed for eligibility. Finally, 113 

articles remained and were included in the database and analyses.

Data were analyzed using in-house Python scripts that utilized NumPy, Pandas, Scipy, 

Statsmodels, Matplotlib, and Scikit-learn [30–35]. The weighted mean and 95% confidence 

intervals calculated within the healthy and clinical metabolite concentration meta-analyses 

used a combined effects model. Specifically, combined effects were determined using a 

Random Effects model [36] which can be advantageous for biological studies where a true 

value does not exist across studies (e.g., metabolite concentration varies from person to 

person). If a Random Effects model was not defined or there was not enough data (<8 

studies), a Fixed Effect model was used [36] which can similarly identify common effects 

with less flexibility by assuming a singular true value. Weighting across studies, both for 

combined effects and meta-regression, used the inverse variance weighting scheme [37] to 

penalize high-variance studies. While all data are present in the database, meta-analyses 

were only carried out when 3 or more studies were available for a particular metabolite, 

group, or field strength.

2.2. Metabolite Concentrations in Healthy Populations:

Studies that investigated healthy individuals or had healthy control groups were used 

to determine metabolite concentration ranges in healthy populations. Of the 350 studies 

included, 259 studies investigated a healthy population or included a healthy control group 
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(26% of studies included no healthy subjects). Subjects were classified into early life 

(<2 years of age), adolescent (5–14 years of age), young adult (18–45 years of age) 

and aged adult (>50 years of age). These age ranges allowed for the greatest number of 

studies to be included in each of the categories while leaving a gap (e.g., 46–49 years 

of age) to set groups apart. There were 8 [38–44], 19 [45–63], 199 [54,64–258], and 45 

[81,97,142,152,156,159,194,196,225,244,259–288] studies within the four age categories 

(early life, adolescent, young adult, aged), respectively. To determine the concentration 

ranges, values were separated by metabolite and units (i.u./mM and 1/tCr) reported. Finally, 

a combined effects model [36] was used to compute the mean and 95% confidence interval 

(as seen in Figure 2.

2.3. Metabolite Concentrations in Clinical Populations:

Studies that investigated clinical groups and included a healthy control 

group were included in the clinical population analysis. There were 180 

publications [38–43,49–52,54–57,59,62–64,68,69,71,73–75,77,78,80,82,84,87,91,92,94–

98,100,101,103,104,106,107,110,111,113,116–118,120,124,128,129,136–142,144,146,148–

151,153,155,160–165,170,173,174,176,178,179,181–183,185–189,191,192,196–200,202–

205,207,209,210,213,218,220–222,224,227,229,230,232,235,237,240,242,243,246–

248,250–255,257–261,263,264,267–273,276,277,279–313] consisting of 25 

unique clinical groups. To determine the concentration ranges, 

values were separated by metabolite and units reported. Each 

clinical population was then modeled as a linear change relative to their respective 

control group by using the ‘ratio of means’ method [314,315]. A value of 1.0 would indicate 

no difference between the clinical and control groups. Finally, a combined effects model 

[36] was used to compute the mean and 95% confidence interval (as seen in Figure 3).

2.4. T2 Meta-regression Model:

Studies that investigated healthy subjects or included a healthy control group were included 

in the T2 relaxation analysis. Of the 113 included studies, 76 studies [3,13,316–389] were 

included in the analysis. All the studies’ results were separated by metabolite for the 

analysis to produce 629 values. Next, a multiple meta-regression was employed with 6 

input variables: 1) metabolite; 2) field strength; 3) localization pulse sequence; 4) T2 filter, 

5) tissue type; and 6) subject species. Metabolite was a categorical variable that included 

14 metabolites, with some of them further differentiated by moiety (Asp, tCr CH2, Cr 

CH3, GABA, Gln, Glu, Gly, tCho, GSH, Lac, mI, NAA CH3, NAAG, Tau). Field strength 

was a continuous variable from 1.5 T through 14.1 T. Localization pulse sequence was a 

categorical variable that included Point Resolved Spectroscopy (PRESS), Stimulated Echo 

Acquisition Mode (STEAM), or either Localization by Adiabatic Selective Refocusing 

(LASER) or semi-LASER (sLASER). ‘T2 filter’ was a categorical variable indicating 

whether the data were collected with a Carr-Purcell Meiboom-Gill (CPMG) multi-echo 

sequence or not. Tissue type was a categorical variable which was characterized as GM 

(voxel composition >80% GM), WM (voxel composition >80% WM), or mixed (all other 

cases). Subject species was a categorical variable that specified human or not human. The 

output was a continuous T2 value in milliseconds. Continuous variables were scaled between 

0 and 1. Categorical variables were dummy coded creating for use within the regression 
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model. The model was iteratively re-run leaving one datapoint out each time for prediction 

(i.e., 629 individual leave-one-out regression models were run).

3. Results:

3.1. Database:

The database currently contains 461 publications with each entry containing the publication 

information, experiment details, parameters of the data acquisition, and the mean and 

standard deviation of the results. A complete list of the information available from each 

entry in the database is given in Table 1. We used the PRISMA guidelines to ensure 

an unbiased and wide-reaching approach was taken to identify and screen publications. 

The database is open-source and available online at https://github.com/agudmundson/mrs-

database.

3.2. Healthy Metabolite Concentrations:

The physiological ranges of brain metabolites were determined within the each of the four 

age categories for both i.u./mM and 1/tCr. The resulting weighted mean and 95% confidence 

intervals for young and aged adult concentrations, for both i.u./mM and 1/tCr, are shown 

in Figure 2. The weighted mean, 95% confidence intervals, and other summary statistics 

for healthy infant, adolescent, young adult, and aged populations are available at https://

github.com/agudmundson/mrs-database.

3.3. Clinical Metabolite Concentrations in pathological conditions:

While clinical studies that did not include a control group were included in the database, 

the main focus was on studies that had direct comparisons, to minimize confounds involving 

technical variations among studies. Rather than computing effect sizes, linear changes were 

used to be directly interpretable to generate concentrations for future simulations. Figure 

3 depicts levels of commonly investigated metabolites measured in diseased populations. 

The mean linear change, 95% confidence intervals, and other summary statistics for each 

metabolite in the 25 clinical populations is available at https://github.com/agudmundson/

mrs-database.

3.4. T2 relaxation:

The iterative leave-one-out models achieved a median adjusted R2 of 0.782 (Q1 = .7817; 

Q3 = 0.7819). Predictions for these models yielded a median error of 26.61 ms (Q1 = 12. 

06 ms; Q3 = 54.66 ms) with 16.23% error (Q1 = 7.51%; Q3 = 27.29%). Figure 4 shows 

the actual value plotted with the marker size representing the weight within the model and 

the meta-regression model for 3 of the most common metabolites, NAA, Cho, Cr. The full 

model is available at https://github.com/agudmundson/mrs-database.

4. Discussion:

4.1 Open-source Database:

Using a systematic approach, we provide the first database for MRS results and 

corresponding methods. As this database is freely available through the cloud-based website 
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GitHub, new entries can be continually added and existing entries can be updated with 

more information through collaborative efforts. This database is valuable for quickly 

identifying trends as results across multiple studies can be interrogated. As with the meta-

analyses performed here, future analyses may interrogate brain region, software, or other 

methodological decisions.

4.2 Physiological Ranges of Brain Metabolites in the Healthy Adults:

The primary goal of this meta-analysis was to summarize levels of MRS-accessible 

metabolites with a large data mining and unification approach. This was not the first effort 

to provide typical concentration values or ranges – physiological ranges of metabolites 

have been proposed previously for the healthy brain using data from multiple species 

[390,391]. Here, a comprehensive approach was taken to unify measures across hundreds 

of human studies and appropriately weight them to establish the physiological ranges of 

19 brain metabolites and metabolite-complexes. The focus here on recent publications (<5 

years old) biased the analysis toward data quantified using more current and advanced 

methodologies. Reassuringly, many values here reflect similar ranges to those previously 

proposed [20,390,391].

Methodological heterogeneity within the MRS literature certainly limits any quantitative 

meta-analysis. The extent to which such effects negatively impact this analysis vary. For 

example, the clinical effects are all quantified within-study (i.e., each study is characterized 

in terms of a fractional group difference), so first-order effects associated with different 

tissue corrections shifting the mean concentration values are not a concern; however, 

second-order effects (where less valid corrections might lead to a group-bias) are still a 

concern. The main concentration analysis does conflate data quantified with a variety of 

methods. The variance observed in the meta-analysis results thus includes measurement 

variance as well as methodological variance within the literature. Where the combined/

random effects models ‘compare’ categories with biased sampling among the methods 

represented, this approach may be misled by methodological biases.

The metabolic profile provided here represents progress towards effective and accurate 

simulation of realistic synthetic data. The development of data analysis methodologies is 

limited by a lack of ground truths – methodological performance is usually assessed in 

terms of modeling uncertainty (CRLB) or within- or between-subject variance (standard 

deviation). Notably, these metrics do not reflect a true measurement error, tending to ignore 

measurement bias and conflate sources of variance. Ultimately, synthetic data that accurately 

represent all features of in vivo data allow comprehensive evaluation of sources of variance 

and bias in MRS methods. Beyond validation of traditional analysis methods, such synthetic 

data are integral to developing deep learning and machine learning algorithms for MRS data 

analysis and quantification.

4.3. Physiological Ranges of Brain Metabolites in Clinical Populations:

Here, a linear model demonstrating the relationship between healthy and clinical populations 

was presented. Results for the six most frequently quantified metabolites can be seen 

in Figure 3. As far as we know, this is the first study to provide a basis to determine 
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physiological and pathological ranges of brain metabolites in such a wide array of clinical 

populations. Many of the cohort effects summarized, and those highlighted in Figure 3, 

agree with previous systematic reviews and disease-specific meta-analyses [21–25,392]. 

For example, our analysis reproduced the widely recognized elevated choline in tumors 

[22] and elevated mI and decreased NAA in aging and Alzheimer’s Disease [21,392–

394]. Neurometabolic changes in tNAA and tCho also appear to have some value in 

discriminating between clinical syndromes with similar symptomology, such as Parkinson’s 

Disease and Essential Tremor [395–397]. It is notable that, although tCr is often used as an 

internal reference, it is not markedly stable across the disease populations, and can show 

changes across aging [398,399]. By synthesizing meta-analytic information across a range of 

disorders, this resource may allow the development of future tools to discriminate between 

clinical conditions.

4.4. Multiple Meta-Regression to Explain Heterogeneity of Metabolite T2 Relaxation 
Results:

T2 relaxation is an important aspect of in vivo MRS data and should be carefully considered 

when simulating data. Unfortunately, apart from the 3 most common methyl singlets (i.e., 

tNAA, tCr, tCho), T2 ranges have not been well established. This can be seen as most 

relaxation-corrected absolute quantification methods rely on a small handful of references 

and must make approximations for tissue differences, pulse sequence effects, or even for 

metabolites that have not been studied for the given acquisition protocol. The goal of this 

analysis was to produce a model that could provide metabolite T2 ranges for simulation. 

To do this, we leveraged data from multiple metabolites across different species that were 

measured using a variety of acquisition schemes. While results between studies can be 

seen to have a high degree of variability, the multiple meta-regression model was able to 

account for a large degree of the variance. The model included 6 variables: 1) metabolite, 

2) field strength, 3) localization pulse sequence, 4) T2 filter, 5) tissue type, and 6) subject 

species. Following a leave-one-out validation approach, nearly 80% of the variance could 

be attributed to the 6 factors. The major factors that explain variance in T2 are field 

strength, with shorter T2 at higher field; metabolite, with Cr having shorter T2 than Cho and 

especially NAA; species, with longer T2 in rodents; and T2-filter (although CPMG filters are 

only used in a minority of studies). The error in prediction was low, with approximately 25% 

of the prediction errors less than 10 ms, 50% of prediction errors less than 25 ms, and nearly 

75% of prediction errors under 50 ms. High prediction errors came primarily from a small 

subset of papers that appear to represent outliers in the dataset suggesting predictions may 

provide reliable estimates when simulating understudied metabolites. We did not attempt to 

quantify ‘study quality’ as a potential weighting factor, other than through cohort size. The 

main factor that is not included in the model (although addressed to some degree by the 

‘tissue factor’) is brain region of measurements, where iron-rich regions are known to show 

shorter T2s [400–402]. It will also be important to measure T2 data in clinical populations 

and across the lifespan to further solidify the existing body of literature.

The context of generating the metabolite components of synthetic spectra, which this 

meta-analysis builds toward, requires metabolite basis functions, metabolite amplitudes, 

as well as metabolite linewidths. By surveying the metabolite T2 literature, we sought 
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to better understand the ‘pure-T2’ of metabolite linewidths in the absence of local field 

inhomogeneity. One model of in vivo lineshapes is to assume T2 as the Lorentzian linewidth 

component and to assign inhomogeneity broadening to a Gaussian linewidth component – 

the data compiled here can inform such a model. It is also appropriate to consider transverse 

relaxation weighting of metabolite amplitudes when assembling synthetic spectra “acquired” 

at typical TEs.

5. Conclusion:

Here, we provide a new database containing brain metabolite results from nearly 500 MRS 

publications. This database is freely available online where users can view and contribute 

their own data. Moving forward, this database can function as a community resource 

allowing deeper interrogation and understanding of how acquisition protocol, software 

analysis tools, brain region, population, etc. impact and/or bias results.

Using the database, we have determined physiological ranges of 19 brain metabolites 

and metabolite-complexes across the lifespan of healthy individuals. We further modeled 

disease effects relative to healthy controls to allow for determining concentration ranges 

for 25 psychiatric and neurologic diseases. Finally, we have performed a meta-regression 

to determine appropriate ranges for T2 in MRS simulations. The determined ranges will 

be invaluable for informing the generation of synthetic data for evaluating analysis tools 

and deep learning datasets. Additionally, these ranges may serve as a reference to clinical 

researchers that are unaware of the expected values for a given metabolite or may be 

considering how MRS can fit within their study design.
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Abbreviations:
1H proton

2-HG 2-hydroxyglutarate

Adc addiction

ADHD attention-deficit/hyper activity

Asc ascorbate

Asp aspartate

Aut autism
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Bip bipolar

Canc cancer

Cho choline-containing compounds

CPMG Carr-Purcell Meiboom-Gill

Cr creatine

CRLB Cramer-Rao lower bounds

CSF cerebrospinal fluid

D1 type 1 diabetes

Dem dementia

Dep depression

E4 apolipoprotein 4 carriers

Etrm Essential Tremor

Fib fibromyalgia

GABA gamma-aminobutyric acid

Gln glutamine

Glu glutamate

Glx sum of glutamate and glutamine

Gly glycine

GM gray matter

GPC glycerophosphocholine

ISMRM international society for magnetic resonance in medicine

Lac lactate

LASER localization by adiabatic selective refocusing

MCI mild cognitive impairment

MEGA Mescher-Garwood

mI myo-inositol

Mig migraine

MRS magnetic resonance spectroscopy

MS multiple sclerosis
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NAA N-acetylaspartate

NAAG N-acetyl-aspartyl-glutamate

OCD obsessive compulsive disorder

Pain chronic pain

PC perinatal Complications

PCho phosphocholine

PCr phosphocreatine

PD Parkinson’s disease

PE phosphoethanolamine

Pers personality disorder

PRISMA preferred reporting Items for systematic reviews and meta-analyses

PRESS point resolved spectroscopy

Psy psychosis

PTSD post-traumatic stress disorder

Schz schizophrenia

Seiz seizure disorder

Ser serine

sI scyllo-inositol

sLASER semi-adiabatic localization by adiabatic selective refocusing

STEAM stimulated echo acquisition mode

SNR signal-to-noise ratio

Str stroke

T2 spin-spin relaxation time

Tau taurine

TBI traumatic brain injury

tCho sum of choline-containing metabolites

tCr sum of creatine and phosphocreatine

tNAA sum of N-acetyl-aspartate and N-acetyl-aspartyl-glutamate

TE echo-time
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TI inversion time

TM mixing time

TR repetition time

WM white matter
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Figure 1: 
PRISMA flow charts that show the database selection and inclusion process of the (A) 
concentration and (B) T2 relaxation publications. Records “Removed Before Screening” 

were duplicates (identified from more than one database), reviews, meta-analyses, textbooks, 

or re-analyses. Conference abstracts were generally excluded, with exceptions made when 

information for a given metabolite/disease was scarce. “Records Excluded” were those 

identified as the wrong field of study, non-1H MRS, non-spectroscopy MR methods, non-

brain regions, or animal studies (for Concentration study only). “Reports Excluded” during 

the “Assessed for Eligibility” did not include metabolite concentrations nor relaxation 

values.
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Figure 2: 
Brain metabolite concentrations in younger (18–45 years, in blue) and older (>50 years, 

in white) healthy adults from studies that reported results as: (A) Molar, molal, and 

Institutional Units; (B) Creatine-referenced. An * indicates the use of a Fixed Effects Model 

rather than a Random Effects Model. A † indicates a combined effects model was not 

defined.
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Figure 3: 
The six most commonly investigated metabolite concentrations modeled in diseased 

populations. Data from metabolite and metabolite complexes are combined (e.g., Cr and 

tCr, Glu and Glx). An * by the group classification indicates the use of a Fixed Effects 

Model rather than a Random Effects Model. A † indicates a combined effects model was 

not defined. PC = perinatal complications; Aut = autism; ADHD = attention-deficit/hyper 

activity; MCI = mild cognitive impairment; E4 apolipoprotein 4 carriers; Dem = dementia; 

Etrm = essential tremor; PD = Parkinson’s disease; MS = multiple sclerosis; Bip = bipolar; 

Pers = personality disorder; Psy = psychosis; Schz = schizophrenia; Adc = addiction; Depr 

= depression; OCD = obsessive compulsive disorder; PTSD = post-traumatic stress disorder; 

Fib = fibromyalgia; Mgrn = migraine; Pain = chronic pain; Canc = cancer; D1 = type 1 

diabetes; TBI = traumatic brain injury; Str = stroke; Seiz = seizure disorder.
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Figure 4: 
Transverse relaxation time meta-analysis. Only results for NAA, Cho, and Cr are shown 

for ease of visualization, but a total of 629 values for 14 metabolites were included in the 

database and modeled. Metabolite, field strength, localization, T2 filter, species, and tissue 

type were included as factors in the model. Database entries are sorted here by these factors 

in that order. Each study is represented by a square of size reflecting the modeling weight 

(based on the inverse of variance). The red line shows the model.
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Table 1.

Information available for entries in the database.

Citation: Voxel:

Name in Database Dimensions (x, y, z)

Publication Year Volume

Author(s) Anatomical Region

Journal Volume Hemisphere

Title Tissue Fractions (Mean/Standard Deviation)

Digital Object Identifier

Acquisition:

Study Populations: Localization Sequence

Study Index Water Suppression

Population Acquisition Bandwidth

Control Group Number of Datapoints

Treatment or Conditions Number of Transients

Visit or Session Number Repetition Time (TR)

Total Number of Subjects Echo Time (TE)

Number of Subjects Analyzed Inversion Time (TI)

Number of Male Subjects T2 Filter

Number of Female Subjects

Age (Mean/Standard Deviation) Analysis:

Preprocessing Software

Hardware: Fitting/Quantification Software

Scanner Manufacturer Segmentation Software

Scanner Model Partial Volume Correction

Magnetic Field Strength Relaxation Correction
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