Skip to main content
. 2023 Oct 9;13:17005. doi: 10.1038/s41598-023-44207-2

Table 1.

Performance metrics of machine learning algorithms.

Min 1st.Qu Median Mean 3rd.Qu Max NA.s
Accuracy CART 0.850 0.950 0.955 0.966 1.000 1.000 0
Accuracy CTREE 0.818 0.950 0.952 0.958 1.000 1.000 0
Accuracy LDA 0.650 0.818 0.857 0.860 0.905 1.000 0
Accuracy SVM 0.800 0.900 0.905 0.912 0.951 1.000 0
Accuracy KNN 0.571 0.724 0.773 0.776 0.818 0.950 0
Accuracy RF 0.850 0.952 1.000 0.974 1.000 1.000 0
Kappa CART 0.752 0.911 0.918 0.939 1.000 1.000 0
Kappa CTREE 0.648 0.906 0.914 0.923 1.000 1.000 0
Kappa LDA 0.426 0.667 0.732 0.740 0.820 1.000 0
Kappa SVM 0.592 0.801 0.821 0.832 0.907 1.000 0
Kappa KNN 0.050 0.405 0.521 0.521 0.634 0.906 0
Kappa RF 0.752 0.912 1.000 0.953 1.000 1.000 0
Mean_Balanced_Accuracy CART 0.849 0.967 0.978 0.975 1.000 1.000 0
Mean_Balanced_Accuracy CTREE 0.755 0.951 0.977 0.964 1.000 1.000 0
Mean_Balanced_Accuracy LDA 0.690 0.809 0.855 0.851 0.905 1.000 0
Mean_Balanced_Accuracy SVM 0.712 0.810 0.868 0.865 0.906 1.000 0
Mean_Balanced_Accuracy KNN 0.513 0.634 0.683 0.692 0.739 0.905 0
Mean_Balanced_Accuracy RF 0.801 0.973 1.000 0.977 1.000 1.000 0
Mean_F1 CART 0.753 0.907 0.964 0.949 1.000 1.000 0
Mean_F1 CTREE 0.722 0.881 0.961 0.945 1.000 1.000 3
Mean_F1 LDA 0.563 0.730 0.796 0.809 0.864 1.000 20
Mean_F1 SVM 0.694 0.828 0.863 0.876 0.957 1.000 39
Mean_F1 KNN 0.686 0.741 0.785 0.783 0.820 0.863 87
Mean_F1 RF 0.786 0.919 1.000 0.956 1.000 1.000 1
Mean_Precision CART 0.750 0.889 0.958 0.948 1.000 1.000 0
Mean_Precision CTREE 0.556 0.889 0.958 0.939 1.000 1.000 1
Mean_Precision LDA 0.498 0.733 0.838 0.806 0.917 1.000 12
Mean_Precision SVM 0.542 0.917 0.952 0.912 0.956 1.000 35
Mean_Precision KNN 0.795 0.871 0.922 0.903 0.938 0.956 87
Mean_Precision RF 0.786 0.889 1.000 0.956 1.000 1.000 1
Mean_Recall CART 0.760 0.951 0.974 0.964 1.000 1.000 0
Mean_Recall CTREE 0.593 0.944 0.974 0.949 1.000 1.000 0
Mean_Recall LDA 0.504 0.712 0.778 0.774 0.889 1.000 0
Mean_Recall SVM 0.556 0.667 0.786 0.775 0.833 1.000 0
Mean_Recall KNN 0.333 0.474 0.529 0.546 0.598 0.833 0
Mean_Recall RF 0.667 0.967 1.000 0.966 1.000 1.000 0
Mean_Sensitivity CART 0.760 0.951 0.974 0.964 1.000 1.000 0
Mean_Sensitivity CTREE 0.593 0.944 0.974 0.949 1.000 1.000 0
Mean_Sensitivity LDA 0.504 0.712 0.778 0.774 0.889 1.000 0
Mean_Sensitivity SVM 0.556 0.667 0.786 0.775 0.833 1.000 0
Mean_Sensitivity KNN 0.333 0.474 0.529 0.546 0.598 0.833 0
Mean_Sensitivity RF 0.667 0.967 1.000 0.966 1.000 1.000 0
Mean_Specificity CART 0.939 0.978 0.983 0.985 1.000 1.000 0
Mean_Specificity CTREE 0.867 0.964 0.982 0.979 1.000 1.000 0
Mean_Specificity LDA 0.821 0.909 0.933 0.928 0.956 1.000 0
Mean_Specificity SVM 0.869 0.935 0.956 0.954 0.976 1.000 0
Mean_Specificity KNN 0.693 0.792 0.841 0.839 0.879 0.976 0
Mean_Specificity RF 0.935 0.981 1.000 0.989 1.000 1.000 0

Pre-processing: centered (55), scaled (55), Resampling: Cross-Validated (tenfold, repeated 10 times).

CART classification and regression trees (Complexity parameter = 0.176), CTREE conditional inference tree (mincriterion = 0.9), LDA linear discriminant analysis, SVM support vector machines (sigma = 0.01225348 and C = 2), KNN K-nearest neighbor (k = 13), RF Random Forest (mtry = 28), By R 4.2.2 with package 'caret', 207 samples 55 predictor 3 classes: ‘HS’, ‘S,’ ‘N’, N No significant relapse, S significant relapse, HS highly significant relapse.