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Abstract

Mass spectrometry imaging (MSI) has gained increasing popularity for tissue-based diagnostics 

due to its ability to identify and visualize molecular characteristics unique to different phenotypes 

within heterogeneous samples. Data from MSI experiments are often assessed and visualized 

using various supervised and unsupervised statistical approaches. However, these approaches tend 

to fall short in identifying and concisely visualizing subtle, phenotype-relevant molecular changes. 

To address these shortcomings, we developed aggregated molecular phenotype (AMP) scores. 

AMP scores are generated using an ensemble machine learning approach to first select features 
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differentiating phenotypes, weight the features using logistic regression, and combine the weights 

and feature abundances. AMP scores are then scaled between 0 and 1, with lower values generally 

corresponding to class 1 phenotypes (typically control) and higher scores relating to class 2 

phenotypes. AMP scores, therefore, allow the evaluation of multiple features simultaneously 

and showcase the degree to which these features correlate with various phenotypes. Due to the 

ensembled approach, AMP scores are able to overcome limitations associated with individual 

models, leading to high diagnostic accuracy and interpretability. Here, AMP score performance 

was evaluated using metabolomic data collected from desorption electrospray ionization MSI. 

Initial comparisons of cancerous human tissues to their normal or benign counterparts illustrated 

that AMP scores distinguished phenotypes with high accuracy, sensitivity, and specificity. 

Furthermore, when combined with spatial coordinates, AMP scores allow visualization of tissue 

sections in one map with distinguished phenotypic borders, highlighting their diagnostic utility.

Graphical Abstract

INTRODUCTION

The accurate identification of different tissue phenotypes is crucial for early diagnosis, 

successful tumor removal, and treatment of disease. Achieving this has been challenging due 

to the spatially complex nature of tissues, especially tumors, which gives rise to both intra-

tumoral and inter-tumoral heterogeneity.1,2 Historically, the manual evaluation of stained 

or labeled sections of tissue by highly trained histopathologists has been the gold standard 

for diagnosis. However, hematoxylin and eosin (H&E) stains only provide morphological 

information and may not fully resolve tissue types, especially when changes are primarily 

molecular in nature.3,4 For example, poorly differentiated breast cancer can be difficult to 

distinguish with this approach.5 Furthermore, H&E staining can also be time-consuming, 

subjective, and ultimately delay patient care. Therefore, the need for an improved approach 

that combines molecular and spatial distributions with tissue morphology has become 

apparent. Mass spectrometry imaging (MSI) has thus emerged as a powerful approach to 

address these needs.6–10

MSI-based techniques rely on sampling regions of interest by using an ionization 

probe that feeds directly to a mass spectrometer. Notably, ambient ionization sampling 

techniques allow for the direct analysis of complex samples under atmospheric pressure 

and require minimal sample preparation, thereby allowing for rapid data collection.7,11 

To identify intrinsic patterns in the resulting datasets, unsupervised statistical approaches 
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are often applied, which utilize the m/z features detected to assess trends without prior 

biological knowledge. Due to the large size of MSI datasets, it is common to implement 

dimension reduction techniques, such as principal component analysis (PCA), t-distributed 

stochastic neighbor embedding (t-SNE), or non-negative matrix factorization (NMF) as a 

pre-processing step. Dimension reduction is often followed by clustering techniques, such as 

hierarchical clustering, k-means clustering, or Gaussian mixture modeling to segment pixels 

into groups with similar feature profiles. Once clusters are assigned, tissue sections are 

often visualized by creating ion images where pixels are colored according to their cluster. 

Comparison of cluster localization to pathologist-annotated slides has revealed that these 

approaches can identify highly relevant clusters that correspond to regions of the tissue that 

have different biochemical or biological properties, such as different cell types or different 

stages of disease.12–19

While unsupervised approaches aim to unveil natural patterns in the data, supervised 

approaches are often used to select features associated with phenotypes of interest. This 

can be achieved by either applying univariate methods, such as an ANOVA or t-test, to 

directly characterize the relationship between a given feature and phenotype, or by using 

multivariate approaches, such as random forest (RF) or linear discriminant analysis (LDA), 

to highlight features that are important for phenotypic classification.20–22 For example, 

supervised approaches have been used to identify diagnostic lipid and metabolic signatures 

of human cancerous tissues, including brain,23 breast,24,25 thyroid,26 gastric,27 ovarian,28 

and others.20,29–31 With these approaches, ion images are frequently made by coloring 

pixels based on feature abundance for features that were found to be statistically significant 

or influential on model performance. Alternatively, tissue sections can be summarized 

in a single image by coloring pixels based on phenotypic predictions or predicted class 

probabilities provided by models.27,32

Although the benefits of using MSI data for tissue diagnosis and visualization are 

apparent, there are still limitations in the outlined statistical approaches. While unsupervised 

techniques have the benefit of requiring minimal a priori knowledge, the resulting 

clusters may not correspond to phenotypic differences. Further, because pixels are colored 

categorically, rigid borders will exist between clusters in ion images, failing to capture any 

gradual molecular changes. These limitations may be circumvented by utilizing a supervised 

approach, where specific differences between phenotypes can be assessed based on sample 

annotations and tissue sections are visualized based on feature abundances or model output. 

However, assessing feature abundances often involves plotting only a few features at a time, 

which is not only time-consuming but also makes it difficult to holistically understand the 

molecular landscape of a tissue section. To make visualizations more concise, categorical 

phenotypic classifications or classification probabilities from predictive models may be 

used. However, relying solely on classification output may overlook subtle variations and 

nuanced molecular changes within the tissue. For example, while a histopathologist may 

identify unusual or rare features in a tissue section, classification-based visualizations may 

indicate that a tissue is normal with no further indication of anomalies that may be relevant 

to disease management and prognosis, e.g., detection of inflammation or precancerous 

lesions.33 To this end, we have developed aggregated molecular phenotype (AMP) scores, 
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which allow for concurrent visualization of phenotype-associated features while picking up 

on subtle molecular changes.

An AMP score is a value between 0 and 1 that summarizes the aggregated molecular 

information of a single sample or pixel in a MSI experiment. These scores are defined 

for pairwise phenotype comparisons with low scores indicating that a given pixel has 

molecular characteristics matching the user-defined class 1 phenotype (often control) and 

high scores correlating with the user-defined class 2 phenotype. To calculate AMP scores, 

we utilized an ensemble feature selection approach to identify features differing between 

the two phenotypes, weighted these features using logistic regression, and then applied 

a custom function to combine feature abundances with their respective weights for each 

sample or pixel. A threshold value of 0.5 was utilized for binary classification of these 

scores, with scores closer to 0.5 suggesting that a pixel shares molecular characteristics 

of both phenotypes. Once calculated, AMP scores were then combined with the location 

coordinates for each pixel to create one image of a tissue section. This image represents 

all features (or molecules) of interest and illustrates how the molecular landscape changes 

spatially (Figure 1).

In this paper, we utilized metabolomic data from three previously published studies to 

demonstrate how AMP scores are calculated and evaluate their performance.24,26,28 Namely, 

in the first evaluation, we analyzed AMP scores for homogeneous tissue sections from 

follicular thyroid adenoma (FTA), a benign thyroid tumor vs papillary thyroid carcinoma 

(PTC),26 the most common type of thyroid cancer. In our next comparison, we assessed 

normal breast (NB) vs invasive ductal carcinoma (IDC), the most common type of breast 

cancer tissue to evaluate margins.24 Three different ovarian tissues, normal ovarian tissue 

(NO), borderline ovarian tumor (BOT), and high-grade serous carcinoma (HGSC), were 

evaluated in the final comparison to understand how each pairwise assessment would 

perform, especially when our class 1 was not a control but a less severe disease case (i.e., 

BOT vs HGSC).28 These analyses illustrated the high predictive power of AMP scores with 

class 1 samples having substantially lower scores compared to class 2 samples. The ability to 

distinguish phenotypes was further showcased in AMP score heatmap visualizations, which 

distinguished tissue borders and identified regions of normal and diseased tissue. Further, we 

compared these results to classification and visualization using LDA posterior probabilities, 

which highlighted the method’s ability to detect gradual changes (Supporting Information). 

Overall, these results suggest that AMP scores can be used as a powerful approach to 

visualize and diagnose tissue sections from MSI.

METHODS

Descriptions of the datasets used can be found in the Supporting Information.

Overview of AMP Score Calculation Pipeline.

AMP scores were calculated by first filtering and normalizing the data. The data were 

then split into training and testing sets, where distinguishing features were selected and 

AMP score parameters were calculated using the training data. Finally, AMP scores were 

calculated for the testing data for evaluation. An overview of this pipeline is shown in Figure 
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2. A description of the data pre-processing can be found in the Supporting Information, and 

all other steps are described below.

Data Splitting.

To evaluate the performance of the AMP scores, we followed the standard practice of data 

splitting in machine learning by first training the scoring system on a subset of the data and 

then applying it to an independent testing set. For each pairwise comparison, homogeneous 

samples were randomly split into training and testing sets using a 2:1 ratio. Splitting was 

done at the sample level to ensure independence between the training and testing sets. 

Heterogeneous samples were withheld as an additional validation set to visualize phenotype 

borders.

Ensemble Feature Selection.

To identify features that distinguish between phenotypes, we leveraged an ensemble feature 

selection approach. In this approach, features were initially selected by applying the 

least absolute shrinkage and selection operator (Lasso) regression, RF, and support vector 

machine (SVM) to the training data. Details of these methods, their associated parameters, 

and their implementation are discussed below:

1. Lasso regression is a method that selects features by imposing a penalty on the 

size of the regression coefficients, shrinking them toward zero, and resulting in 

a sparse model that retains only the most important features.34 Lasso analysis 

was performed in R (v4.2.1) using the glmnet package.35 For each pairwise 

comparison, the optimal value for lambda, which controls the strength of 

the regularization applied, was obtained using 5-fold cross-validation with the 

function “cv.glmnet”. After selecting the lambda value, Lasso logistic regression 

was performed using the “glmnet” function, and all features with a non-zero 

coefficient were retained.

2. RF ranks features based on how much their inclusion in a forest of decision 

trees decreases the impurity of predictions quantified using the Gini Index, with 

features yielding the highest decrease in impurity being considered the most 

important.36 To determine these features, RF models were constructed for each 

pairwise comparison using the randomForest package in R. Each model was built 

using the function “randomForest” and consisted of 1000 decision trees, where 

the number of variables to use as candidates at each split point was equal to the 

square root of the number of features.37 Once a model was constructed, the out-

of-bag error rates were noted, and features were ranked using the “importance” 

function. The bottom ~10% of features were then removed from the data, the 

model was reconstructed, and the out-of-bag errors were reassessed. This process 

was repeated iteratively until the out-of-bag error began to increase, suggesting 

that all current features were useful for distinguishing phenotypes.

3. SVM with a linear kernel was employed for feature selection by examining the 

coefficients of the decision boundary, indicating the importance of each feature 

in predicting the classification outcome.38 SVM analysis was conducted using 
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scikit-learn in Python (v3.9.7).39 Models were first constructed using the “SVC” 

function with a linear kernel and C = 1. To evaluate model performance, 5-fold 

cross-validation was performed on the training data using the “cross_val_scores” 

function, and top features were identified using the “coef_” function. The bottom 

~10% of features were then removed from the data, the model was reconstructed, 

and cross-validation performance was reassessed. This process was repeated 

iteratively until model performance began to decrease, suggesting all current 

features were useful for distinguishing phenotypes.

Features were determined to be important and included in the AMP score calculation if 

selected by at least two of the three models.

AMP Score Parameter Calculation.

After selecting significant features that distinguish phenotypes of interest, the next step 

was to assign a weight to each feature. To achieve this, training data was filtered down 

to just the selected features, and logistic regression was performed in R using the “glm” 

function with the abundances of features as independent variables and the phenotype group 

as the dependent variable. From this model, each feature was assigned a β coefficient. 

Preliminary AMP scores were then calculated for each individual pixel by multiplying the β 
coefficient of each selected feature by the feature’s abundance and then summing all of these 

values. From these preliminary AMP scores, the optimal threshold value for distinguishing 

the two phenotypes was chosen by finding the value that maximized Youden’s Index, 

which is defined as the sum of sensitivity and specificity minus 1.40 This was done 

using the “cutpointr” function from the R package cutpointr, which utilizes bootstrapping 

methodology to identify the value that maximizes a given metric.41

Final AMP Score Calculation and Evaluation.

Unscaled AMP scores for testing data were calculated for each pixel using the same 

approach as the training data, which included multiplying the β coefficient of all features 

selected by at least two of the three models by their associated abundance and then summing 

all products for each pixel. Testing scores were then scaled between 0 and 1, with all scores 

below the optimal threshold value determined by the training data ranging between 0 and 

0.5 and all scores above the threshold value occurring between 0.5 and 1. All pixels with 

a score less than 0.5 were predicted to be from class 1 samples, while pixels with a score 

greater than or equal to 0.5 were predicted to be from class 2 samples. Predicted phenotype 

labels were then compared to true pixel labels from pathology, and accuracy, sensitivity, 

and specificity were calculated using functions from the R package caret. Receiver operator 

characteristic curves were also calculated using the ‘roc’ function from the R package 

pROC.42 To assess differences between class 1 and class 2 AMP scores, the function “t.test” 

was used.

Violin plots, boxplots, and AMP score heatmaps were then made in R using the package 

ggplot2 to compare results.43 AMP score heatmaps were created by first plotting each pixel 

according to its x and y coordinates and then coloring based on the AMP score value.

Chappel et al. Page 6

Anal Chem. Author manuscript; available in PMC 2023 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



RESULTS AND DISCUSSION

AMP scores were developed in this work to enhance MSI data visualization by assessing 

multiple features and molecular changes simultaneously, including the gradation of 

borderline phenotypes. Assigning AMP scores for datasets of interest had several main 

steps, as shown in Figure 2. These steps included the following: (1) removing noise and 

normalizing the data, (2) splitting the data into training and testing sets, (3) applying 

ensemble feature selection to select significant features (or molecules) distinguishing the 

phenotypes of interest from the training data, (4) using selected features to calculate AMP 

score parameters, and (5) leveraging parameters from the training data to calculate AMP 

scores for the testing data and applying the phenotypic predictions to individual pixels.

As AMP scores are calculated solely on selected features, it is imperative to implement a 

robust feature selection method. For this reason, we opted for an ensemble feature selection 

approach, which was preferred due to its ability to overcome the limitations and biases 

associated with individual selection methods.44 In our ensemble, we included Lasso, RF, and 

SVM as they each have different underlying assumptions and are therefore likely to capture 

unique patterns in the data.34,36,38,44 A breakdown of the overlap between the three methods 

is shown in Figure S1. While these selection approaches were able to identify distinguishing 

features for this study, other selection methods, such as elastic net or ridge regression, may 

be better suited for different comparisons and could also be easily incorporated into the 

AMP score pipeline. Moreover, incorporating additional selection methods into the feature 

selection ensemble may result in a more stable feature list by ameliorating the biases of 

individual selection methods.

Once features were selected, weights for the selected features were determined. Because 

a key component of AMP score calculation is multiplying feature abundances with their 

respective weights, it was crucial that feature weights were directional, so that high feature 

abundances associated with class 1 or control phenotype result in lower AMP scores, while 

high abundance features correlating with class 2 phenotype provide higher AMP scores. 

To achieve this, we assigned β coefficients to each feature using logistic regression. This 

method was preferred over other feature weighting methods, such as information gain, due 

to the weights being signed and easily interpretable.45 However, we do recognize that some 

datasets may not meet the underlying assumptions for logistic regression, and consequently, 

other weighting methods may be more appropriate. As such, identifying a nonparametric 

way to generate signed weights is a focus of future work.

After β coefficients were assigned to each feature, we subsequently calculated preliminary 

AMP scores for the training data. The purpose of doing this was to identify the optimal 

cutoff score for distinguishing the two phenotypes in each comparison, which would later be 

used to scale the AMP scores for the testing data. To choose a cutoff, the score value that 

maximized Youden’s Index was chosen. This specific statistic was maximized over other 

potential performance measures, such as accuracy because it considers both the true positive 

rate (sensitivity) and the true negative rate (specificity), making it a comprehensive measure 

of dichotomous diagnostic performance.46,47 Once all parameters were determined, AMP 

scores were calculated for the testing data. To do this, the testing data was first filtered down 
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to the selected features. The abundance for each feature was multiplied by its respective 

weight at each pixel, and all the resulting products were summed. However, since AMP 

score ranges varied for the different comparisons, we scaled all AMP scores between 0 and 

1, with the cutoff value determined from the training dataset to 0.5. This allowed for easier, 

consistent interpretation both within and across comparisons.

To assess the AMP score calculations, three different MSI studies with normal, benign, 

and cancerous human tissue sections were evaluated (Figure 3). For all studies, the number 

of pixels used for training far exceeded the number of input features (e.g., 23,657 pixels 

and 738 features in the NB vs IDC comparison). This characteristic supported the decision 

to conduct analysis using machine learning methods (Lasso regression, RF, and SVM). 

It was also observed that following ensemble feature selection, the dimensions of each 

dataset decreased substantially, with 87.5 to 98.0% of the overall features removed prior to 

AMP score calculation. This reduction resulted in 40 features for the FTA vs PTC tissue 

comparison, 92 for NB vs IDC, 17 for NO vs BOT, 18 for NO vs HGSC, and 44 for 

BOT vs HGSC. When the AMP scores were calculated from these features and assessed 

on the testing data, they showcased a high predictive power, with class 1 samples having 

significantly lower scores than class 2 samples (p < 2.2 × 10−16 across all comparisons). We 

also observed high sensitivity and specificity across all studies with all metrics above 92.7%, 

which is visualized in receiver operating characteristic curves (Figures 3 and S2). This 

balance of sensitivity and specificity was observed across comparisons having markedly 

different pixel ratios. For example, the NB vs IDC comparison involved considerably more 

IDC pixels than NB. This is a result of many NB tissue samples being primarily composed 

of fat, limiting the number of pixels that could be extracted from epithelial cells.24 Despite 

this imbalance, AMP performed comparably to other comparisons. These results suggest 

that a generalized AMP pipeline offers balanced performance. Importantly, the parameters 

could be tuned to favor sensitivity (i.e., disease detection) or specificity depending upon 

clinical considerations regarding the consequences of false-negatives versus false-positives.

While the ability to differentiate phenotypes can be summarized as approximately equal 

across comparisons, as shown by the metrics in Figure 3, the distribution of AMP scores 

across pixels varied (Figure 4). In each comparison, the distributions were separated by 

phenotype, with the greatest separations in AMP scores between the NO vs HGSC and NO 

vs BOT comparisons. Interestingly, in the normal/benign vs cancerous comparisons (top four 

plots), the distribution for cancerous pixels was wider than the distribution of pixels for 

the normal/control This wider distribution may be due to diseased samples having different 

degrees of progression and thereby leading to more variable molecular profiles compared to 

control samples. In particular, the distribution of BOT samples appears somewhat bimodal. 

Since BOTs have the potential to develop into low-grade serous carcinoma, we hypothesize 

that this split may correspond to samples that are progressing in severity.28 This trend is 

further supported in the BOT vs HGSC distributions (bottom plot), where we see BOT is 

once again bimodal, with the smaller mode having AMP scores closer to HGSC. When 

comparing the AMP score distribution of HGSC in the NO vs HGSC comparison to 

the BOT vs HGSC comparison, we also can see that the distribution is much narrower 

in the BOT vs HGSC comparison. This result may suggest that the molecular features 

that differentiate HGSC samples from BOT samples are expressed more consistently in 
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HGSC samples than the features that differentiate NO and HGSC samples. While the 

comparisons in this study mainly focused on various healthy and disease phenotypes from 

human tissue, the BOT vs HGSC comparison showed that the AMP score pipeline is not 

specific to normal/benign vs disease cases. Therefore, we believe that AMP scores may be 

useful for assessing disease severity, identifying mechanisms of pathogenesis, and selecting 

prognostic markers. To further explore this capability, future steps include characterizing 

the relationship between patient metadata and AMP scores to determine if correlations exist 

between scores and patient outcomes or other clinical measurements.

To gain more information on the phenotype classifications, we also evaluated the AMP score 

distributions at the individual sample level (Figure 5). Again, there was a strong distinction 

between the different phenotypes, with samples from class 1 phenotypes being closer to 

zero and class 2 samples being closer to one. Interestingly, all misclassified pixels had an 

intermediate AMP score, with the lowest score from the true class 2 pixels being 0.374 and 

the highest score from the true class 1 pixels being 0.645 (Figure 5A–E). An exception to the 

otherwise high prediction accuracy is sample 7 in the NO/HGSC comparison (Figure 5C), 

which had over half of the pixels misclassified. This sample only consisted of 20 total pixels 

and therefore had very little influence on the overall prediction performance of the testing 

data. However, this result may also suggest that this sample should be further examined by 

pathology to confirm its phenotype. Additionally, when comparing the sample distributions 

within each pairwise phenotype comparison to one another, there is considerable variation, 

particularly for class 2 phenotypes. This reveals that rather than reflecting the overall 

phenotype distributions from Figure 4, individual samples or pixels may contribute more 

heavily to certain parts of the distributions. This trend is best observed when considering 

the HGSC data in the NO vs HGSC comparison, where the distribution of all pixels is 

quite wide (Figure 4), but the individual sample distributions are much narrower and almost 

completely in distinct interquartile ranges (Figure 5C).

Beyond binary classifications, AMP scores were also evaluated for their continuous scoring 

of phenotypes and visualization of margins in the tissue sections. The ability of AMP score 

heatmaps to capture overall molecular patterns was demonstrated in both the homogeneous 

(Figure 6) and heterogeneous samples (Figure 7). In homogeneous tissue sections, the 

phenotype of each sample was readily apparent from the AMP score heatmaps (Figure 

6). For both class 1 and class 2 samples for the FTA vs PTC, NO vs BOT, and BOT 

vs HGSC comparisons, AMP scores remain relatively consistent throughout the entire 

diseased or control tissue areas. Notably, pixels with intermediate AMP scores are frequently 

located near the tissue border. As the presented tissue sections were extracted to only 

show homogeneous regions, pixels near the tissue borders in these images likely represent 

areas near phenotypic changes. These intermediate pixels also match the outliers seen in 

Figure 5. This suggests that intermediate scores may indicate transition regions where tissue 

shares molecular characteristics with both phenotypes. To further assess this possibility, 

predictions were made on a few heterogeneous tissue samples to see how scores changed 

near phenotypic borders (Figure 7). Specifically, we assessed two HGSC tissues and 

one IDC tissue, each having accompanying H&E slides with tumorous areas outlined 

in black. Comparing AMP score heatmaps to these annotations, we see that AMP score 

heatmaps were able to successfully identify tumorous areas, highlighting the utility of AMP 
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scores for distinguishing phenotypes. Once again, in all three plots, pixels located at the 

border of normal and cancerous tissue had intermediate scores, suggesting that molecular 

differences between phenotypes occur gradually, with transition regions sharing molecular 

characteristics of both tissue types (Figure 7D). To ensure that this border reflected 

biological changes and not faulty model output, we assessed a subset of mass spectra 

corresponding to pixels across this transition region. This comparison, which is presented 

in the Supporting Information, provided further evidence that the transition region shares 

characteristics of both tissue phenotypes. This result is consistent with the work done by 

Woolman et al., which showed that molecular borders are not as sharp as the morphometric 

borders identified with microscopy and that a gradient of cancer-like metabolic states may 

be observed near cancerous tissue regions.48 To determine if the ability to detect these 

transition regions is unique to our method, we also applied LDA for both prediction and 

visualization. This analysis, which is reported in the Supporting Information, revealed that 

while LDA had comparable prediction accuracy, it favored outputting extreme probabilities 

and therefore failed to capture transition spaces.

CONCLUSIONS

In this study, we developed an AMP score pipeline to assess phenotypic differences in MSI 

data. We assessed these scores using data from three previous studies examining differences 

in normal, benign, and cancerous human tissue. Using the different studies, we first 

illustrated how AMP scores can improve tissue diagnostics by providing precise phenotypic 

predictions, as demonstrated by the high accuracy, sensitivity, and specificity observed 

across comparisons. In addition to providing accurate predictions, AMP score heatmaps 

highlight their ability to concisely visualize tissue sections in a phenotype-relevant way. For 

example, at phenotype borders, intermediate AMP scores were observed, suggesting that 

these regions may have a combination of characteristics similar to both phenotypes. This 

finding provides insight into the molecular changes that take place as malignancies spread, 

as well as further informs decision-making in surgical settings as physicians can choose to 

be more or less aggressive around these borders based on the nature of the disease.49

To improve upon our described work, we aim to expand the AMP score pipeline in future 

work to improve its usability and increase the number of possible use cases. While the 

outlined steps for AMP score calculation are somewhat complex, we believe this pipeline 

has the potential to be fully automated through the auto-selection model parameters. As 

such, we hope to disseminate our work into a user-friendly interface. Additionally, we hope 

to expand the AMP scoring framework to accommodate multiple classifications as there may 

be scenarios where more than two phenotypes are suspected. Achieving this thus far has 

proven computationally difficult as the directionality of beta coefficients and other common 

signed feature weighting methods only accommodate two classes. However, we believe an 

adapted scoring system could be implemented for these cases by comparing all potential 

phenotypes to a control and using some form of similarity scoring. Finally, since AMP 

scores are calculated before being combined with spatial information, the AMP scoring 

framework is also applicable to different biofluids, such as urine and blood, for patient 

classification. Thus, future work will include evaluating these different scenarios to define 

other AMP score use cases.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Example AMP score heatmaps for a heterogeneous tissue sample. On the left, a H&E 

slide is shown for a HGSC tissue sample with tumor areas outlined in dashed black lines. 

In the middle, an example of how tissue sections may be visualized with traditional MSI 

approaches is shown, with feature abundances across the tissue area visualized individually. 

On the right, the same tissue section is visualized using AMP scores, which summarizes 

signal across all features and greatly reduces the number of images.
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Figure 2. 
Pipeline for AMP score calculation. Data are first filtered and normalized before being 

split into testing and training sets. Features distinguishing phenotypes are selected using 

ensemble feature selection with Lasso regression, random forest, and support vector 

machine. Selected features are weighted using logistic regression and preliminary AMP 

scores are calculated for each pixel in the training data by multiplying the abundance of 

selected features by their respective weights and then summing. Following preliminary 

scoring, the value that maximizes Youden’s index is calculated, which is later used to scale 

the testing data. Finally, AMP scores are calculated for the testing data, predictions are 

made, and scores are plotted for visualization across tissue sections.
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Figure 3. 
Summary of data used for the AMP score calculation and validation and overall performance 

for each pairwise comparison. The number of features selected as significant for each study 

is also noted versus the total number of features evaluated. From top to bottom: FTA vs 

PTC, NB vs IDC, NO vs BOT, NO vs HGSC, and BOT vs HGSC.
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Figure 4. 
Violin plot showing the density of AMP scores for each pairwise comparison split by 

phenotype.
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Figure 5. 
AMP score distributions by sample for (A) FTA vs PTC, (B) NO vs BOT, (C) NO vs HGSC, 

(D) NB vs IDC, and (E) BOT vs HGSC. Each individual box and whisker plot shows the 

distribution of AMP scores across all pixels within a sample. Outlier points are defined 

as observations more than 1.5 times the interquartile range away from the upper or lower 

quartile.
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Figure 6. 
Example AMP score heatmaps for select (A) FTA vs PTC, (B) NO vs BOT, and (C) BOT vs 

HGSC homogeneous tissues. For each tissue section, individual pixels are colored by their 

respective AMP score with lower scores shown in blue, midrange scores in white, and higher 

scores in red.
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Figure 7. 
Comparison of AMP score heatmaps for heterogeneous tissues to annotated H&E slides, for 

example, HGSC tissue shown in (A,B), IDC tissue in (C), and a magnified border region 

from (A) in (D). On the H&E slides, tissue outlined in black corresponds to tumorous areas 

with healthy tissue in the other regions.
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