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The prediction of sagittal chin point 
relapse following two‑jaw surgery 
using machine learning
Young Ho Kim 1, Inhwan Kim 2, Yoon‑Ji Kim 3, Minji Kim 4, Jin‑Hyoung Cho 5, 
Mihee Hong 6, Kyung‑Hwa Kang 7, Sung‑Hoon Lim 8, Su‑Jung Kim 9, Namkug Kim 2, 
Jeong Won Shin 1, Sang‑Jin Sung 3, Seung‑Hak Baek 10 & Hwa Sung Chae 11*

The study aimed to identify critical factors associated with the surgical stability of pogonion (Pog) by 
applying machine learning (ML) to predict relapse following two‑jaw orthognathic surgery (2 J‑OGJ). 
The sample set comprised 227 patients (110 males and 117 females, 207 training and 20 test sets). 
Using lateral cephalograms taken at the initial evaluation (T0), pretreatment (T1), after (T2) 2 J‑OGS, 
and post treatment (T3), 55 linear and angular skeletal and dental surgical movements (T2‑T1) 
were measured. Six ML modes were utilized, including classification and regression trees (CART), 
conditional inference tree (CTREE), and random forest (RF). The training samples were classified into 
three groups; highly significant (HS) (≥ 4), significant (S) (≥ 2 and < 4), and insignificant (N), depending 
on Pog relapse. RF indicated that the most important variable that affected relapse rank prediction 
was ramus inclination (RI), CTREE and CART revealed that a clockwise rotation of more than 3.7 
and 1.8 degrees of RI was a risk factor for HS and S groups, respectively. RF, CTREE, and CART were 
practical tools for predicting surgical stability. More than 1.8 degrees of CW rotation of the ramus 
during surgery would lead to significant Pog relapse.

Orthognathic surgery is performed to overcome skeletal discrepancies, obtain esthetics, and achieve normal 
occlusion. However, unstable outcomes often require dental compensation during postoperative orthodontic 
treatment and other surgical  procedures1. Surgical instability, including hierarchy in post-surgical stability, is 
well established based on the surgical direction. Changes > 2 mm or 2° were defined as moderately unstable, 
and 4 > mm or 4° were highly  unstable2–4. A comprehensive report on  hierarchy5 indicated that post-surgical 
instability after mandibular setback was related to "A technical problem," which meant that the chin occasionally 
underwent clockwise (CW) rotation during the operation, and later the pterygomassetreic sling induced the 
opposite direction even with rigid fixation. The quantity of CW rotation of the proximal segment was correlated 
with the linear measurement of pogonion (Pog)6. Although two-jaw orthognathic surgery(2 J-OGS) was expected 
to overcome this situation, the proximal segment counter CW rotation after surgery, measured as ramus inclina-
tion (RI), was significantly associated with the amount of mandibular  relapse7. Based on the literature above, the 
major relapse occurred during CW rotation of the ramus (proximal segment) during surgery, which was related 
to the forward movement of the Pog after surgery. Therefore, training a dataset by including pre-operative (T1) 
and post-operative RI change (T2, and six to eight weeks later) to a machine learning (ML) algorithm may lead 
to predicting the change in Pog during retention in the testing set.

Artificial intelligence (AI) refers to the development of computer systems that can perform tasks that require 
human intelligence. ML is a subfield of AI that focuses on devising algorithms and statistical models that com-
puters can use to "learn" from data without explicit programming. Deep learning is a subset of ML that uses 
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artificial neural networks inspired by the structure and function of the human brain to process and analyze large 
amounts of  data8. Studies on ML and deep learning in the field of temporomandibular joint (TMJ) in the dental 
orthodontic department have been  reported9–13. Jung stated that it is possible to classify extraction versus non-
extraction with a 93% success rate using  ML9. Etemd reported the ranking factors determining the extraction 
using random forest (RF)10. Li suggested that the K-Nearest Neighbors (KNN) method was the best model for 
distinguishing between extraction and non-extraction, extraction patterns, and anchorage  determination11. Fang 
used multivariate logistic regression to detect cephalometric variables associated with degenerative joint  disease12. 
Lee et al.13 adopted RF to determine the rank of the risk factors related to temporomandibular disorders. ML has 
demonstrated the potential for predicting surgical  outcomes14.

To our knowledge, stability prediction of 2 J-OGS surgery using ML has not been reported. Since the obvious 
clinical expression in patients with skeletal class III is the sagittal chin projection (Pog), the quantitative change in 
Pog was selected for investigation. The purpose of the present study was to identify the critical factors associated 
with the surgical stability of Pog by applying ML to predict relapse following 2 J-OGS.

Methods
Subjects
The study sample consisted of 319 adult Korean patients diagnosed with skeletal class III malocclusion who 
underwent combined surgical orthodontic treatment and 2 J-OGS surgery at Seoul National University Dental 
University Hospital or Ajou University Dental Hospital, located in Republic of Korea, between 2006 and 2017. 
The inclusion criteria were as follows; (1) patients who had undergone 2 J-OGS surgery, Le Fort I osteotomy 
in the maxilla, and bilateral sagittal split osteotomy in the mandible, (2) patients who underwent rigid fixation 
with a metal plate and monocortical screws for fixation of the osteotomized bony segments, (3) patients for 
whom photographs and lateral cephalograms were taken at the initial visit (T0), at least one month before the 
surgery (T1), at least one month after the surgery (T2), and at debonding (T3), and (5) patients who faculty 
orthodontists treated with more than 30 years of experience (SHB and YHK). The exclusion criteria were (1) 
patients who had cleft lip and/or palate or congenital craniofacial deformities, (2) patients who had a history of 
trauma in the craniofacial area, and (3) patients who had severe facial asymmetry (menton deviation > 5 mm), 
and (4) patients who underwent vertical genioplasty. Supplementary Table 1 describes the age, sex, and Pog 
posterior movement (1.59 ± 2.76 mm). Consequently, the final study sample included 227 patients (110 males 
and 117 females). This retrospective case–control study was reviewed and approved by the Institutional Review 
Board of Seoul National University Dental Hospital (IRB no. ERI20022) and Ajou University Hospital (IRB no. 
AJIRB-MED-MDB-19–039). All experimental protocols were approved by the two institutional committees. 
Seoul National University Dental Hospital and Ajou University Hospital IRB committees waived the need of 
patient informed consent. Previous studies have indicated that the major relapse after 2 J-OGS surgery occurred 
within 8  weeks7 to 1  year5. Thus, 1 year of follow-up was sufficient to examine relapse.

Sample size calculation
Power analyses were conducted using Cohen’s effective sample  size15 with a significance level (α) of 0.05 and a 
power (1-β) of 0.9. Based on the mean and standard deviation (SD) values of postsurgical linear change in Pog 
from a previous  study7, which were reported as 1.87 and 2.6 mm, respectively, sample size calculations were 
performed using R software (ver. 4.0.3, Vienna, Austria). The results indicated that a minimum of 20 individuals 
were required to achieve the desired statistical power for the study. According to Rajput’s  suggestion16, a suitable 
sample size in machine learning algorithms should have an effective size greater than 0.5 and an ML accuracy 
of over 80%. Additionally, Rajput indicated that increasing the sample size beyond the threshold point would 
not significantly improve performance. In this study, the standardized effect size was 1.14, which exceeds the 
threshold of 0.5, indicating a substantial effect size. Therefore, among the machine learning algorithms used in 
this study, those that demonstrate an accuracy of more than 80% can be considered acceptable in terms of their 
performance.

Landmarks and variables used in this study
Figures 1 and 2 illustrated the definitions of the landmarks and linear and angular variables. Fifty-five linear and 
angular skeletal and dental surgical movements (T2-T1) were measured, of which 16 were calibrated relative 
to the horizontal and vertical reference planes for further analysis of linear changes to assess the magnitude of 
surgical movement. Postoperative relapse was estimated by measuring Pog movement (T3-T2). The identification 
of landmarks and measurement of variables were performed by a single operator (YHK).

Intra‑examiner reliability assessment
To evaluate intra-examiner reliability, the same investigator (YHK) re-evaluated all variables from 20 randomly 
selected subjects one month after the initial measurement. After conducting paired t-tests, no significant differ-
ences were observed between the first and second measurements. As a result, the first set of variables was used 
for subsequent statistical analyses.

Statistical analyses
The normality of the data distribution for each variable was assessed using the Shapiro–Wilk test. Statistical 
analysis was conducted among groups using a one-way analysis of variance and the Kruskal–Wallis test. A Bon-
ferroni post-hoc analysis was performed. Statistical analysis was performed using R version 4.2.2. A significance 
level of p < 0.05 was established for all statistical tests.
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Figure 1.  Landmarks, reference lines, and definitions of linear and angular measurements. Linear 
measurements: 1. A_x (mm), the horizontal distance from point A to VRP. 2. PNS_x (mm), the horizontal 
distance from PNS to VRP. 3. U1_x (mm), the horizontal distance from U1E to VRP. 4. U6_x (mm), the 
horizontal distance from U6MBC to VRP. 5. A_y (mm), the vertical distance from point A to HRP. 6. PNS_y 
(mm), the vertical distance from PNS to HRP. 7. U1_y(mm), the vertical distance from U1E to HRP. 8. U6_y 
(mm), the vertical distance from U6MBC to HRP. 9. B_x (mm), the horizontal distance from point B to VRP. 
10. Pog_x (mm), the horizontal distance from Pog to VRP. 11. L1_x (mm), the horizontal distance from L1E 
to VRP. 12. L6_x (mm), the horizontal distance from L6MBC to VRP. 13. B_y (mm), the vertical distance from 
point B to HRP. 14. Pog_y(mm), the vertical distance from Pog to HRP. 15. L1_y (mm), the vertical distance 
from L1E to HRP. 16. L6_y (mm), the vertical distance from L6MBC to HRP.

Figure 2.  Comparison of machine learning models (Dependent: RANK—HS/S/N). Scale 1.00 indicates the best 
metric performance.
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ML algorithms
Six ML approaches were utilized to identify factors contributing to Pog relapse, and these algorithms were 
compared to determine the optimal method for prediction, classification, and regression trees (CART)17, con-
ditional inference tree (CTREE)18, linear discriminant  analysis19, support vector  machine20,  KNN21,  RF22. A 
tenfold cross-validation was performed, repeating the process ten times to further reduce the variance in the 
results. The  literature23 supporting k-fold cross-validation indicates that it is an effective resampling technique 
to mitigate overfitting in machine learning models. Cross-validation is particularly useful when dealing with 
limited data samples. In the k-fold cross-validation process, the dataset is partitioned into k subsets, or "folds," 
with equal sizes. During the evaluation phase, the model is trained and tested k times. In each iteration, one 
fold is held out as the test set, while the remaining (k-1) folds are used for training the model. This procedure 
ensures that the model is assessed on different subsets of data, which helps to provide a more robust evaluation 
of its  performance24,25. The primary advantage of k-fold cross-validation is that it allows the model to be trained 
and tested on various data partitions, thereby reducing the risk of overfitting. Overfitting occurs when a model 
becomes too specialized to the training data and performs poorly on new, unseen data. By repeatedly evaluat-
ing the model on different data subsets, k-fold cross-validation helps to identify whether the model generalizes 
well across various data distributions. This technique provides a more reliable estimate of the model’s perfor-
mance metrics, such as accuracy, precision, recall, and F1 score, compared to a single train-test split evaluation. 
Moreover, it aids in optimizing hyperparameters and selecting the best model architecture that yields better 
generalization to unseen data. In summary, k-fold cross-validation is a valuable tool for machine learning model 
evaluation, particularly when dealing with limited data and aiming to avoid overfitting. Its implementation can 
lead to more robust and accurate models by ensuring better generalization across different data samples. The 
training and testing set consisted of 207 and 20 samples, respectively.

Metrics
The metric evaluation included accuracy, kappa, mean balanced accuracy, mean F1 score, mean recall, mean 
sensitivity, and mean specificity.

Ethics declaration
The study design followed the Declaration of Helsigki principles and was approved by SNUDH and Ajou Uni-
versity Hospital. his retrospective case–control study was reviewed and approved by the Institutional Review 
Board of Seoul National University Dental Hospital (IRB no. ERI20022) and Ajou University Hospital (IRB no. 
AJIRB-MED-MDB-19–039). The IRB Committee waived the requirement for obtaining patient consent from 
both institutions.

Results
Based on previous  studies2–4, the training set was classified into three subgroups based on the rank of relapse; 
highly significant (HS, n = 19) relapse, which was defined as greater than 4 mm of relapse; significant (S, n = 62) 
relapse, which was defined as a relapse ranging between 2 and 4 mm, and insignificant (N, n = 126) relapse, 
which was < 2 mm. The evaluation involved calculating the position of the Pog between T3 (debonding) and T2 
(surgery). The differences in cephalometric variables among the three groups in the training set (n = 207) are 
presented in Supplementary Table 2. Bjork sum, articular angle, gonial angle, lower anterior–posterior height 
ratio (ANS-Me/N-Me), FMA, SN to MP, SNA, FM_UOP, and A-point to vertical reference plane VRP displayed 
statistically significant differences (Fig. 1). The metrics evaluation among the ML models was shown in Fig. 2 and 
summarized in Table 1. A scale close to 1.0 indicated a higher prediction level. The significance of the differences 
between the metric distributions of the different ML algorithms was shown in Table 2. Each number indicated the 
difference between the algorithms, and p-values were described. For example, in accuracy, the mean difference 
between CART and CTREE was 0.008, obtained by subtracting them in Table 2 (|0.966–0.958|= 0.008). In gen-
eral, RF presented the most significant difference. The performance metrics of the ML algorithms in the testing 
set (n = 20) were compared in Table 3. CART, CTREE, and RF displayed better prediction results. For example, 
RF predicted a sagittal chin point (Pog) surgical relapse of more than 2 mm 95% (19/20), and considering the 
classification between HS and S, 90% (18/20) was the same as the actual outcomes (Supplementary Table 2). 
In RF, "VarImp" stands for "variable importance." The variable importance measures the relative importance of 
each predictor variable in the RF model. The six important head variables were RI, articular angle, Bjork sum, 
gonial angle, Sn to MP, and FMA. (Supplementary Fig. 1). Although RF predicted the rank of relapse and found 
critical variables, quantitative critical points can be obtained from Decision Tree models, which also visualize the 
prediction process to understand the process easily (CTREE, Fig. 3a and CART, Fig. 3b). In Fig. 3a, the predic-
tion model of CTREE was illustrated. The first step was evaluating the amount of CW rotation of the ramus to 
predict the Pog relapse rank, N, S, and HS. No significant relapse was forecasted if it was less than 1.86 degrees 
(− 1.86). When more than 1.86°of CW rotation occurred during surgery, the next step was to evaluate whether 
it was more or less than 3.72. The third step was determining whether the articular angle changed by more than 
9.25°in the same direction. If so, the fifth step estimated the increased vertical position of point A (Apoint_y). 
An HS relapse was anticipated if it was more than 1.12 mm. CART (Fig. 3b) revealed that the CW rotation of 
the ramus with critical points of 1.8° and 3.7° was essential for forecasting the relapse rank.

Discussion
This study aimed to predict the stability of sagittal chin projection (Pog) following 2 J-OGS surgery using ML. 
The changes in Pog during surgery between the preoperative (T1) and postoperative (T2) stages were used to 
predict the change in Pog at the debonding stage (T3). This study employed ML algorithms to identify the critical 



5

Vol.:(0123456789)

Scientific Reports |        (2023) 13:17005  | https://doi.org/10.1038/s41598-023-44207-2

www.nature.com/scientificreports/

Table 1.  Performance metrics of machine learning algorithms. Pre-processing: centered (55), scaled 
(55), Resampling: Cross-Validated (tenfold, repeated 10 times). CART  classification and regression trees 
(Complexity parameter = 0.176), CTREE conditional inference tree (mincriterion = 0.9), LDA linear 
discriminant analysis, SVM support vector machines (sigma = 0.01225348 and C = 2), KNN K-nearest neighbor 
(k = 13), RF Random Forest (mtry = 28), By R 4.2.2 with package ’caret’, 207 samples 55 predictor 3 classes: ‘HS’, 
‘S,’ ‘N’, N No significant relapse, S significant relapse, HS highly significant relapse.

Min 1st.Qu Median Mean 3rd.Qu Max NA.s

Accuracy CART 0.850 0.950 0.955 0.966 1.000 1.000 0

Accuracy CTREE 0.818 0.950 0.952 0.958 1.000 1.000 0

Accuracy LDA 0.650 0.818 0.857 0.860 0.905 1.000 0

Accuracy SVM 0.800 0.900 0.905 0.912 0.951 1.000 0

Accuracy KNN 0.571 0.724 0.773 0.776 0.818 0.950 0

Accuracy RF 0.850 0.952 1.000 0.974 1.000 1.000 0

Kappa CART 0.752 0.911 0.918 0.939 1.000 1.000 0

Kappa CTREE 0.648 0.906 0.914 0.923 1.000 1.000 0

Kappa LDA 0.426 0.667 0.732 0.740 0.820 1.000 0

Kappa SVM 0.592 0.801 0.821 0.832 0.907 1.000 0

Kappa KNN 0.050 0.405 0.521 0.521 0.634 0.906 0

Kappa RF 0.752 0.912 1.000 0.953 1.000 1.000 0

Mean_Balanced_Accuracy CART 0.849 0.967 0.978 0.975 1.000 1.000 0

Mean_Balanced_Accuracy CTREE 0.755 0.951 0.977 0.964 1.000 1.000 0

Mean_Balanced_Accuracy LDA 0.690 0.809 0.855 0.851 0.905 1.000 0

Mean_Balanced_Accuracy SVM 0.712 0.810 0.868 0.865 0.906 1.000 0

Mean_Balanced_Accuracy KNN 0.513 0.634 0.683 0.692 0.739 0.905 0

Mean_Balanced_Accuracy RF 0.801 0.973 1.000 0.977 1.000 1.000 0

Mean_F1 CART 0.753 0.907 0.964 0.949 1.000 1.000 0

Mean_F1 CTREE 0.722 0.881 0.961 0.945 1.000 1.000 3

Mean_F1 LDA 0.563 0.730 0.796 0.809 0.864 1.000 20

Mean_F1 SVM 0.694 0.828 0.863 0.876 0.957 1.000 39

Mean_F1 KNN 0.686 0.741 0.785 0.783 0.820 0.863 87

Mean_F1 RF 0.786 0.919 1.000 0.956 1.000 1.000 1

Mean_Precision CART 0.750 0.889 0.958 0.948 1.000 1.000 0

Mean_Precision CTREE 0.556 0.889 0.958 0.939 1.000 1.000 1

Mean_Precision LDA 0.498 0.733 0.838 0.806 0.917 1.000 12

Mean_Precision SVM 0.542 0.917 0.952 0.912 0.956 1.000 35

Mean_Precision KNN 0.795 0.871 0.922 0.903 0.938 0.956 87

Mean_Precision RF 0.786 0.889 1.000 0.956 1.000 1.000 1

Mean_Recall CART 0.760 0.951 0.974 0.964 1.000 1.000 0

Mean_Recall CTREE 0.593 0.944 0.974 0.949 1.000 1.000 0

Mean_Recall LDA 0.504 0.712 0.778 0.774 0.889 1.000 0

Mean_Recall SVM 0.556 0.667 0.786 0.775 0.833 1.000 0

Mean_Recall KNN 0.333 0.474 0.529 0.546 0.598 0.833 0

Mean_Recall RF 0.667 0.967 1.000 0.966 1.000 1.000 0

Mean_Sensitivity CART 0.760 0.951 0.974 0.964 1.000 1.000 0

Mean_Sensitivity CTREE 0.593 0.944 0.974 0.949 1.000 1.000 0

Mean_Sensitivity LDA 0.504 0.712 0.778 0.774 0.889 1.000 0

Mean_Sensitivity SVM 0.556 0.667 0.786 0.775 0.833 1.000 0

Mean_Sensitivity KNN 0.333 0.474 0.529 0.546 0.598 0.833 0

Mean_Sensitivity RF 0.667 0.967 1.000 0.966 1.000 1.000 0

Mean_Specificity CART 0.939 0.978 0.983 0.985 1.000 1.000 0

Mean_Specificity CTREE 0.867 0.964 0.982 0.979 1.000 1.000 0

Mean_Specificity LDA 0.821 0.909 0.933 0.928 0.956 1.000 0

Mean_Specificity SVM 0.869 0.935 0.956 0.954 0.976 1.000 0

Mean_Specificity KNN 0.693 0.792 0.841 0.839 0.879 0.976 0

Mean_Specificity RF 0.935 0.981 1.000 0.989 1.000 1.000 0
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factors associated with the surgical stability of Pog. In agreement with earlier  research6,7, our study emphasizes the 
significance of changes in Pog relapse between the pre-operative and post-operative stages as indicators of surgi-
cal instability. This supports the idea that alterations in the proximal segment of the mandible in the clockwise 

Table 2.  The significance of the differences between the metric distributions of different machine learning 
algorithms. Significant values are in bold. p-value adjustment: Bonferroni. Upper diagonal: estimates of the 
difference. Lower diagonal: p-value for H0: difference = 0.

CART CTREE LDA SVM KNN RF

Accuracy CART 0.008 0.106 0.054 0.190  − 0.008

Accuracy CTREE 0.004 0.098 0.046 0.182  − 0.016

Accuracy LDA  < 0.001  < 0.001  − 0.052 0.084  − 0.114

Accuracy SVM  < 0.001  < 0.001  < 0.001 0.136  − 0.062

Accuracy KNN  < 0.001  < 0.001  < 0.001  < 0.001  − 0.198

Accuracy RF 0.005  < 0.001  < 0.001  < 0.001  < 0.001

Kappa CART 0.016 0.199 0.107 0.418  − 0.014

Kappa CTREE 0.005 0.183 0.091 0.403  − 0.030

Kappa LDA  < 0.001  < 0.001  − 0.092 0.220  − 0.213

Kappa SVM  < 0.001  < 0.001  < 0.001 0.312  − 0.121

Kappa KNN  < 0.001  < 0.001  < 0.001  < 0.001  − 0.433

Kappa RF 0.009  < 0.001  < 0.001  < 0.001  < 0.001

Mean_Balanced_Accuracy CART 0.011 0.124 0.110 0.283  − 0.003

Mean_Balanced_Accuracy CTREE 0.023 0.113 0.099 0.272  − 0.014

Mean_Balanced_Accuracy LDA  < 0.001  < 0.001  − 0.013 0.159  − 0.126

Mean_Balanced_Accuracy SVM  < 0.001  < 0.001 1.000 0.172  − 0.113

Mean_Balanced_Accuracy KNN  < 0.001  < 0.001  < 0.001  < 0.001  − 0.285

Mean_Balanced_Accuracy RF 1.000  < 0.001  < 0.001  < 0.001  < 0.001

Mean_F1 CART 0.006 0.142 0.076 0.161  − 0.007

Mean_F1 CTREE 0.031 0.137 0.074 0.158  − 0.013

Mean_F1 LDA  < 0.001  < 0.001  − 0.069 0.028  − 0.149

Mean_F1 SVM  < 0.001  < 0.001  < 0.001 0.090  − 0.083

Mean_F1 KNN 0.001 0.001 1.000 0.156  − 0.170

Mean_F1 RF  < 0.001  < 0.001  < 0.001  < 0.001 0.001

Mean_Precision CART 0.009 0.143 0.037 0.037  − 0.009

Mean_Precision CTREE 0.287 0.132 0.025 0.035  − 0.018

Mean_Precision LDA  < 0.001  < 0.001  − 0.100  − 0.093  − 0.151

Mean_Precision SVM 0.256 1.000  < 0.001 0.011  − 0.045

Mean_Precision KNN 1.000 1.000 0.173 1.000  − 0.047

Mean_Precision RF  < 0.001 0.001  < 0.001 0.058 1.000

Mean_Recall CART 0.016 0.190 0.189 0.419  − 0.002

Mean_Recall CTREE 0.063 0.174 0.173 0.403  − 0.017

Mean_Recall LDA  < 0.001  < 0.001  − 0.001 0.229  − 0.192

Mean_Recall SVM  < 0.001  < 0.001 1.000 0.230  − 0.191

Mean_Recall KNN  < 0.001  < 0.001  < 0.001  < 0.001  − 0.420

Mean_Recall RF 1.000 0.003  < 0.001  < 0.001  < 0.001

Mean_Sensitivity CART 0.016 0.190 0.189 0.419  − 0.002

Mean_Sensitivity CTREE 0.063 0.174 0.173 0.403  − 0.017

Mean_Sensitivity LDA  < 0.001  < 0.001  − 0.001 0.229  − 0.192

Mean_Sensitivity SVM  < 0.001  < 0.001 1.000 0.230  − 0.191

Mean_Sensitivity KNN  < 0.001  < 0.001  < 0.001  < 0.001  − 0.420

Mean_Sensitivity RF 1.000 0.003  < 0.001  < 0.001  < 0.001

Mean_Specificity CART 0.006 0.057 0.031 0.147  − 0.004

Mean_Specificity CTREE 0.005 0.051 0.025 0.140  − 0.010

Mean_Specificity LDA  < 0.001  < 0.001  − 0.026 0.089  − 0.061

Mean_Specificity SVM  < 0.001  < 0.001  < 0.001 0.115  − 0.035

Mean_Specificity KNN  < 0.001  < 0.001  < 0.001  < 0.001  − 0.150

Mean_Specificity RF 0.026  < 0.001  < 0.001  < 0.001  < 0.001
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(CW) direction during surgery and counterclockwise (CCW) direction in the retention period are crucial factors 
in determining the stability of Pog. The application of ML algorithms to predict surgical stability in orthodontics 
and dental orthognathic surgery has been gaining interest in recent years. In this context, our study builds upon 
previous work by  Jung9,  Etemd10, and  Li11 successfully utilized AI techniques to classify extraction versus non-
extraction cases, rank factors determining extraction, and distinguish between extraction patterns, respectively. 
The current study expands this research with a comparable performance by employing ML algorithms to predict 
Pog stability following 2 J-OGS surgery, which has not been previously explored.

In this study, a tenfold cross-validation method was used to evaluate the predictive performance of the ML 
model. The performances of six popular ML algorithms were compared by adopting multiple evaluation metrics. 
Since the sample number of each group was different and the HS group had the smallest number (n = 19), the 
mean balance accuracy, precision, recall, and sensitivity were also investigated to account for the class imbalance. 
In the current study, the "false negative" detection was clinically critical since the prediction of relapse should 
not exclude those patients who will relapse. On the other hand, the "false positive" of the HS and S groups were 
not as significant as the "false negative." Therefore, the mean balanced precision, recall, and sensitivity, useful 
metrics when the cost of false-negative prediction is high, were utilized and examined (Fig. 2). CART and CTREE 
performed better than the others, and RF displayed the best scores. For example, RF exhibited the highest mean 
balanced accuracy, followed by CART, CTREE, Support Vector Machine, Linear Discriminant Analysis, and 
KNN (Table 1). Statistical differences were examined among the ML models (Table 2). For example, the mean 
balanced accuracy of RF differed from the others, except for CART. Table 3 demonstrates the testing set data 
results, which indicate that RF, CART, and CTREE also exhibit superior performance. Therefore, the results of 
these three algorithms were investigated further (Table 3).

As shown in Supplementary Table 2, RF was predicted correctly in 18/20 samples. Case number four under-
went 4.78 mm relapse (HS in reality), but it was predicted to be in the S group, which was inaccurate but partially 
correct regarding whether relapse occurred. Case number five showed a 2 mm Pog backward movement, but that 
number was incorrect. A unique feature of RF is that it reveals an important variable (Supplementary Fig. 1); 
an essential variable that affected the rank prediction was RI, followed by the articular angle, Bjork sum, gonial 
angle, Sn to MP, and FMA. These variables were all related to the vertical increment during surgery, implicating 
the importance of maintaining the vertical dimension in the mandible. The composition of the decision-making 
triage is illustrated in Fig. 3. CTREE forecasted that the first and second critical numbers of RI CW rotation were 
1.86 (S) and 3.72 (HS), respectively. The articular angle and Bjork sum were nominated in the next tree, followed 

Table 3.  Performance metrics of machine learning algorithms for Testing data set (n = 20). No information 
rate: 0.550.

n = 20 Overall statistics
Statistics by 
class Sensitivity Specificity Precision Recall F1 Prevalence Detection rate

Detection 
prevalence

Balanced 
accuracy

Test_CART Accuracy : 1.000 
(0.832, 1.000) Class: HS 1.000 1.000 1.000 1.000 1.000 0.150 0.150 0.150 1.000

Test_CART P-value 
[Acc > NIR]: < 0.001 Class: N 1.000 1.000 1.000 1.000 1.000 0.550 0.550 0.550 1.000

Test_CART Kappa: 1.000 Class: S 1.000 1.000 1.000 1.000 1.000 0.300 0.300 0.300 1.000

Test_CTREE Accuracy: 1.000 
(0.832,  1.000) Class: HS 1.000 1.000 1.000 1.000 1.000 0.150 0.150 0.150 1.000

Test_CTREE P-value 
[Acc > NIR]: < 0.001 Class: N 1.000 1.000 1.000 1.000 1.000 0.550 0.550 0.550 1.000

Test_CTREE Kappa: 1.000 Class: S 1.000 1.000 1.000 1.000 1.000 0.300 0.300 0.300 1.000

Test_KNN Accuracy: 0.850 
(0.621, 0.968) Class: HS 0.000 1.000 NA 0.000 NA 0.150 0.000 0.000 0.500

Test_KNN P-value [Acc > NIR]: 
0.005 Class: N 1.000 0.889 0.917 1.000 0.957 0.550 0.550 0.600 0.944

Test_KNN Kappa: 0.727 Class: S 1.000 0.857 0.750 1.000 0.857 0.300 0.300 0.400 0.929

Test_LDA Accuracy: 0.900 
(0.683, 0.9877) Class: HS 0.667 1.000 1.000 0.667 0.800 0.150 0.100 0.100 0.833

Test_LDA P-value 
[Acc > NIR]: < 0.001 Class: N 1.000 0.889 0.917 1.000 0.957 0.550 0.550 0.600 0.944

Test_LDA Kappa: 0.823 Class: S 0.833 0.929 0.833 0.833 0.833 0.300 0.250 0.300 0.881

Test_RF Accuracy: 1.000 
(0.832, 1.000) Class: HS 1.000 1.000 1.000 1.000 1.000 0.150 0.150 0.150 1.000

Test_RF P-value 
[Acc > NIR]: < 0.001 Class: N 1.000 1.000 1.000 1.000 1.000 0.550 0.550 0.550 1.000

Test_RF Kappa: 1.000 Class: S 1.000 1.000 1.000 1.000 1.000 0.300 0.300 0.300 1.000

Test_SVM Accuracy: 0.900 
(0.683, 0.9877) Class: HS 0.667 1.000 1.000 0.667 0.800 0.150 0.100 0.100 0.833

Test_SVM P-value 
[Acc > NIR]: < 0.001 Class: N 1.000 0.889 0.917 1.000 0.957 0.550 0.550 0.600 0.944

Test_SVM Kappa: 0.823 Class: S 0.833 0.929 0.833 0.833 0.833 0.300 0.250 0.300 0.881
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by A point vertical and a saddle angle increment. The most crucial advantage of decision trees is that they sug-
gest critical numbers. The exact numbers were acquired using CART regarding the RI CW rotation (Fig. 3b).

The present study has several limitations. The first is the overfitting of the ML algorithms. Overfitting is a 
common problem in ML. A model is trained to fit the training data so closely that it starts memorizing instead of 
generalizing and identifying patterns. When a model overfits, it performs very well on the training data; however, 
its performance on new, unseen data is poor. This phenomenon occurs when the model is overly tailored to the 
training dataset, leading to reduced generalizability and accuracy when making predictions on new, unseen 
 data26. Furthermore, this study only collected samples from two universities, two oral surgeons who operated on 
the surgery, and two orthodontists who performed orthodontic treatment. Considering the different treatment 
plans, techniques, and ethnic backgrounds, other institutions may have different predictions. Nonetheless, it 
may be more appropriate to make predictions based on data from each institution, given that most institutions 
likely employ specific surgical techniques and orthodontic mechanics. The second limitation is that Pog was the 
only measurement. Other measurements, such as the maxillary occlusal  plane27, vertical bony  step28 and points 
A, B, etc., should be addressed in future studies.

This study provides valuable insights into ML’s application of ML in predicting Pog stability after 2 J-OGS 
surgery. The findings of this study indicate that the ML model developed could be used to predict the relapse 
of Pog accurately, suggesting the critical number of variables associated with the surgical stability of Pog. The 
clinical implication of the current study was that ML applications could be used to identify patients at high risk 
of surgical relapse and develop appropriate postoperative management strategies to improve surgical stability. 
The model’s accuracy in predicting Pog’s relapse could reduce the need for further surgical procedures, reducing 
the treatment cost and duration.

Conclusions
The primary objective of this study was to utilize ML algorithms to predict sagittal chin projection (Pog) stabil-
ity after 2 J-OGS surgery and identify the key factors contributing to surgical stability. Changes in Pog relapse 
with mandibular CW rotation during surgery served as indicators of surgical instability. RF, CART, and CTREE 
demonstrated the most robust predictive performances of the six ML algorithms assessed in this study. The 
study revealed that a CW rotation of more than 3.7 and 1.8 degrees of RI CW rotation was the most significant 
risk factor for HS (≥ 4) and S (≥ 2 and < 4) Pog relapse, respectively. The findings of this study suggest that ML 
algorithms, mainly RF and decision-tree models, are practical tools for predicting surgical stability. Additionally, 
decision tree models enable the visualization of the prediction process using a triage illustration.

Figure 3.  Decision Tree of Conditional Inference (CTREE). (A) Decision Tree of Conditional Inference 
(CTREE). RI, Articular angle, Bjork sum, Apoint_y (A_y), and Saddle angle were chosen for the classification. 
(B) Critical values of Classification and Regression Trees (CART) (Complexity parameter = 0.176).
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Data availability
The test set data can be obtained via github (https:// github. com/ pfChae/ The- predi ction- of- sagit tal- chin- point- 
relap se- follo wing- double- jaw- surge ry- using- machi ne- learn ing).
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