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In the advancing landscape of technology and novel material development, additive manufacturing 
(AM) is steadily making strides within the biomedical sector. Moving away from traditional, one-size-
fits-all implant solutions, the advent of AM technology allows for patient-specific scaffolds that could 
improve integration and enhance wound healing. These scaffolds, meticulously designed with a myriad 
of geometries, mechanical properties, and biological responses, are made possible through the vast 
selection of materials and fabrication methods at our disposal. Recognizing the importance of precision 
in the treatment of bone defects, which display variability from macroscopic to microscopic scales 
in each case, a tailored treatment strategy is required. A patient-specific AM bone scaffold perfectly 
addresses this necessity. This review elucidates the pivotal role that customized AM bone scaffolds 
play in bone defect treatment, while offering comprehensive guidelines for their customization. This 
includes aspects such as bone defect imaging, material selection, topography design, and fabrication 
methodology. Additionally, we propose a cooperative model involving the patient, clinician, and engineer, 
thereby underscoring the interdisciplinary approach necessary for the effective design and clinical 
application of these customized AM bone scaffolds. This collaboration promises to usher in a new era 
of bioactive medical materials, responsive to individualized needs and capable of pushing boundaries 
in personalized medicine beyond those set by traditional medical materials.

Introduction

Orthopedic implants serve 3 primary purposes: fixation, replace-
ment, or regeneration. Fixation implants—such as pins, screws, 
nails, and plates—are used to stabilize fractured bones, typically 
allowing for self-healing by the host tissue. Depending on the 
clinical circumstances, these fixation implants might be removed 
or permanently left in place.

In instances where self-healing is unattainable, due to severe 
trauma or other pathologies, the implant assumes the role of a 
replacement for the damaged bone. Commonly, these replace-
ment implants are nonbiodegradable and remain within the 
patient's body for a lifetime. Examples include prosthetic 
implants used in hip replacement surgeries and reconstructive 
jaw implants. However, in certain scenarios, even when bone 
defects are critically sized, bone regeneration within the defect 
region is achievable with the aid of bioactive bone implants.

The gold-standard treatment for bone defects has tradition-
ally been autologous bone grafts. However, this method has 
limited availability and is associated with high clinical risks due 
to the surgical procedures involved. An alloplastic graft, with 
appropriate mechanical properties and superior osteocompat-
ibility, could serve as an ideal strategy for clinicians [1]. Yet, 
several challenges persist in clinical scenarios, especially con-
sidering the complex structure of bone tissue [2]. Consequently, 

the design of a bone scaffold must consider its intricate archi-
tecture, posing major challenges to the fabrication process. 
Furthermore, bone defects—caused by trauma, tumors, or 
infections—can vary in location, shape, and dimensions. This 
variance necessitates a precision medicine approach, where 
bone scaffolds are tailored to the specific needs of each patient.

Additive manufacturing (AM), also known as 3-dimensional 
(3D) printing, emerges as a compelling solution. It is a layer-
by-layer fabrication method capable of rapidly creating complex 
structures using computer-aided design (CAD). By utilizing 
medical imaging data, AM can produce bone scaffolds with high 
precision and intricate design. The entire fabrication process 
can be customized according to the patient's needs, including 
the scaffold's contour profile, porous structure design, material 
selection, and posttreatment. Thus, the features of AM make it 
a robust tool for providing precision treatment for bone defects.

This review focuses on the pivotal role of customization in 
bone scaffold fabrication and the treatment of bone defects. 
First, we elucidate the necessity of customized AM bone scaf-
folds in treating bone defects. We then present a comprehen-
sive overview of the AM bone scaffold fabrication process. This 
process commences with the diagnosis and imaging of bone 
defects, which guide clinicians and engineers in designing 
scaffolds with suitable materials and geometry. Following the 
design phase, the design is then transformed into a scaffold 
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through a fast, precise, and flexible approach. The review delves 
into the customization at each step of the scaffold fabrication 
process and concludes with a discussion on future directions 
in customized AM bone scaffolds, including a model for clinical 
cooperation between clinicians and engineers.

Customization stands as both the solution and challenge in 
bone scaffold applications. AM, however, may be the most 
effective approach to meet this requirement. Through this 
review, our aim is to equip clinicians and engineers with an 
exhaustive understanding of customized AM bone scaffolds 
and to promote advancements in this field beyond theoretical 
discussion.

The Current State of the Art in AM Scaffolds for 
Bone Defect Treatment
Two treatment purposes of customized AM 
scaffolds: Bone regeneration and reconstruction
When a bone defect requires intervention, the focus of implants 
is either regeneration, restoring the bone's biological and 
mechanical functions, or reconstruction, preserving appear-
ance or functionality. Factors such as age, gender, and health 
conditions greatly influence bone quality and dimensions, 
which is especially important considering that most bone 

defects are consequences of trauma or tumors. This results in 
considerable variation in the geometry of defects on a case-by-
case basis. Unlike conventional implants with standardized 
sizes and shapes, custom AM bone scaffolds can be tailored 
to align precisely with specific defects, utilizing information 
gathered during defect assessment. The relationship between 
custom-designed AM scaffolds and bone defects is illustrated 
in Fig. 1.

The influence of customized AM scaffolds in different 
stages of bone regeneration
Bone defects, generally caused by trauma injuries or patholog-
ical conditions like osteoporosis, osteopenia, and bone cancer, 
often necessitate implant interventions. Natural bone healing 
cannot always suffice for major defects, hence the need for scaf-
folds. Implants must integrate effectively with the existing bone 
to aid regeneration, a complex, long-term process. This process 
involves (a) an inflammatory stage (hematoma formation), 
(b) bone generation (characterized by the appearance of fibro-
cartilaginous callus, bony callus, and revascularization), and 
(c) bone remodeling, where the bony callus is remodeled by 
osteoblasts and osteoclasts [3,4]. Customized AM bone scaf-
folds offer specific advantages at each of these stages of bone 
regeneration.

Fig. 1. The correlation between the customized AM scaffold and the treatment of bone defects.
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1. Inflammatory stage
Upon applying an implant to a bone defect, various inflam-

matory reactions are triggered. The behavior of these reactions 
can be steered by customized AM bone scaffolds. A widely used 
modulation strategy involves directing macrophage polariza-
tion toward the M2 phenotype as opposed to M1. Scaffolds 
composed of diverse materials, 3D-printed, have demonstrated 
success in steering macrophage polarization. These include 
polylactic-co-glycolic (PLGA) scaffolds modified by human 
umbilical cord mesenchymal stem cells (MSCs)-derived extra-
cellular matrix (ECM) [5], nanoscale bioactive glass scaffolds 
[6], and multicell-laden scaffolds that incorporate bone mor-
phogenic protein-4 [7]. These scaffolds have illustrated their 
ability to stimulate M2 macrophage polarization and to pro-
mote healing of bone defects. The proinflammatory tumor 
necrosis factor-α, which can obstruct bone regeneration when 
present at high levels, has been a subject of study. Scaffolds 
of 3D-printed Atsttrin-incorporated alginate/hydroxyapatite 
(HAP) demonstrated suppressive effects on tumor necrosis 
factor-α and enhanced bone defect repair [8]. Additionally, 
3D-printed poly(propylene fumarate) scaffolds produced desir-
able inflammation scores, and β-tricalcium phosphate (β-TCP) 
scaffolds effectively curbed the expression of genes related to 
inflammation [9].

2. Bone generation stage
During the bone generation stage of healing, 3D-printed 

scaffolds can enhance both angiogenesis and osteogenesis. For 
instance, 3D-printed titanium scaffolds have been shown to 
promote collagen mineralization while also boosting angio-
genesis and osteogenesis in situ [10]. Similar effects have been 
observed with 3D-printed ceramic scaffolds [11]. Compared 
to unmodified β-TCP scaffolds, those integrated with meso-
porous bioactive glass have demonstrated superior responses 
in osteogenesis and angiogenesis [12]. A separate study, which 
infused MgO and SiO2 into β-TCP scaffolds, found that the 
subsequent release of Mg2+ and Si4+ stimulated the formation 
of both bone and blood vessels [13]. Moreover, the role of pore 
architecture in calcium-deficient HAP scaffolds on osteogenesis 
has been explored [14].

3. Bone remodeling stage
During the final phase of bone healing, bone remodeling 

directed by osteoblasts and osteoclasts reshapes the newly 
formed bone according to the original structure and mechan-
ical load. Few studies have explored bone remodeling in the 
context of 3D-printed scaffold incorporation. One such study 
employed scaffolds composed of medical-grade polycaprolac-
tone (PCL) and β-TCP to investigate the biomineralization 
process at the soft-to-bone interface [15]. Findings indicated 
that basic multicellular units remodeled bone near the native 
cortical bone. Another investigation used a hybrid scaffold 
comprising PLGA/TCP/icariin in a rabbit model, monitoring 
dynamic bone remodeling in tandem with scaffold degradation 
[16]. Further research involving a 3D-printed PCL scaffold 
integrated with aspirin liposomes and bone forming peptide-1 
highlighted the scaffold's potential to promote bone remodeling, 
primarily via the phosphoinositide 3-kinase/protein kinase B 
(PI3K/Akt) signaling pathway [17].

Customized AM scaffolds in bone reconstruction
In some instances, the priority leans toward bone reconstruc-
tion over regeneration, particularly for bones connected to 
physical appearance, like cranial and maxillofacial bones, or 

those adjacent to joints, such as the humerus and acetabular 
bones. Customized 3D-printed scaffolds can effectively restore 
the original bone's appearance and function, with their porous 
structures promoting integration with native bone. Clinically, 
3D-printing techniques have proven useful for large-area bone 
defects, with applications in cranioplasty for prosthesis molds 
or skull implants [18–21]. For areas close to joints, 3D-printed 
scaffolds have been utilized for substantial segmental bone 
defects in the tibia [22], acetabular revision surgeries [23], and 
severe humerus defects where traditional prostheses are unsuit-
able [24].

Clinical and preclinical trials of customized AM 
scaffolds applied for different types of bones
Bones can generally be categorized into 4 types: (a) long bones, 
(b) short bones, (c) flat bones, and (d) irregular bones. The 
nature of defects that occur in these different bone types exhibit 
distinct characteristics, and therefore, the corresponding AM 
bone scaffolds tailored for these situations possess unique 
structures and properties. Figure 2 showcases clinical/preclinical 
trials of custom-made AM scaffolds applied to various bone 
types.

Long bone cases
Long bones are composed of 2 types of tissue—trabecular 
(spongy) and cortical (compact)—that surround the central 
bone marrow. The function a bone serves primarily deter-
mines the cortical-to-trabecular tissue ratio. Cortical bone, 
made up of osteon cylinders, is essential for resisting bend-
ing, while trabecular bone resists compression. Key elements 
within these structures include osteocytes and Haversian 
canals housing blood vessels and nerves [25,26]. When long 
bone segmental defects occur, requiring scaffolds for repair, 
these scaffolds must exhibit advanced biological, mechanical, 
biodegradable, and architectural properties. The architecture 
is vital, as scaffolds should have porous, interconnected struc-
tures that support and induce defect regeneration. Given the 
need for patient-specific optimization of architecture and 
properties like porosity, AM is well suited for this kind of 
bespoke fabrication.

Upper limb humerus defects often result from injuries or 
bone tumors and can be involved in surgeries like total shoulder 
arthroplasty. In one instance, a chondrosarcoma patient with 
a loose proximal humeral replacement prosthesis required a 
custom 3D-printed titanium alloy shoulder prosthesis, fabri-
cated using electron beam melting (EBM) with a 60% porosity 
[24]. After 1 year, the prosthesis remained stable and functional. 
Separately, 3D-printed titanium-mesh scaffolds with varied 
stiffness were tested on a critical humerus model in sheep, with 
lower stress shielding promoting early bridging and increased 
endochondral bone formation [27]. Another study examined 
the biological fixation between tendon and prosthesis, using 
selective laser melting (SLM)-fabricated Ti-6Al-4V scaffolds 
with different pore sizes implanted into rabbit humerus heads 
[28]. A size of 527.15 μm was found optimal for tendon growth. 
Two further studies explored in situ bone repair aided by 3D 
printing in humerus defect models [29,30].

Long bones in the leg, particularly the femur and tibia, are 
frequently researched in the context of 3D-printed scaffolds. 
For a patient with a femur shaft fracture, a patient-specific 
3D-printed hybrid scaffold, composed of medical-grade PCL 
and tricalcium phosphate (TCP), was successfully used, resulting 
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in bony fusion and interconnection after a year [31]. In another 
study, 5 patients with femur defects used customized 3D-printed 
micro-porous prostheses, resulting in rapid weight-bearing 
and good hip and knee joint scores [32]. Additional studies 
explored other aspects of 3D-printed scaffolds, such as bacterial 
infection inhibition, vascular ingrowth, and regional gene ther-
apy [33–35].

In the case of tibia defects, 3D-printed scaffolds have shown 
promising results. For example, one patient, following the removal 
of giant cell tumors, benefitted from a combination of an auto-
graft and a 3D-printed porous implant, achieving satisfactory 
limb function after 29 months [36]. Another patient, with a tibia 
fracture, experienced no functional limitations after a custom 
3D-printed titanium scaffold was applied [22]. Studies also 
explored different materials for 3D-printed scaffolds, including 
β-TCP, which was shown to promote directional regeneration 

and remodeling of bone defects [37]. Further research discovered 
that a scaffold with a controlled pore size of 400 μm offered the 
best bone formation capacity [38]. Moreover, 3D-printed poly-
mer scaffolds, enhanced with compounds and cells like alendro-
nate, recombinant human bone morphogenetic protein-2, and 
MSCs, have been tested for their potential to optimize bone 
regeneration [39,40].

Short bone cases
Short bones, such as carpal and tarsal bones, primarily consist 
of spongy bone encased in a compact bone layer, distinguished 
by their small size and cubic shape. For frequent wrist injuries 
like scapholunate interosseous ligament tears, multiphasic 
bone-ligament-bone scaffolds, fabricated through AM, emulate 
native tissue structure and facilitate bone formation when com-
bined with MSCs [41].

Fig. 2. The clinical applications/studies of customized AM scaffolds on different types of bones. Pictures are adapted with permission from refs. ▽1 [253], ▽2 [254], 
▽3 [255], ▽4 [31], ▽5 [36], ▽6 [256], ▽7 [23], ▽8 [41], and ▽9 [257].
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The calcaneus, a tarsal bone bearing most of the foot's weight, 
has been remediated for tumor-induced defects using a per-
sonalized 3D-printed solid Ti-based alloy implant, augmented 
with a mesh for ligament suturing. This method preserved 
the Achilles insertion site and enabled unaided walking [42]. 
Another remedy for calcaneal defects, the Masquelet technique, 
combines 3D printing with the induced membrane technique. 
In one study, calcaneal defects were reconstructed using 3D- 
printed custom molds for shaping bone cement, resulting in 
a highly matched repair [43].

Flat bone cases
Flat bones, like short bones, contain spongy bone sandwiched 
between 2 compact layers. Yet, as broad plates, they serve as 
shields for underlying tissue and attachment points for muscles. 
Acetabular and cranial bones, among flat bones, frequently 
suffer defects from trauma, cancer, and other ailments.

In hip revision surgeries, highly porous trabecular titanium 
cups, produced by EBM, have been utilized for acetabular revi-
sions [23,44]. This approach has demonstrated positive mid-
term outcomes, including early patient mobilization, weight 
bearing, and no modularity failures [23]. For complex acetab-
ular bone defects—common in primary and revised total hip 
arthroplasty—3D-printed porous augments have proven ben-
eficial. In a swine model, these augments, created using Ti6Al4V 
powders, demonstrated desired biomechanical properties and 
tissue compatibility [45].

Cranioplasty, or skull bone reconstruction, seeks to restore 
natural contours. The process, however, is complicated by the 
curved skull bone surface, complex maxillofacial geometries, 
and size of the bone defect, which varies depending on the 
patient's condition.

Several scaffolds have been devised to treat cranial defects. 
Polymethylmethacrylate (PMMA) and polyetheretherketone 
(PEEK) implants have been clinically used to address these 
defects, aided by 3D-printing techniques to create patient-custom 
molds [46–50].

An alternative approach uses the implant materials directly 
in 3D printing based on 3D-computed tomography (3D-CT) 
data. Titanium (Ti)-based meshes have been used for this pur-
pose given their chemical and biological stability. These meshes 
have been successfully applied in cranioplasty for patients with 
large skull defects and recurrent infections [20]. A comparative 
study found no significant differences in postoperative com-
plications between 3D-printed Ti mesh and autologous bone 
flap, suggesting that material selection should be patient- 
specific [21]. Interestingly, combining 3D-printed Ti porous 
implants with calcium phosphate fillers showed promising 
results, potentially lowering failure rates, reducing surgery 
times, and increasing infection resistance [51,52]. Furthermore, 
3D-printed cranioplasty scaffolds may prove more cost-effective 
than traditional implant methods [53,54].

Irregular bone cases
Irregular bones like the mandible (lower jaw) and vertebrae, 
consisting of spongy bones enclosed within compact bone, 
often necessitate implants due to trauma, disease, and tissue 
degeneration.

A patient-customized mandibular prosthesis, made of Ti6Al4V, 
was fabricated using EBM to successfully reconstruct a mandibular 
defect. The prosthesis incorporated porous structures at the upper 
and lower ends and showed no complications over a 9-month 

follow-up period [55]. In a rabbit mandibular defect model, 
magnesium-substituted wollastonite and β-TCP scaffolds demon-
strated good osteogenic capability [56,57]. Poly(lactic acid) (PLA)/
HAP/β-TCP and PCL/β-TCP scaffolds were used to reconstruct 
mandibular defects in dog models, while PLGA/HAP scaffolds 
were applied to rat mandibular bone defects, all showing prom-
ising results for mandibular reconstruction [58–60]. Natural 
polymers such as alginate, chitosan, and gelatin have also been 
considered for scaffolding materials. The alginate/TCP/HAP 
scaffold provided not only structural stability and in vitro cyto-
compatibility but also antibacterial function [61]. Similarly, 
nano-HAP (nHAP)/chitosan/gelatin scaffolds promoted man-
dibular bone regeneration in a swine model [62].

Spinal fusion, a surgical technique joining adjacent verte-
brae with bone grafts, is commonly used for spinal disorders. 
A study used a 3D-printed scaffold made of PLGA, HAP, and 
human demineralized bone matrix in a rat posterolateral spinal 
fusion model [63]. This scaffold had impressive fusion scores 
and increased osteogenesis-associated genes expression, reveal-
ing the impact of scaffold geometry and architecture. The opti-
mal configuration for osteointegration and fusion appeared to 
be larger pore size and aligned struts at a 45° angle [63]. In 
another study, PLGA/β-TCP composite scaffolds with salvia-
nolic acid B improved bony fusion by enhancing osteogenesis 
and angiogenesis [64]. Beyond polymer–ceramic combinations, 
research has also explored metallic biomaterials. For instance, 
3D-printed interconnected titanium alloy scaffolds filled with 
HAP, implanted in a sheep model, showed superior osteogenic 
performance compared to scaffolds without HAP [65].

The Fabrication Flow of Customized AM  
Bone Scaffolds
While AM bone scaffolds demonstrate considerable advantages 
in treating bone defects, their fabrication process is complex, 
is multidisciplinary, and requires extensive collaboration. Each 
scaffold must be tailored to the patient's needs, making cus-
tomization crucial throughout the process. This review will 
explore 4 key aspects of design and fabrication: bone defect 
imaging, material selection, scaffold design, and fabrication 
method. We will delve into the importance of customization 
in each of these stages.

Bone defect imaging for customization
The initial step in fabricating a customized scaffold involves 
obtaining precise imaging data of the patient's bone defect. 
To ensure optimal integration at the tissue-scaffold interface, 
accommodate mechanical adaptations, and facilitate other per-
sonalized scaffold functions, highly accurate imaging is essen-
tial. This is especially critical for defects resulting from tumors 
or trauma, typically characterized by irregular shapes. Through 
detailed medical images, clinicians and engineers can evaluate 
the bone defect's anatomy and develop a scaffold design that 
satisfies the specific requirements.

General imaging process
CT and magnetic resonance imaging (MRI) are primarily uti-
lized for acquiring 3D imaging data, given their ability to cap-
ture isotropic or near-isotropic datasets [66]. While MRI offers 
the advantages of zero radiation exposure risk and precise 
delineation of soft tissue anatomy, its efficacy in capturing thin 
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z-section slices can be compromised by movement-induced 
artifacts [67,68].

In the orthopedic domain, CT images, known for their high 
contrast, serve as the main data source for image postprocess-
ing, often supplemented by MRI. Modern multirow detector 
computer tomography, a CT technique variant, can capture 
thin-section slices less than 1 mm thick, enhancing 3D printing 
image postprocessing [69–71]. cone beam CT proves par-
ticularly useful for imaging oral and maxillofacial areas [72], 
offering reduced radiation exposure and accurate 3D volumetric 
data across axial, sagittal, and coronal planes [73]. Regardless 
of the imaging method, the resultant images are stored as Digital 
Imaging and Communications in Medicine files for subsequent 
processing.

Digital Imaging and Communications in Medicine files are 
processed using image postprocessing software to extract 3D 
projects from segmented regions of interest, with the thresh-
olding voxel intensity value identifying the bone tissue. These 
projects' contours are then transformed by CAD software, and 
the CAD data is stored as Stereo Lithography (STL), a standard 
3D file format [74]. Engineers can then alter the acquired STL 
file to fabricate a customized 3D-printed scaffold with 3D 
printers.

Imaging of orthopedic hardware
Orthopedic hardware, particularly metallic implants, can degrade 
the quality of CT and MRI images. Nevertheless, imaging such 
hardware can be crucial in certain cases such as replacing 
dysfunctional implants, where imaging provides vital insights 
into defect anatomy, scaffold design, and surgical planning. 
Postsurgical imaging is also crucial for evaluating implant posi-
tioning and stability, assisting clinicians in determining the need 
for further revisions.

CT image acquisition is affected by metallic hardware due 
to beam hardening, scatter effects, splay artifacts, and nonlin-
ear partial volume effects. The implants' alloy compositions, 
dimensions, and geometry can also impact CT image artifacts 
[75]. Various strategies can minimize these effects, including 
modifying tube voltage and current to reduce beam hardening, 
though this needs to be balanced against patient dose limitation 
and decreased soft tissue contrast [76]. Scatter artifacts can be 
minimized with an antiscatter grid, while splay artifacts can 
be mitigated using a z-flying focal spot [77]. Additional solu-
tions include altering CT reconstruction filters and algorithms 
[78,79], and employing dual-energy techniques [80].

In the case of MRI, metal implants can induce an electrical 
current, generating magnetic distortion and image artifacts. 
The extent of these artifacts is influenced by the implant's sus-
ceptibility [75]. Techniques to reduce metal artifacts include 
using lower static field strength [81], increasing receiver band-
width [82], and utilizing metal artifact reduction sequence 
techniques, such as view angle tilting, multiacquisition variable- 
resonance image combination, and slice encoding for metal 
artifact correction [83,84].

Materials selection for customized AM  
bone scaffolds
Biomaterials for bone scaffolds should exhibit biological 
properties (such as biocompatibility, osteoinductivity, and 
osteoconductivity), mechanical strength, and processability. 

These materials can be broadly categorized into ceramics, 
polymers, metals, and composites. Furthermore, the incor-
poration of cells and drugs in the printing materials can impart 
specific functionalities, as depicted in Fig. 3. The optimal choice 
of materials for custom scaffolds relies on several factors: the 
location and physiological properties of the bone defect, the 
scaffold's purpose (such as aesthetic or mechanical support), its 
expected lifespan and biodegradation rate, and additional cus-
tom functions like antibacterial action or osteogenesis enhance-
ment. The upcoming sections will briefly review the materials 
used in customized scaffolds.

Ceramics
Ceramics utilized in AM can be categorized into 2 types: bio-
active and bioinert ceramics. These materials generally exhibit 
excellent biocompatibility, and their elemental compositions 
can be tailored to achieve specific in vivo properties. Despite 
offering commendable compressive strength and corrosion 
resistance, their inherent brittleness leads to lower fracture 
strength in comparison to other materials [85].

1. Bioactive ceramics
TCP [86,87], calcium sulfate (CS) [88,89], HAP [90,91], aker-

manite [92], diopside [93,94], and bioglass [95] can be classified 
into bioactive ceramics, which generally are biodegradable and 
can induce osteoconductivity and osteoinductivity.

TCP and CS are bioresorbable materials extensively used in 
treating bone defects, particularly for load-bearing structures, 
due to their resorption rates aligning well with bone tissue 
regeneration. Both materials come in 2 forms, α and β, which 
degrade at different rates, faster than HAP. While β-TCP is 
often combined with HAP to form biphasic TCP, enabling con-
trolled degradation rates, α-TCP's lower density and stability 
make it more suitable for cement-based applications [96,97]. 
The combination of CS with β-TCP or HAP in bone constructs 
has been shown to enhance stability and pressure resistance, 
due to the formation of calcium-deficient HAP and dihydrate 
CS crystal lattices. The beneficial outcomes of these combina-
tions have been widely explored in the context of healing oste-
ogenic defects [98]. Investigations into different ratios of 
CS/HAP and CS/β-TCP powders in printed scaffolds have 
indicated that a 25:75-wt.% coarse HAP:CS powder mixture 
offers superior compressive strength, wettability, and ideal pore 
diameters for cell attachment. Additionally, the incorporation 
of dopants, such as metal ions or compounds, into ceramic 
materials can enhance physical and biological properties, 
including osteoinduction [99]. Particularly, studies on Fe-Si 
doped β-TCP scaffolds have revealed an increased mechanical 
strength, enhanced mineralization, and angiogenesis compared 
to pure β-TCP scaffolds. Similar results have been obtained 
with β-TCP scaffolds doped with SiO2 and ZnO, achieving 
desirable degradation rates, improved densification, long-term 
stability, and interconnected osseous tissue [100,101]. Further 
research on the surface geometries or porosities of printed TCP 
and CS-based scaffolds has shown promising biocompatibility 
and osteogenic capabilities [87,89,102].

HAP, a bioactive ceramic naturally present in bone tissue, 
has been used in AM to create bone scaffolds. Recent research 
shows that pure HAP scaffolds exhibit good biocompatibility 
and can mimic the interconnected pore structures and topog-
raphy of the native bone matrix [91,103]. In one study, HAP 
scaffolds were prepared using digital light processing (DLP) 
with 20-nm HAP powder and photopolymer, resulting in 
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Fig. 3. The selection panel of materials for customized AM scaffolds. (A) Application scenarios. (B) Properties of different types of materials and their applicable scenarios. 
Pictures are adapted with permission from refs. ▽1 [258], ▽2 [259], ▽3 [260], ▽4 [261], and ▽5[262]. PGA, poly(glycolic acid).
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postsintered scaffolds that promoted the proliferation and attach-
ment of MC3T3-1 cells. However, HAP's limitations, including 
its brittleness, poor degradation capacity, and limited resorp-
tion, may hinder its clinical applications [104]. These issues 
could potentially increase fracture risks around implant sites 
and necessitate permanent fixtures rather than facilitating com-
plete replacement of new bone tissue [97]. Nevertheless, these 
challenges can be mitigated by incorporating HAP into com-
posite materials.

Inosilicate materials such as akermanite, diopside, and wol-
lastonite show high bioactivity due to the release of Ca, Mg, or 
Si ions, promoting mineralization, osteogenesis, and angiogen-
esis. Akermanite cages, printed using direct-ink writing and 
enhanced with 15% or 30% bioglass, show increased com-
pressive strength, a key to lowering melting temperatures and 
reducing pressurization and sintering needs for maintaining 
porous structure. The enhanced cages exhibited enhanced angi-
ogenic stimulation, promoting bone regeneration and main-
taining long-term stability and osteogenic adhesion in spinal 
fusion areas [92,105]. Similarly, diopside combined with bio-
glass has shown improved compressive strength and angiogenic 
capabilities in orbital implants. Separate research used varying 
diopside and wollastonite ratios to produce high-resolution, 
sturdy, high-porosity diamond lattice scaffolds via digital light 
printing, demonstrating a promising direction for future appli-
cations [93,94].

Bioactive glasses, ceramic mixtures composed of body-native 
materials including SiO2, CaO, Na2O, and P2O5, are excellent for 
bioceramic scaffold materials. Their dense, negatively charged 
surface encourages serum protein absorption, and the raised pH 
around implants offers antimicrobial properties [106,107]. Two 
percent Fe2O3 doped bioglass has been used for creating alveolar 
bone substitute scaffolds, demonstrating good biocompatibility 
and upregulation of osteogenic markers [108].

With their osteogenesis-promoting and degradation abilities, 
bioactive ceramics are ideal for bone regeneration scaffolds. 
These constructs stimulate natural bone healing, eventually 
restoring movement and load-bearing capabilities. By altering 
material properties, the degradation rates and mechanical prop-
erties can be tailored to specific needs, making them suitable for 
various applications, both load-bearing and non-load-bearing.

2. Bioinert ceramics
Bioinert ceramics like alumina and zirconia are recognized 

materials for implant fabrication in AM. Alumina, one of the 
earliest bioceramics used clinically, offers low wear, high sta-
bility, and compressive strength. Studies show that patterned, 
micropillar alumina surfaces can promote osteogenic behaviors 
in human mesenchymal stem cells [109]. Although alumina's 
strong mechanical properties suit load-bearing applications, 
its brittleness restricts use in fracture scenarios. It requires 
bioactive substrate coatings or biomolecules to improve inte-
gration with the surrounding environment due to its bioinert 
nature [110].

Zirconia, a bioinert metal oxide ceramic, is commonly used 
for hip and dental prostheses. When mixed with oxides such 
as MgO and CaO, zirconia gains increased molecular stability. 
Notably, 3% mol yttria (3Y-TZP) is a widely used additive 
that produces tetragonal zirconia polycrystal (TZP) [111]. 
Innovations in material jetting systems for 3D-printed implants 
have led to faster production of ceramics with properties within 
the TZP range [112]. Studies comparing AM and subtractive 
manufacturing methods for 3Y-TZP and alumina-toughened 

zirconia revealed slight differences in the ceramics' physical 
properties [111].

Bioinert ceramics offer high mechanical strength and low 
wear, ideal for permanent scaffold constructs in scenarios 
where natural bone repair is not feasible. However, the potential 
for stress shielding necessitates scaffolds that closely mimic the 
surrounding bone tissue's mechanical properties.

Polymers
Polymers, notably biodegradable ones, find broad application 
in bone, dental fixation, and tissue engineering. These scaffolds 
must be biocompatible to avoid causing autoimmune reactions 
or biological damage. Polymers are split into synthetic and nat-
ural categories, with more comprehensive reviews available [113].

Synthetic polymers frequently used in 3D printing in clude 
PLA, poly(glycolic acid), PLGA, polyurethane, and PCL 
[113,114]. Natural polymers, divided into protein and poly-
saccharides, aid cell adhesion and function [115]. Collagen, 
gelatin, silk fibroin, chitosan, alginate, and hyaluronic acid 
are commonly used natural polymers.

Despite limited clinical trials for orthopedic applications, 
in vitro and animal studies show potential. One trial used a 
PCL-based scaffold for preserving alveolar ridge height after 
tooth extraction, enabling bone healing and better ridge height 
maintenance [116]. Another study compared PMMA usage 
for overdentures, with 3D-printed versions showing better patient 
outcomes [117].

The clinical usage of 3D-printed soft polymers is limited in 
orthopedics, likely due to their mechanical strengths. The 
potential applications of 3D-printed polymer scaffolds are con-
fined to non-load-bearing and minor defects. Their main draw-
back is the mechanical strength, inferior to bone tissues. 
Synthetic polymers could work well for non-load-bearing 
defects, like cranial defects. Natural polymers, being part of the 
ECM of bone tissue, could repair small load-bearing defects.

Metals
1. Bioinert metals

In the realm of bone scaffolding, metallic implants, predom-
inantly fashioned using AM technologies, offer enduring and 
robust solutions. Metals, especially stainless steel, cobalt chro-
mium, and titanium alloys, form the basis of approximately 
70% of such implants, owing to their robust mechanical strength 
and fracture resistance [118].

Major titanium-based alloys, namely Ti-6Al-4V and Ti-6Al-7Nb, 
provide high durability and mechanical strength. However, these 
alloys have a major drawback: the release of toxins due to corrosion, 
leading to downstream immune responses and chronic inflamma-
tion [119]. To mitigate these issues, alloys of Mo, Nb, Ta, and Zr have 
gained interest, owing to their reduced corrosion and stress shielding 
effects, thereby offering higher biocompatibility [120].

The bioinert nature of solid metal implants often necessitates 
bioactive coatings to enhance their integration with surrounding 
tissue. HAP is a commonly employed coating that aids bone 
tissue regeneration and osteointegration [121]. Recent AM 
advancements permit researchers to control the porosity in 
metals such as Ti and NiTi, potentially stimulating cell prolifer-
ation and attachment [122–124]. For instance, Taniguchi et al. 
[125], using SLM, evaluated the optimal pore size of Ti and TiO2 
scaffolds. Their findings suggested that a pore size of 600 μm 
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exhibits optimal compressive strength, osteoconductivity, and 
osseointegration in vivo rabbit models. Recent years have also 
seen the emergence of W4-Mg and Fe-Mn alloys in the pro-
duction of metallic scaffolds.

2. Biodegradable metals
Biodegradable materials, as opposed to permanent metal 

alloys, are ideal for bone tissue regeneration applications aim-
ing to eventually restore functionality. These materials, through 
the release of ions, have been known to encourage osteogenic 
and angiogenic activities. However, when these materials are 
employed for load-bearing scenarios, their varying degrada-
tion rates and mechanical characteristics must be considered. 
Enhancements with degradation-resistant substances and post-
treatments might be necessary to control the degradation rate 
under such circumstances.

Biodegradable metals offer robust support to bone tissue 
throughout the healing phase and degrade over time, obviating 
the need for subsequent surgery [126]. They possess signifi-
cantly higher stiffness compared to polymer-based scaffolds, 
making them more suitable for load-bearing applications in 
surgical areas [125].

Common biodegradable metals used in scaffolds include Zn, 
Fe, and Mg, each exhibiting different degradation speeds. Notably, 
Mg alloys have been engineered to create biocompatible, degra-
dable, and open-pore metal scaffolds that promote bone forma-
tion [127]. However, porous magnesium alloys have increased 
surface area, leading to accelerated degradation. Experiments 
using Mg with 4-wt.% Y exhibited slower degradation than pure 
magnesium scaffolds while retaining biocompatibility [128]. An 
in vivo study compared 3D-printed scaffolds made of Ti, Mg, and 
Zn, further highlighting the potential of these materials [129].

Composites
Composites like polymer/metals, ceramics/polymer, and metals/
ceramic offer a variety of material characteristics such as mechan-
ical strength, bioactivity, and degradation features. For instance, 
calcium phosphate/polyester composites show promising oste-
ogenic differentiation and cell proliferation [127]. Furthermore, 
PCL combined with CS and pearl powder stimulates bone regen-
eration in rabbits [130].

Polymer/metal composites provide higher structural stability 
due to the metal component, as illustrated by grafted titanium/
polymer composites that result in enhanced cell proliferation and 
adhesion [131,132]. Ceramic/metal composites, like β-TCP coated 
with Mg, offer high bioactivity and cell adhesion [133].

More advanced composites integrate materials with molec-
ular factors like ECM components, inorganic minerals, and 
growth factors for custom bone regeneration implants [134]. 
Successful examples include PLA enhanced with carbohydrate 
particles and PEEK incorporated with calcium HAP [135,136]. 
Hydrogels combined with minerals also exhibit positive oste-
ogenic results [137,138].

Materials like demineralized bone matrices and HAP are 
being utilized due to their inherent growth factors and oste-
ogenic substances [139]. Composite materials incorporating 
these elements have shown reduced inflammatory responses 
and improved fusion results [140,141]. Implants printed with 
PLA and nHAP can be mechanically tuned, showing great 
customization potential [142]. Thus, traditional ceramics' wide 
application range in various clinical scenarios is due to their 
diverse material properties derived from these mixtures.

Cell-involved bioprinting
3D bioprinting, an exciting advancement in custom bone 
implant fabrication, integrates living cells directly into the 
scaffolds during the printing process (Fig. 3). This approach 
offers advantages over traditional 3D printing methods, which 
can struggle with evenly distributing cells postprinting [143]. 
When designing a scaffold with bioink, it is vital to consider 
the structure of the tissue being replaced, the appropriate cell 
type, and the bioink material to ensure both biocompati-
bility and optimal printability properties like viscosity and 
mechanical strength [144].

Typically, 3D bioprinting involves stem cells due to their 
ability to differentiate into various cell types. Ejection printing 
of bioink, which includes rat bone marrow cells, nano silicate, 
gelatin, and alginate, has been used to create scaffolds that rep-
licate bone ECM, encouraging osteogenesis and healing critical 
bone defects [145]. Other studies have highlighted the role of 
silicon (Si)/silicate in enhancing stem cell viability in the bioink, 
with silica and calcium hydroxide nanoparticles releasing Si 
ions in the hydrogel to maintain MSC stemness [146].

Furthermore, researchers have developed bioinks without 
nanoparticles, using MSCs along with a mixture of fibrinogen, 
type A gelatin, hyaluronic acid, and glycerol. Such scaffolds can 
be remodeled into bone in vivo, displaying early hypertrophic 
characteristics that promote higher levels of vascularization and 
bone formation [147]. The type of material used and the incor-
poration of specific drugs can influence MSC differentiation and 
migration. For instance, scaffolds printed with nifedipine-loaded 
ethosome and laponite have shown to promote bone repair by 
influencing the osteogenic differentiation and migration of the 
bone marrow cells [148].

For emergency situations, the development of in situ print-
ing bioinks, which allow immediate, on-site tissue repair, is 
particularly noteworthy. Bioinks combined with bone cement 
can be manually assembled and 3D-printed directly onto a 
patient for immediate tissue repair [149].

However, the use of MSCs is currently limited to smaller 
defects due to inadequate vascularization postimplantation 
[150]. To address this, researchers have explored 3D printing 
scaffolds with multiple cell types, including MSCs and endothe-
lial cells, to facilitate vascularization. Different strategies, such 
as dual-ink printing and interlaced printing, have been used to 
create prevascularized spaces or to ensure even cell distribution 
in the scaffold [151–153].

The inclusion of cell spheroids during the printing process 
can further enhance cell-to-cell interactions [154]. For instance, 
human-derived stem cells and endothelial cells mixed with 
mineral oil form cell spheroids due to oil–aqueous interactions. 
When these spheroids are loaded into decellularized ECM/ 
β-TCP struts, they create a vascularized bone scaffold that 
exhibits robust angiogenesis and osteogenic behavior.

Scaffolds that incorporate cells present considerable poten-
tial for clinical applications because of their bioactive properties 
and adjustable mechanical properties. In a noteworthy clinical 
study, a patient's bone marrow stromal cells were used in a 
3D-printed scaffold for a cleft alveolus reconstruction, with 
promising results [155]. However, the use of bioactive compo-
nents like cells may limit the size of the defect that these scaf-
folds can heal, making them best suited for repairing small 
defects. Despite this limitation, ongoing investigations into cell 
incorporation into bioinks show great promise for creating 
customized treatment plans for patients.

https://doi.org/10.34133/research.0239


Zhou et al. 2023 | https://doi.org/10.34133/research.0239 10

Drug-involved printing
Beyond their fundamental roles in bone reconstruction and regen-
eration, AM bone scaffolds can be tailored to meet patients' unique 
needs. For instance, where there is a high risk of infection associ-
ated with the implant, the scaffold can be imbued with anti- 
infective properties to safeguard patients from specific bacteria.

One technique to introduce anti-infective agents is by incor-
porating them into the materials used for printing (Fig. 3). AM 
TCP scaffolds laden with vancomycin, for example, allow for 
control over drug release rates by adjusting the drug loading 
modes and combining with polymers [156]. Similarly, a PCL 
scaffold impregnated with the antibiotic rifampicin was created 
using a deposition printer at 60 °C, which prevented any loss of 
the antibiotic's antibacterial activity. Such scaffolds effectively 
inhibit bacteria such as Escherichia coli (E. coli) and Staphylococcus 
aureus (S. aureus) [157].

In addition to antibiotics, metal ions have been deployed 
as anti-infective agents. PCL scaffolds integrated with bioactive 
glass and gallium (Ga) demonstrated antibacterial activity against 
methicillin-resistant S. aureus and E. coli [158]. Similarly, silver 
nanoparticles were produced in a PCL solution through an in situ 
reduction reaction and then extruded into PCL/silver nanopar-
ticle filaments for scaffold printing [159]. Another method of 
introducing anti-infective agents involves grafting them onto 
printed scaffolds. For instance, printed PLGA/HAP scaffolds were 
covalently grafted with hydroxypropyltrimethyl ammonium chlo-
ride chitosan, which demonstrated both anti-infective and bone 
regeneration capabilities in infected bone defect models [33]. In 
some instances, polymer scaffolds were submerged in an antibiotic 
suspension to acquire anti-infective properties [160,161].

Patients suffering from osteoporosis are more susceptible to 
bone fractures and defects. In such cases, treatment would neces-
sitate both the use of bone scaffolds and a separate regimen for 
managing osteoporosis. Drugs such as alendronate, zoledronic, 
and icariin, all targeted for osteoporosis, have been incorporated 
into AM bone scaffolds made from various materials including 
PCL, Ti6Al4V, and calcium phosphate [162–165]. One particular 
study used freeze-dried platelet-rich plasma to coat AM Ti6Al4V 
porous scaffolds to boost osseointegration in an osteoporosis 
animal model [166].

Post bone-related tumor resection surgery, patients require 
bone regeneration as well as suppression of any remaining tumor 
cells. In this context, antitumor drugs such as soy isoflavones and 
doxorubicin hydrochloride have been loaded onto scaffolds 
printed with TCP and PLGA/TCP [167,168]. These scaffolds 
enhance bone regeneration while suppressing tumor activity/
recurrence. If the drug is loaded during the printing process, a 
cryogenic environment might be necessary to maintain drug 
activity [168]. The photothermal performance of metal ions 
has also been used to combat tumors [169]. Elements like Cu, 
Fe, Mn, and Co were incorporated into bioactive glass-ceramic 
scaffolds; in vitro results showed that these scaffolds effectively 
eliminated tumor cells by inducing hyperthermia, substantially 
inhibiting tumor growth in vivo.

Apart from these scenarios, the needs of patients with other 
primary diseases or special conditions can be evaluated by 
physicians, and patient-specific scaffold customization might 
enhance clinical outcomes.

Topography design for customized AM bone scaffolds
When the scaffold material has been selected, the topography 
design of AM bone scaffold needs to be determined. While 

bone defect imaging can guide the geography and dimensions 
of the external contour of scaffolds, the macro/microstructure 
will influence tissue infiltration, as well as the ingrowth of blood 
vessels and nerves [170].

General influence of parameters in the topography design
Several main parameters in the topography, including porosity, 
pore size, and pore architecture, have been extensively studied 
and reviewed [171–175]. The influence of each parameter is 
summarized in Table. However, when clinicians or engineers 
customize the topography design for a patient, the target implan-
tation site is the primary factory to take into consideration. This 
review discusses the topography design for trabecular and cor-
tical bones, 2 major bone classifications.

Topography design for the regeneration of trabecular bone
For most bone tissues, the mechanical strength mainly depends 
on the cortical bone, while the trabecular bone provides inter-
connected space for red bone marrow. Therefore, when a scaf-
fold aims to regenerate trabecular bone tissue, the priority is 
to mimic the porous structure of the trabecular bone. The tra-
becular layer of bone possesses porosity in the range of 50% to 
90% and compressive strength from 4 to 12 MPa [33,176]. Most 
studies for trabecular scaffolds adopt uniform topography 
design, namely scaffolds with repeating cells and consistent 
porosity [33,34,177,178]. The porosity of these scaffolds is in 
the range of 14% to 86%, and their compressive strength is 
within 10 to 200 MPa, following the rule that higher porosities 
yield lower compressive strengths. Different architectures have 
shown their influence on the mechanical properties and the 
ingrowth of new bone [179–181]. There is no conclusion on 
the optimal architecture, which would depend on multiple fac-
tors in clinical application.

Another way to design trabecular scaffolds is to mimic the 
microstructure of natural trabecular bone. This is a promising 
way for the customized scaffold since the patient's natural bone 
structure can be directly involved in the scaffold design. A 
human femoral head was used as a template by taking images 
with micro CT and processing them with Scanco software [182]. 
The template was superimposed at different times to achieve 
varying porosities between 15% and 70% with compressive mod-
uli between 2,579 and 3,693 MPa. In vitro tests showed decent 
viability of osteoblasts on these scaffolds, as well as enhanced 
differentiation. Another study acquired templates from the distal 
radius trabecular bone [183]. The influence of 3D printing 
parameters, including input-image resolution, boundary condi-
tion, support material, STL mesh decimation, and repetition 
parameters on mechanical properties, were thoroughly investi-
gated. These process parameters can control the mechanical 
properties of scaffolds, meaning that the natural bone micro-
structure can be reserved for the desired biological response, 
and the sacrifice of mechanical support from the scaffold is 
avoided. The natural trabecular structure can be further opti-
mized. The Voronoi tessellation method was applied with com-
puter design software to design porous scaffolds [184]. Micro 
CT images of the L3 human vertebra were processed into 
2-dimensional Voronoi cell structures and 3D isotropic porous 
models, which can be used for 3D printing. These models pos-
sess similar histomorphometric indices of trabecular bones. 
More importantly, these scaffold models' mechanical and fluid 
properties can be controlled at the beginning of the Voronoi 
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Table. Parameters in the topography design. Pictures are adapted with permission from refs. ▽1 [190], ▽2 [263], and ▽3 [264].
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design process. These features provide great potential for clinical 
application. The biocompatible polymer, ultra-high molecular 
weight polyethylene, has also been fabricated into trabecular 
scaffolds using the Voronoi method [185].

Topography design for the regeneration of cortical bone
If the scaffold aims to regenerate cortical bones with no demand 
for mechanical support, the topography design would be sim-
ilar to the case of trabecular bones. The porous structure, in 
general, will also be beneficial for the new bone growth and 
reconstruction in cortical bone regions. However, the topog-
raphy needs to be optimized when the scaffold is implanted 
into areas with high load bearing. The challenge is creating 
scaffolds that maintain porous structures for better bone regen-
eration outcomes and provide mechanical strength comparable 
to cortical bones.

One way to enhance the scaffold stiffness is to lower the 
pore size-to-beam thickness ratio (PO:BT) [186]. The relation 
between PO:BT and porosity varies in topography so that one 
can select the low PO:BT with desired porosity. Meanwhile, the 
scaffold design containing more vertical beams also increases 
stiffness [186]. Some novel architectures can improve mechan-
ical performance without sacrificing porosity. Glass-ceramic 
scaffolds, composed of strontium (Sr)-doped hardystonite grains, 
clusters of submicron gahnite, and a glass phase with a hex-
agonal architecture, display a compressive strength of 110 MPa, 
which is within the range of cortical bones [187]. The hexag-
onal architecture possesses higher compressive and flexural 
strength than curved, rectangular, and zigzag designs.

Similar to strategies used for trabecular bone, bone-mimic 
printing offers a promising avenue for generating bone scaf-
folds with tailored structures. One paper showcases an inno-
vative method for creating bone-like, radial-gradient scaffolds 
through an extrusion-based 3D (EB-3D) printing technique. 
The design, inspired by the Koch snowflake fractal structure, 
results in scaffolds with superior radial porosity and mechan-
ical properties. This approach overcomes conventional EB-3D 
printers' limitations in fabricating functionally graded scaf-
folds [188]. Another study presents the successful fabrication 
of Haversian bone-mimicking scaffolds utilizing digital laser 
processing based 3D printing. The structural parameters of 
the scaffold, affecting its mechanical properties and porosity, 
can be controlled, leading to scaffolds that effectively mimic 
the native bone structure. The research underscores the poten-
tial of biomimetic strategies for designing structured, func-
tionalized biomaterials, contributing to tissue regeneration 
prospects [189].

For load-bearing implants, metallic materials are strong can-
didates. Their inherent advantages, such as sufficient mechan-
ical strength and high fatigue resistance, make the topography 
design of these scaffolds more flexible. AM bone scaffolds made 
of nonresorbable metals like tantalum, titanium, and nitinol 
adopt different designs to enhance osteointegration and osteo-
genesis [190–192]. The architecture of metallic scaffolds can be 
customized to optimize specific biological responses while their 
mechanical strengths are comparable to cortical bone. In the 
case of bioresorbable metallic scaffolds, like magnesium-based 
scaffolds, the topography design affects mechanical properties 
and can also influence their biodegradation behavior [193,194]. 
Smaller pore sizes are considered more promising due to lower 
hydrogen evolution and smaller reduction of mechanical strength 
size [195].

Material-dependent selection of fabrication 
methods for customized AM bone scaffolds
Numerous methods exist in AM, many of which are employed 
to fabricate orthopedic scaffolds. Each fabrication method 
hinges on unique mechanisms, making them suitable for varied 
application scenarios (Fig. 4 summarizes these methods and 
their features). Choosing a fabrication method for AM bone 
scaffolds involves considering several factors like material type, 
precision, lead time, surface quality, and postprocessing [196]. 
In the context of a patient-customized scaffold, the choice of 
fabrication methods relies heavily on the scaffold material. 
Hence, this review further discusses AM methods in relation 
to their performance with different scaffold materials, under-
scoring the pivotal role of customization.

Fabrication methods used for ceramic-based scaffolds
Ceramic-based scaffolds discussed in this review refer to those 
mainly composed of ceramic materials, which require sintering 
to strengthen their mechanical stability.

1. SLS
Selective laser sintering (SLS) is particularly advantageous 

for creating ceramic-based scaffolds in AM. By heating powder 
particles just below their melting point, SLS enables the forma-
tion of solid-state scaffolds from ceramics like HAP and β-TCP 
[197]. This process, customizable by adjusting parameters such 
as scanning speed and laser power, can modulate the chemical 
composition and microstructure of the scaffold [198,199]. By 
adjusting different parameters such as scanning speed and laser 
power, designers can customize ceramic scaffolds to meet spe-
cific requirements. Furthermore, SLS provides a streamlined 
fabrication process by eliminating the need for postsintering, 
underscoring its efficiency in rapid printing of customized 
ceramic scaffolds.

2. SLA/DLP
Stereolithography (SLA) and DLP methods, both advanta-

geous for creating ceramic scaffolds, function by solidifying a 
blend of photopolymers and ceramic materials when exposed 
to light. This is followed by a sintering phase to fuse the ceram-
ics, providing extensive customization opportunities. The 
trade-off between the two lies in SLA's high resolution but 
slower speed, while DLP offers faster output but at a lower 
accuracy.

The versatility of these processes is evident in the diversity 
of the printing suspension used. This mixture accommodates 
a variety of ceramic types and other additives, such as dispers-
ing agents and defoamers, thereby enhancing the scaffolds' 
mechanical and biological properties [200,201]. The ability to 
dope different components into the ceramic paste during SLA/
DLP processing adds another layer of customization to the 
scaffold's properties [201].

A crucial aspect of SLA/DLP-fabricated ceramic scaffolds is 
the 2-step sintering process. The initial phase involves lower- 
temperature sintering to remove photopolymers, and a subse-
quent higher-temperature phase strengthens the scaffolds' 
mechanical properties. Careful management of these temper-
atures ensures the phase of the material is maintained [202,203]. 
Novel aqueous suspensions have also been developed to address 
high viscosity and nonenvironmentally friendly factors in tra-
ditional suspensions [204].

In conclusion, the SLA/DLP methods provide pronounced 
advantages for the customization of ceramic scaffold properties 
due to their versatility in material incorporation, controlled 
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resolution and speed, and phase preservation through tailored 
sintering processes.

3. Binder jetting
Binder jetting printing, unlike SLA or DLP, fuses ceramic 

powders directly during the printing process without requiring 
a polymer-based matrix. A critical preparatory step involves 
milling the ceramic powders, as particle size impacts the print-
ing and sintering process, ultimately affecting the scaffold's 
density and strength [205]. Additionally, additives can be 
included during milling to enhance properties [100].

Various ceramics, including TCP, CS, and HAP, have been 
successfully fashioned into bone scaffolds using this technique 
[86,87,100,206,207]. Similar to SLA and DLP, any binder used 
in the printing process must be removed. However, the method 
varies; for instance, TCP scaffolds require curing and sintering 
at specific temperatures [86,100], while HAP scaffolds using a 
water-based binder only need a drying process [207].

One study has further optimized the binder jetting process for 
ceramic scaffolds by assessing parameters like layer thickness, build 
orientation, and binder saturation. Among these, build orientation 
proved most important [208]. Overall, binder jetting offers an effec-
tive and flexible method for customizing ceramic scaffolds.

4. Robocasting
The technique of robocasting offers an alternative strategy 

for creating ceramic scaffolds. It involves the upfront creation 
of a specially prepared printing ink that possesses an ideal 
viscosity to flow through the nozzle, along with a strong shape 
retention capacity upon deposition. This challenge hinges on 
the specific composition of the ceramic printing material, and 
modifications may be necessary if the composition changes 
or additional additives are required. Various formulations 
have been developed, including the mix of HAP/β-TCP with 
a Pluronic F-127 solution, 45S5 bioactive glass with carbox-
ymethyl cellulose water, and a blend of zirconia/alumina pow-
der with a water-based PF127 solution [209–213]. To ensure 
consistent drying, robocasting typically takes place within 
an oil bath. Once a self-supporting scaffold is successfully 
deposited, it undergoes sintering and any additional post-
processing steps.

Fabrication methods used for polymer-based scaffolds
1. SLA/DLP

Creating polymer-based scaffolds using SLA/DLP presents chal-
lenges, key among them being the need for a photo- crosslinkable 

Fig. 4. The fabrication methods for customized AM scaffolds. (A) Methods based on UV light-solidification techniques (left: selective laser SLA, right: DLP). (B) Methods based 
on the direct deposition techniques (left: FDM, right: robocasting). (C) Methods based on the powder bed technique with different powder binding mechanisms (left: SLS/
SLM, middle: binder jetting, right: EBM).
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primary polymer that is biocompatible or biodegradable. As pho-
topolymers need to be retained in the final product, unlike in 
ceramic scaffolds, this compatibility is critical. Resins such as 
poly(trimethylene carbonate) with added HAP particles, commer-
cial polyurethane, and poly(propylene fumarate) of varying molec-
ular masses have been utilized successfully in creating bone 
scaffolds [214–216]. Polyethylene glycol diacrylate mixed with 
decellularized tendon ECM has also been deployed as a bioink for 
scaffold creation via DLP [217]. The main challenge in SLA/DLP 
lies in formulating the appropriate photopolymer resin; however, 
once established, the printing procedure aligns with standard SLA/
DLP methods.

2. SLS
While SLS can melt most polymers for printing, factors like 

dimensional inaccuracy due to excess powder bonding, insuf-
ficient density from incomplete melting, and poor layer bond-
ing can lead to defects in the polymer scaffold [218]. Hence, 
the printing parameters substantially impact the scaffold's 
quality. To enhance bioactivity and mechanical properties, 
ceramic materials are often integrated into polymer-based SLS 
scaffolds.

Several polymer–ceramic combinations, such as PCL/HAP 
[218], PCL–TCP [219], PCL and HAP [220], polylactide and 
calcium carbonate [221], and PLLA and bioactive glass [222], 
have been used in SLS printed scaffolds. These studies typically 
optimize sintering parameters based on the print materials and 
the polymer/ceramics ratio.

Another research examined the effects of SLS process param-
eters, including laser power, beam compensation, and laser beam 
diameter, on the dimensional accuracy and mechanical stiffness 
of PCL scaffolds [223]. Their findings revealed a strong correla-
tion between the molten cross-section's diameter within scaffold 
struts, the outer strut diameter, and SLS process parameters.

3. FDM
Fused deposition modeling (FDM) is a widely used method 

for creating polymer scaffolds, renowned for its ability to con-
trol the porosity and structure of scaffolds. The critical chal-
lenge lies in formulating specific filaments, particularly those 
that incorporate ceramics into polymer matrices.

Several combinations of polymers and ceramics, such as 
PLA with HAP or β-TCP, have been used for bone scaffolds 
[224]. The resulting mechanical properties and microstructure 
heavily rely on the filaments' composition, often enhanced with 
ceramic additives.

Different filaments might demand distinct processing param-
eters, including extrusion speed, pressure, and temperature [224]. 
The thermal conductivity of the materials can affect the precision 
of the structures due to the anisotropic nature of thermal conduc-
tion [225]. Also, nozzle diameter is crucial in FDM, with filament 
diameter needing to match closely for accurate structures [226].

Fabrication methods used for metal-based scaffolds
1. SLM / EBM

Utilizing SLM and EBM methods, metal powders are pro-
cessed using powder bed fusion techniques. These methods 
create objects by solidifying particles with a laser or electron 
beam layer by layer. SLM employs a laser source for complete 
powder melting, while EBM uses an electron beam within a 
vacuum.

Bio-inert metals, such as stainless steel (SS), titanium (Ti), 
tantalum (Ta), and cobalt chromium (CoCr), and biodegradable 

metals like magnesium (Mg), iron (Fe), and zinc (Zn) are typ-
ically used for creating metal scaffolds.

Stainless steel, while not a primary choice, has been uti-
lized to fabricate highly porous scaffolds via SLM [227]. More 
studies focus on pure Ti and Ti-based alloys, due to their prop-
erties similar to trabecular bone [228–230]. The Ti-6Al-4V 
alloy shows variable corrosion resistance depending on whether 
it is fabricated by SLM or EBM, with EBM presenting better 
results [228]. The building orientation in the fabrication pro-
cess has limited impact on osseointegration, but factors such 
as porosity, heat treatment, and laser manipulations during SLM 
can affect the scaffold's microstructure and fatigue performance 
[231–234].

SLM has been used to create Ti-TaNb-Zr alloy and pure Ta 
scaffolds, while CoCr scaffolds were produced via EBM for 
bone ingrowth [118,235,236]. Despite challenges related to low 
melting points and oxidation tendencies, biodegradable metals 
like Zn and Mg have been processed using SLM. For instance, 
research on porous Mg scaffolds showed that the biodegrada-
tion profile could be adjusted through topological design [193]. 
Other studies reported successful fabrication of WE43 magne-
sium alloy and Zn with promising relative density and mechan-
ical properties [129,193,237,238]. Iron and iron-manganese 
scaffolds, fabricated using SLM, demonstrated differing degra-
dation rates [239].

2. Binder jetting
Binder jetting techniques used in creating metal scaffolds 

involve binding metal particles on a powder bed and subsequently 
sintering them.

Fe–30Mn and Fe-Mn-Ca/Mg were processed into scaf-
folds using such methods. A water-based organic binder was 
employed, followed by a 2-step posttreatment process. The 
parts were first cured at low temperatures (200 to 230 °C) for 
2 to 3 h to remove the binder and strengthen the structure. This 
was followed by annealing in a protective gas at a high temper-
ature (1,200 °C). The 3D-printed Fe–30Mn and Fe-Mn-1Ca 
parts showed open porosities of 36.3% and 52.9%, respec-
tively [240,241].

A study used binder jetting to process Stainless Steel 316 
into scaffolds with different lattice geometries [242], following 
similar printing and sintering parameters as the above Fe-based 
scaffolds.

Postannealing, all metal parts exhibited shrinkage, with 
higher shrinkage and lower porosity noted in Fe-Mn samples 
compared to Fe-Mn-1Ca [241]. Nonetheless, all created scaf-
folds had satisfactory porosity.

Future Direction and Challenge

In situ 3D printing
In situ 3D printing is emerging as a compelling option for 
creating patient-specific bone scaffolds directly at the site of 
bone defects. This innovation takes advantage of both the 
evolution in AM techniques and the broad palette of bioma-
terials now available, opening new possibilities for precise 
bone regeneration.

One approach employed a laser-assisted bioprinting system 
to in situ print a collagen bioink mixed with nHAP. This method 
was used to treat a calvaria defect in mice, exploring different 
printing geometries such as disk and ring shapes. The study 
demonstrated that bone regeneration was influenced by the 
arrangement of cells within the printed scaffold [243]. In 
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another experiment, an EB-3D printer was used to deploy 
methacrylate gelatin bioink directly into a long segmental bone 
defect in a swine model. The printed scaffold was then solid-
ified using an ultraviolet (UV) lamp. Notably, the scaffold was 
printed and set in place within just 12 min, and after 3 months, 
notable improvement in bone regeneration was observed [244]. 
Further, in situ 3D printing was performed with a handheld melt 
spun printer using a PCL filament doped with zinc oxide nan-
oparticles and HAP microparticles. The scaffolds produced 
this way displayed excellent biocompatibility in a subcutane-
ous model in mice [245].

These examples underline the potential of in situ 3D print-
ing, highlighting its capacity for rapid, site-specific bone scaf-
fold creation, with implications for enhancing patient-specific 
bone regeneration.

Smart materials for customized AM scaffolds
Biomaterials have a long history in transforming medicine and 
can be labeled as “bioinert”, “biocompatible”, and “bioactive” 
depending on their level of activity in the body. The most recent 
term for biomaterials “that respond to specific cellular signals” 
was coined as smart materials [246]. External stimuli like tem-
perature, magnetic fields, light, electric fields, and mechan-
ical stimuli will trigger a change in the material. Customized 
3D- printed scaffolds are mostly categorized as bioinert, biocom-
patible, or bioactive depending on the bioink. These materials 
do not have the ability to mimic the dynamic nature of tissues 
and change over time; hence, a term called 4-dimensional (4D) 
printing is made to categorize customized biomaterials that can 
autonomously evolve over time or change with external stimuli 
[247]. 4D printing combines 3D printing and time to create a 
scaffold that is capable of change. This change will be a result of 
external energy input such as heat, light, or other environmental 
stimuli [248]. Various materials that can be used for 4D printing 
are metal, polymer, proteins, DNA, nanowires, and nanotubes. 
Aside from 3D printing and 4D printing, various smart mate-
rials are already developed manually without 3D printing. These 
materials are typically piezoelectric and shape changing.

Deep learning for the scaffold design
The process of designing customized 3D-printed scaffolds can 
be time-consuming, potentially hindering prompt treatment. 
Consequently, advanced methods for processing digital med-
ical data for scaffold design are of high importance. Among 
these, deep learning, a branch of artificial intelligence, shows 
promising potential. It can predict and generate bone models 
based on patient data using trained convolutional neural net-
works [249].

In one study, deep learning was leveraged to reconstruct 
lower-dose pediatric CT scans, illustrating its potential for han-
dling and processing complex medical imaging data [249]. In 
another groundbreaking application, 3D deep learning was 
used to automatically generate cranial implant geometries, 
hinting at its future utility in creating customized bone scaffolds 
[250]. Further demonstrating the potential of deep learning, 
high-resolution trabecular bone microstructures were success-
fully reconstructed from low-resolution CT scans using a 
novel method called GAN-CIRCLE [251]. Regarding ink-
based printing, the current process of ink development is labo-
rious and inefficient. One study utilized machine learning 
algorithms, notably the random forest method, to predict and 

optimize ink formulations, improving accuracy and efficiency 
in biomedical 3D printing applications [252].

Collectively, these advances highlight how deep learning 
models could drastically enhance the efficiency of developing 
custom scaffolds. This, in turn, may lead to a more streamlined 
and precision-oriented approach to clinical practices involving 
3D-printed scaffolds.

Cooperation model for the clinical application of 
customized AM bone scaffolds
The clinical deployment of personalized AM scaffolds necessi-
tates a coordinated effort involving the patient, clinician, and 
engineer. This is a marked departure from the traditional 
approach, where mass-produced implants are distributed to 
hospitals. In contrast, AM bone scaffolds are tailor-made, using 
a design informed by the patient's medical data. Figure 5 elu-
cidates the information flow for an optimal treatment plan 
utilizing customized AM bone scaffolds. The journey begins 
with a clinician diagnosing the bone defect, followed by a dis-
cussion of treatment options with the patient, and then a 
consultation with engineers about scaffold possibilities. The 
clinician acts as an intermediary between the engineer and 
patient to facilitate the best possible treatment. This model 
hinges on a close-knit collaboration between the clinician and 
engineer, both of whom must fully comprehend the customi-
zation process at each stage. For cell/drug-loading scaffolds, 
the clinician collaborates with the patient on cell extraction 
and supplies patient-specific drugs for scaffold production. 
Conversely, for in situ printing, the clinician executes the scaf-
fold fabrication guided by the engineer's recommendations.

A critical obstacle in achieving the desired outcome from 
this cooperative model is the efficiency of communication. 
Considering the potentially limited or urgent surgical time 
frame for patients, swift data transmission and interaction 
between clinicians and engineers are imperative for customiz-
ing the scaffold, a process that could be markedly time-intensive. 
Therefore, a consolidated data platform is vital for timely com-
munication, preserving patient confidentiality, and managing 
large file transfers, given the breadth of medical data involved.

Another impediment is the complexity of customization. 
The ideal parameters for bone scaffolds differ for each patient, 
dependent on their specific condition, necessitating a compre-
hensive pathological analysis and tailored scaffold design. This 
extensive workload may result in decreased efficiency and 
increased costs. However, artificial intelligence, such as the 
deep-learning technology referenced in Deep learning for the 
scaffold design, could expedite the analysis and design phases, 
while quality assessments and evaluations by clinicians and 
engineers ensure the final outcomes' dependability.

Conclusion
AM bone scaffolds represent a major advancement in the realm 
of personalized orthopedic care, offering numerous advantages 
over traditional and standardized implants. These scaffolds can 
be designed to precisely fit specific defect shapes and mimic the 
surrounding host tissue, both mechanically and structurally, 
based on the treatment strategy and bone defect location. For 
the successful implementation of precision treatment, custom-
ization must be an integral part of all stages. This includes 
bone defect imaging, scaffold design, and the selection of 
materials and fabrication methodologies. By adhering to these 
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considerations, we can ensure that the scaffolds produced are 
tailored to the specific needs of each patient. Ultimately, the 
proposed cooperative model fosters close collaboration between 
clinicians and engineers, facilitating the creation of patient- 
specific AM bone scaffolds. Through this synergistic approach, 
the true potential of AM in orthopedics can be realized, usher-
ing in a new era of personalized medical treatment.
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