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Joint analysis of the metabolomics 
and transcriptomics uncovers 
the dysregulated network 
and develops the diagnostic model 
of high‑risk neuroblastoma
Bang Du 1,2,3,5, Fei Zhang 1,2,3,5, Qiumei Zhou 4,5, Weyland Cheng 1,2,3, Zhidan Yu 1,2,3, 
Lifeng Li 1,2,3, Jianwei Yang 1,2,3, Xianwei Zhang 1,2,3*, Chongchen Zhou 1,2,3* & 
Wancun Zhang 1,2,3*

High‑risk neuroblastoma (HR‑NB) has a significantly lower survival rate compared to low‑ and 
intermediate‑risk NB (LIR‑NB) due to the lack of risk classification diagnostic models and effective 
therapeutic targets. The present study aims to characterize the differences between neuroblastomas 
with different risks through transcriptomic and metabolomic, and establish an early diagnostic 
model for risk classification of neuroblastoma.Plasma samples from 58 HR‑NB and 38 LIR‑NB 
patients were used for metabolomics analysis. Meanwhile, NB tissue samples from 32 HR‑NB and 
23 LIR‑NB patients were used for transcriptomics analysis. In particular, integrative metabolomics 
and transcriptomic analysis was performed between HR‑NB and LIR‑NB. A total of 44 metabolites 
(P < 0.05 and fold change > 1.5) were altered, including 12 that increased and 32 that decreased in 
HR‑NB. A total of 1,408 mRNAs (P < 0.05 and |log2(fold change)|> 1) showed significantly altered in 
HR‑NB, of which 1,116 were upregulated and 292 were downregulated. Joint analysis of both omic 
data identified 4 aberrant pathways (P < 0.05 and impact ≥ 0.5) consisting of glycerolipid metabolism, 
retinol metabolism, arginine biosynthesis and linoleic acid metabolism. Importantly, a HR‑NB risk 
classification diagnostic model was developed using plasma circulating‑free S100A9, CDK2, and 
UNC5D, with an area under receiver operating characteristic curve of 0.837 where the sensitivity 
and specificity in the validation set were both 80.0%. This study presents a novel pioneering study 
demonstrating the metabolomics and transcriptomics profiles of HR‑NB. The glycerolipid metabolism, 
retinol metabolism, arginine biosynthesis and linoleic acid metabolism were altered in HR‑NB. The risk 
classification diagnostic model based on S100A9, CDK2, and UNC5D can be clinically used for HR‑NB 
risk classification.

Neuroblastoma (NB) is the most common extracranial malignancy in children and originates from the embry-
onic neural crest with insidious onset and rapid progression, accounting for 15% of childhood cancer  deaths1,2. 
Clinically, NB can be divided into low-risk (LR), intermediate-risk (IR) and high-risk (HR) types according to the 
Children’s Oncology Group (COG) classification based on the demarcation of age at diagnosis, the International 
Neuroblastoma Staging System (INSS) stage, the tumor tissue MYCN status, the International Neuroblastoma 
Pathology Committee (INPC) classification and ploidy. In addition, NB is characterized by a heterogeneous 
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disease spectrum ranging from patients with widespread tumors that spontaneously regress or differentiate 
without treatment to treatment-resistant tumors with metastatic spread despite intensive multimodal treatment 
approaches. The 5-year event-free survival rate and 5-year overall survival rate was 91.3% and 97.5% in LR-NB 
patients, respectively; 85.1% and 96.7% in IR-NB patients, respectively; and 37.7% and 48.9% in HR-NB patients, 
 respectively3–5. Therefore, it is urgent to systematically study the occurrence and development of HR-NB, not only 
for improving the understanding of biological functions, but to also improve therapeutic strategies for HR-NB.

Studies have shown that the lack of HR-NB risk classification diagnostic models and effective therapeu-
tic targets are the main reasons for the significantly lower survival rate than low- and intermediate-risk NB 
(LIR-NB)6. Alessandra Dondro et al. established a diagnostic model that facilitated the early diagnosis of NB 
by multiparameter flow cytometry, which can provide new personalized treatments for children with NB and 
improved survival  rate7. By analyzing the expression of nucleolin on the surface of NB cells, Chiara Brignole et al. 
found that nucleolin was an innovative NB therapeutic cell target and a promising diagnostic model for clinical 
application was established based on  nucleolin8. Through systematic studies, Chiao-Hui Hsieh et al. found that 
aurora kinase inhibitors interfered with carbohydrate and fatty acid metabolism pathways, resulting in metabolic 
imbalance. The mitochondrial yellow enzyme acyl-CoA dehydrogenase may be a potential therapeutic target for 
MYCN-amplified  neuroblastoma9. Therefore, systematic research on HR-NB to find its diagnostic biomarkers 
and abnormal metabolic pathway is expected to improve the survival rate of HR-NB.

It is worth noting that the development of omics has brought new ideas for the diagnosis and treatment 
of diseases. Metabolomics aims to characterize all small molecules in a sample to accurately reflect the bio-
logical metabolic characteristics of disease states, which is beneficial to understanding the pathophysiological 
processes in disease progression and to find new biomarkers for disease diagnosis and  prognosis10. Shivanand 
Pudakalakatti et al. performed a metabolomics analysis of brain tumor patients and found that platelet-associated 
lactate, acetate, glutamine, glutamate, succinate, alanine, and pyruvate could be used as biomarkers for brain 
 cancer11. Alessio Imperiale et al. found lower concentrations of glucose, serine, and glycine and increased lev-
els of choline-containing compounds, taurine, lactate, and alanine in small intestinal neuroendocrine tumors 
by metabolomics analysis, and these metabolites could act as biomarkers, which are of great significance for 
the development of new targeted therapies in the  future12. Transcriptomics uses high-throughput sequencing 
methods to study all mRNAs transcribed in specific cells, tissues or individuals at a specific time and state from 
the overall level, which can reveal differences in gene expression and structure in different functional states, 
and elucidate molecular  mechanisms13,14. Transcriptomics analysis of breast tumors by Jun Wang et al. found 
that in estrogen receptor (+) breast cancer patients, larger body size was associated with upregulation of genes 
related to the tumor necrosis factor-α/mediated nuclear factor kappa B signaling pathway. In estrogen receptor 
(−) breast cancer patients, larger body size was additionally associated with downregulation in genes involved 
in interferon α and interferon γ immune response and phosphatidylinositol 3-kinase/AKT/mammalian target 
of rapamycin  signaling15. Abel Sousa et al. described the differences between sexes in gastric or thyroid normal 
and tumor tissues in detail by transcriptomics. They found hundreds of sex-biased genes and the peroxisome 
proliferator-activated receptor signaling pathway was found in normal gastric and thyroid tissues. The abun-
dance of specific sex-biased genes, especially with incidences of overexpression in females, revealed molecular 
differences and commonalities between sexes, providing new insights into the potential differential risks of 
these  cancers16. In particular, Shancheng Ren et al. discovered metabolic pathway alterations in prostate cancer 
by combining metabolomics and transcriptomics, and found abnormal expression of cysteine and methionine 
metabolism, nicotinamide adenine dinucleotide metabolism and hexosamine biosynthesis. In addition, the 
metabolite sphingosine exhibited high specificity and sensitivity in distinguishing prostate cancer from benign 
prostatic hyperplasia, promoting the development of new diagnostic biomarkers and therapeutic targets, which 
will help to distinguish prostate cancer from benign prostatic  hyperplasia17. Therefore, the combined analysis 
of metabolomics and transcriptomics has important application value in HR-NB and with this method, altered 
metabolic pathways and diagnostic biomarkers in HR-NB can be unearthed in order to establish early diagnosis 
models and new therapeutic targets for HR-NB.

In this study, a metabolomic analysis of a total of 96 plasma clinical samples and 55 clinical NB tissue samples 
was conducted, and metabolomics data and transcriptomics data was combined to implement a comprehensive 
network analysis of NB in order to explore the abnormal pathways of HR-NB and build an early diagnostic model 
based on candidate biomarkers. The innovation of this work is summarized as follows: (1) By systematic jointing 
analysis, the transcriptional and metabolic differences between LIR-NB and HR-NB was assessed to uncover the 
dysregulated network of HR-NB. (2) A noninvasive plasma-based HR-NB risk classification diagnostic model was 
established using reverse transcription chain reaction (RT-PCR) based approaches. The novel discovery of the 
HR-NB dysregulation network and NB risk classification diagnostic model is expected to have crucial implica-
tions for the robust risk rating of HR-NB and development of a targeted therapy in the future.

Methods and materials
Moral approval
After obtaining approval from the Ethics Committee of Henan Children’s Hospital (Approval Number: 2019-H-
K11), plasma samples, tissue samples, and relevant clinical data were obtained from patients undergoing surgery 
at Henan Children’s Hospital. Informed consent was obtained from the patients for all samples. All methods 
were performed in accordance with relevant guidelines and regulations.

Sample collection
A total of 96 plasma (58 cases of HR-NB, 38 cases of LIR-NB) samples and 55 NB tissue samples (32 cases of 
HR-NB, 23 cases of LIR-NB) were collected and processed at the Henan Children’s Hospital from October 2018 
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to January 2022. Inclusion criteria consisted of: (1) confirmed diagnosis of pathological NB; (2) the risk grade 
was clinically assessed based on COG classification; (3) informed consent was signed by children or their par-
ents. Exclusion criteria consisted of: (1) complications of other diseases; (2) informed consent was not signed 
by children or their parents. Plasma samples were obtained from fasting plasma of NB patients on the morning 
of surgery and immediately frozen in a −80 °C refrigerator for metabolomics analysis. NB tissue samples were 
obtained from the patient’s surgically resected tumor tissue and stored directly in liquid nitrogen for transcrip-
tomic analysis. Tables S1 and S2 showed that there were no significant differences in age and gross tumor volume 
between HR-NB and LIR-NB whereas the tumor metastasis condition, MYCN amplification, and radiological 
risk factors were significantly different between HR-NB and LIR-NB samples.

Metabolomics analysis via high performance liquid chromatography‑mass spectrometry 
(HPLC–MS)
The plasma samples were taken from −80 °C storage and immediately thawed in a 4 °C refrigerator. After 10 s of 
vortexing, 150 μL plasma was added to a 1.5 mL microcentrifuge tube and 450 μL acetonitrile was added at 4 ℃. 
After 5 min of vortexing at 3000 r/min followed by centrifugation at 13,000 r/min for 15 min (4 ℃), 300 μL super-
natant was carefully extracted. Quality control (QC) samples were prepared by mixing equal amounts of superna-
tant from all samples and were used to evaluate the stability of the overall experimental results. All of the extracts 
were analyzed using an Agilent 6210 time-of-flight MS system with an Agilent 1100 HPLC, a photodiode array 
detector, a high-resolution-time-of-flight-MS with an electrospray ionization source and an Agilent workstation. 
The chromatographic separation was performed on an Agilent Poroshell 120 EC‐C18 (2.7 μm, 3.0 × 100 mm) 
column. Metabolomics data were collected as follows: mobile phase: A = 0.1% formic acid water, B = 0.1% formic 
acid acetonitrile, elution conditions: 0–3 min, 5–60% B; 3–25 min, 60–90% B; 25–30 min, 90–100% B; 30–40 min, 
100% B. Settings consisted of an injection volume of 10 μL, a column temperature of 30 °C and the flow rate of 
0.3 mL/min. Mass spectrometry (MS) negative and positive mode conditions: nitrogen as drying gas, nitrogen 
temperature 325℃, flow rate 12 L/min, atomization pressure 35 psi; capillary voltage: positive mode 4,000 V, 
negative mode 3,500 V; fragmentation voltage: positive mode 215 V, negative mode 175 V, separator voltage 60 V; 
mass acquisition range: all the negative modes were 0.05–1.5 KDa. The samples were analyzed by HPLC–MS to 
obtain the original data files. Agilent Masshunter HPLC–MS software was used to convert the original data files 
into a common format. Based on R language platform, XCMS software package was used to conduct retention 
time (RT) calibration, peak recognition, noise filtering and peak matching for the obtained .mzData format 
files, and to set the allowable deviation of mass charge ratio and RT (mass/charge ratio tolerance = 0.025DA, RT 
tolerance = 0.5 min). The metabolites with RT deviation of 0.5 min and mass number deviation of 0.025 Da were 
considered to be the same metabolites. Finally, the data matrix containing mass/charge ratio, RT, peak area and 
other information were obtained. Metabolites were identified using both primary and secondary MS techniques. 
Firstly, the acquired primary MS information was subjected to targeted secondary MS analysis to obtain second-
ary MS information and provide a reference for subsequent qualitative analysis. Next, according to the precise 
mass number of excimer ions such as  [M+H]+ions and the high-resolution target MS/MS spectrum, combined 
with the fragmentation laws of various metabolites, and through the online database METLIN (http:// metlin. 
scrip ps. edu/), HMDB (http:// hmdb. ca/) retrieval and literature retrieval methods, analysis and derivation of the 
possible structure of differential metabolites, get the information of candidate metabolites. The metabolomics 
analysis, partial least-squares discrimination analysis (PLS-DA), heatmap, volcano map, enrichment analysis, 
pathway analysis and biomarkers, were conducted by the MetaboAnalyst (https:// www. metab oanal yst. ca/ Metab 
oAnal yst/ home. xhtml).

Transcriptomics detection through RNA‑sequencing (RNA‑seq) analysis
Total RNA was extracted using TRIzol reagent according to the manufacturer’s protocol. RNA purity and quan-
tification were evaluated using the NanoDrop 2000 spectrophotometer (Thermo Scientific, USA). RNA integrity 
was assessed using the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). The libraries were 
constructed using TruSeq Stranded mRNA LT Sample Prep Kit (Illumina, San Diego, CA, USA) according to 
the manufacturer’s instructions. The transcriptome sequencing and analysis were conducted by OE Biotech Co., 
Ltd. (Shanghai, China). The libraries were sequenced on an Illumina HiSeq X Ten platform and 150 bp paired-
end reads were generated. About 48.349 M raw reads for each sample were generated. Raw data (raw reads) of 
fastq format were firstly processed using  Trimmomatic18 and the low quality reads were removed to obtain clean 
reads. Around 47.459 M clean reads for each sample were retained for subsequent analyses. The clean reads were 
mapped to the human genome (GRCh38) using  HISAT219. Fragments per kilobase of exon model per million 
mapped fragments (FPKM)20 of each gene was calculated using  Cufflinks21 and the read counts of each gene 
were obtained by HTSeq-count22. Differential expression analysis was performed using the DESeq (2012) R 
 package23. P value < 0.05 and |log2(fold change)|> 1 were set as the threshold for significantly differential expres-
sion. Hierarchical cluster analysis of differentially expressed genes was performed to demonstrate the expression 
pattern of genes in different groups and samples. Open database sources, including the Gene Ontology (GO), 
Kyoto Encyclopedia of Genes and Genomes (KEGG)24–26, MetaboAnalyst, Human Metabolome Database and 
National Center for Biotechnology Information were used to identify metabolic pathways.

Joint analysis of the metabolomics and transcriptomics
Finally, comprehensive transcriptomics and metabolomics analyses were performed using the MetaboAnalyst 5.0. 
The joint-pathway analysis module was selected to perform topological analysis by entering official gene symbols 
and compound names with optional fold changes to assess the potential importance of individual molecules (i.e., 
nodes) according to their position in the network.

http://metlin.scripps.edu/
http://metlin.scripps.edu/
http://hmdb.ca/
https://www.metaboanalyst.ca/MetaboAnalyst/home.xhtml
https://www.metaboanalyst.ca/MetaboAnalyst/home.xhtml
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Detection the HR‑NB plasma potential biomarkers using quantitative PCR based approach
The 24 differential genes were selected as potential candidate biomarkers based on transcriptomics results and 
literature. Corresponding primers for the differential genes were designed through the website of the National 
Center for Biotechnology Information (www. ncbi. nlm. nih. gov). Quantitative PCR (qPCR) was performed using 
the HiScript III All-in-one RT SuperMix kit and AceQ qPCR SYBR Green Master Mix kit (Vazyme, Nanjing) 
based on kit instructions. The housekeeping gene NAGK was selected as an internal control for mRNA abun-
dance. Fold changes in the levels of target gene mRNA were determined using the formula  2−ΔΔCt.

Develop the risk diagnostic model of NB using qPCR based approach
Logistic regression analysis was used to establish a regression equation for the test set (27 cases of HR-NB, 18 
cases of LIR-NB) and validated against the validation set (15 cases of HR-NB, 15 cases of LIR-NB). SPSS software 
version 21.0 (IBM Corp., Armonk, New York) was used for data processing and GraphPad Prism 8.0 (GraphPad 
Software Inc., San Diego, USA) was used for mapping.

Results and discussion
The general idea of this research is shown in Fig. 1. Metabolomics analysis was performed on 96 plasma samples 
(58 cases of HR-NB, 38 cases of LIR-NB) and transcriptomics analysis was performed on 55 NB tissue samples 
(32 cases of HR-NB, 23 cases of LIR-NB). By integrating metabolomics and transcriptomics data, using PLS-DA, 
heatmap, enrichment analysis, pathway analysis and other methods for analysis and processing, the abnormal 
pathway network of HR-NB was comprehensively analyzed and potential clinical therapeutic targets were discov-
ered. Finally, a diagnostic model was established, which is expected to be used for the early diagnosis of HR-NB.

The Metabolome differences between HR‑NB and LIR‑NB
To explore the differences in metabolites among HR-NB, IR-NB and LR-NB, plasma metabolomics analysis was 
first conducted using a non-targeted metabolomics-based approach. The PCA plot demonstrates the strong 
clustering of QC samples in both positive and negative modes, providing evidence for the robustness of our 
findings (Fig. S1). In order to comprehensively understand the metabolomics of NB with different risk levels, 
the PLS-DA among HR-NB, IR-NB and LR-NB was conducted. As shown in Fig. S2, the IR-NB group and the 
LR-NB group were clustered together and were situated far away from the HR-NB group, indicating that the 
LR-NB and IR-NB groups were closely related. However, the plasma metabolites in the IR-NB and LR-NB groups 
were significantly different from the HR-NB metabolites both in positive mode and negative mode, consistent 
with the clinical trend of high 5-year survival rates in children with LIR-NB3–5. Therefore, in order to better 
distinguish HR-NB, IR-NB, and LR-NB, IR-NB and LR-NB were merged into one group (LIR-NB). Following, 
the differences between LIR-NB and HR-NB metabolites were systematically studied.

In order to intuitively express metabolomic differences between LIR-NB and HR-NB, cluster analysis on the 
plasma metabolites of NB was conducted based on the correlation of compounds and presented in the form of 
a heatmap (Figure S3), illustrating the differences between the two groups. In order to understand the metabo-
lomics of HR-NB and LIR-NB, the PLS-DA among HR-NB and LIR-NB was conducted first. In positive mode, 
cumulative  R2Y was at 0.722 and  Q2 was at 0.575 (Fig. 2A) and in negative mode, cumulative  R2Y was at 0.705 
and  Q2 was at 0.506 (Fig. 2B), indicating that the model had excellent predictive ability. Volcano plots show the 
metabolites in the HR-NB and LIR-NB groups in positive and negative modes (Fig. 2C,D). Plasma metabolites 
with fold change > 1.5 and P < 0.05 in the volcano plot were identified as differential metabolites. Therefore, a 
total of 31 metabolites changed significantly in positive mode, including 21 up-regulated and 10 down-regulated 

Figure 1.  Outline of research method. Metabolomics analysis was performed on plasma samples and 
transcriptomics analysis was performed on NB tissue samples. By integrating metabolomics and transcriptomics 
data, the abnormal pathway network of HR-NB was analyzed and potential clinical therapeutic targets were 
discovered. Finally, a diagnostic model was established.

http://www.ncbi.nlm.nih.gov
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Figure 2.  Plasma metabolomics between HR-NB and LIR-NB. (A) Comparison of orthographic projections 
of HR-NB and LIR-NB in PLS-DA 3D plot in positive mode. (B) Comparison of orthographic projections of 
HR-NB and LIR-NB in PLS-DA 3D plot in negative mode. (C) Volcano plot of metabolite of HR-NB vs. LIR-NB 
in positive mode. (D) Volcano plot of metabolite of HR-NB vs. LIR-NB in negative mode. (E) The heatmap 
shows clear distinction of metabolites between HR-NB and LIR-NB patients in positive mode. (F) The heatmap 
shows clear distinction of metabolites between HR-NB and LIR-NB patients in negative mode. (MetaboAnalyst 
5.0, https:// www. metab oanal yst. ca/).

https://www.metaboanalyst.ca/
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Table 1.  Differential expressed metabolites in HR-NB vs. LIR-NB in positive mode.

No Metabolites Mass-to-charge ratio
Retention
Time (min) VIP value Fold change P value

Regu-
lation

1 PS(18:0/0:0) 525.3083 20.78 2.607 0.628 0.0001 Down

2 Trimethylammonioacetate 117.0791 2.81 1.3698 0.849 0.021126 Down

3 3-(2-Furanyl)-2-propenal 122.037 3.35 1.3439 0.792 0.023772 Down

4 cis-2-Thujen-4-ol 152.1191 26.12 1.3984 0.764 0.018509 Down

5 Carnitine 161.1053 2.79 1.9086 0.767 0.0011229 Down

6 Succinylmonocholine 203.1159 3.31 1.6842 0.792 0.0042874 Down

7 Pentyl heptanoate 217.2041 8.87 1.3124 0.748 0.027357 Down

8 Isoamyl p-anisate 222.12305 9.2 1.7266 0.615 0.0033729 Down

9 Butyl butyryllactate 238.1182 8.49 1.5043 0.720 0.011094 Down

10 Palmitic amide 255.2563 21.09 1.3249 0.896 0.0427 Down

11 3-(L-Menthoxy)-2-methylpropane-1,2-diol 261.2304 8.91 1.1789 0.827 0.048038 Down

12 C16 Sphinganine 273.2669 10.25 1.4175 0.851 0.009 Down

13 Stearamide 283.2876 25.49 1.7714 0.818 0.0038 Down

14 Tetradecyl isobutyrate 284.2715 28.65 1.2142 0.803 0.041598 Down

15 ( ±)-Octanoylcarnitine 287.2095 9.2 1.0738 0.740 0.0312 Down

16 Linoleamide 301.238 19.7 1.48 0.688 0.0046 Down

17 Enigmol 301.2982 11.44 1.471 0.798 0.01308 Down

18 (E,E)-3,7,11-Trimethyl-2,6,10- dodecatrienyl heptanoate 334.287 20.48 1.4235 1.725 0.0174 Up

19 Dodecanoylcarnitine 343.27205 10.84 1.6161 0.602 0.0009 Down

20 Eicosanoyl-EA 355.3448 14.04 1.2037 0.748 0.043433 Down

21 11,12-Dimethylrosmanol 374.2091 9.6 1.9813 0.394 0.0006997 Down

22 Lys Thr Ile Glu 511.25995 9.42 1.7111 0.547 0.0036836 Down

23 PC(18:3(6Z,9Z,12Z)/0:0) 517.3162 12.06 1.4293 1.773 0.033 Up

24 LysoPC(18:2(9Z,12Z)) 519.33215 12.86 2.0851 0.822 0.000344 Down

25 LysoPC(18:1(11Z)) 521.3478 14.4 1.6576 0.847 0.0065 Down

26 LysoPC(0:0/18:0) 523.3635 16.44 1.3481 0.891 0.023323 Down

27 LysoPC(22:6(4Z,7Z,
10Z,13Z,16Z,19Z)) 567.3319 12.82 1.4776 0.763 0.012665 Down

28 PA(18:4(6Z,9Z,12Z,
15Z)/13:0) 626.3955 20.09 1.4303 0.706 0.015919 Down

29 DG(14:1(9Z)/22:3
(10Z,13Z,16Z)/0:0)[iso2] 638.4879 38.39 1.6086 0.549 0.0083 Down

30 SM(d18:2/14:0) 672.5197 26.36 2.1955 0.424  < 0.0001 Down

31 SM(d16:1/16:0) 674.5355 29.47 2.4822 0.408  < 0.0001 Down

Table 2.  Differential expressed metabolites in HR-NB vs. LIR-NB in negative mode.

NO Metabolites Mass-to-charge ratio Retention time (min) VIP value Fold Change P value Regu-lation

1 2-Hydroxyhexadecanoic 
acid 272.23615 20.27 1.4007 0.733 0.0492 Down

2 Stearic acid 284.2728 28.83 1.8609 0.920 0.023 Down

3 PE(20:2(11Z,14Z)/0:0) 505.3176 12.9 1.6675 0.885 0.0447 Down

4 Glu Gly Ile Pro Pro 511.2616 9.53 2.0426 0.622 0.0050 Down

5 LysoPE(22:5(7Z,10Z,
13Z,16Z,19Z)/0:0) 527.302 13.82 1.4399 1.306 0.0390 Up

6 Glu His His Ser 554.2058 25.96 2.7679 2.076 0.0004 Up

7 Thr Cys Glu Pro Ile 561.2453 8.75 2.0784 0.458 0.0037 Down

8 Leu Met Trp Met 579.2559 8.73 1.8149 0.401 0.0263 Down

9 Ile Arg Asn Trp 587.3225 12 1.9417 1.468 0.0427 Up

10 Trp Arg Arg Pro 613.338 12.81 2.0587 0.780 0.0181 Down

11 PG(P-16:0/12:0) 650.4494 23.25 1.1894 0.886 0.0307 Down

12 Met Arg Trp Trp 677.31265 13.52 2.1581 0.758 0.0343 Down

13 1’-Hydroxy-γ-carotene 
glucoside 762.506 20.83 2.1192 2.182 0.0041 Up
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metabolites (Table 1). In negative mode, 13 differential compounds were identified, including 4 up-regulated 
compounds and 9 down-regulated compounds (Table 2). According to the differential metabolite results, the 
expression of phospholipids, amino acids and carnitine was significantly altered in HR-NB. Phospholipids play 
an important role in the composition and determination of biophysical properties of biological membranes, 
including their mobility, cell signaling, cell–cell interactions in tissues, and molecular  transport27,28. Therefore, we 
believed that phospholipids played an important role in the development of HR-NB due to the marked alteration 
of phospholipids. Lysophosphatidylcholine (LPC) has been found to be a biomarker for several tumors, including 
prostate and lung cancer. LPC has also been associated with inflammation, oxidative stress, insulin resistance, 
apoptosis, lipid remodeling and signal transduction lipogenesis, which is consistent with our metabolomic find-
ings of LPC alterations, thus we suggested that LPC played an important role in HR-NB29–33. Furthermore, in 
order to further visualize the differential metabolites, heatmaps of differential compounds were drawn according 
to the correlation of differential compounds (Fig. 2E,F). The heatmap shows the up-regulation of compounds 
such as LysoPc(0:0/18:0) and the down-regulation of metabolites such as SM(d18:2/14:0), indicating that these 
compounds have a certain correlation to HR-NB. Hence, a total of 44 differential metabolites were found in 
metabolomics, demonstrating the significant differences between HR-NB and LIR-NB.

The altered pathways and biomarkers between HR‑NB and LIR‑NB
In order to discover abnormal metabolic pathways based on the discovery of abnormal metabolites, enrichment 
analysis and pathway analysis were conducted. According to the 44 most altered metabolites, the mitochondrial 
β-oxidation of long chain saturated fatty acids, β-oxidation of very long chain fatty acids, betaine metabolism, 
carnitine synthesis, oxidation of branched chain fatty acids, plasmalogen synthesis, mitochondrial β-oxidation of 
short chain saturated fatty acids, methionine metabolism, fatty acid metabolism and glycine and serine metabo-
lism were enriched in the enrichment analysis (Fig. 3A). Recent studies have identified fatty acid oxidation (FAO) 

Figure 3.  Altered pathways and biomarkers in metabolomics. (A) Enrichment analysis of differential 
metabolism reveals various metabolic changes. (B) Pathway analysis reveals significant abnormalities in the 
pathway. (C) ROC curves and boxplots of metabolic biomarker SM (d16:1/16:0). (D) ROC curves and boxplots 
of metabolic biomarker SM (d18:2/14:0).
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as an important source of metabolites that promote cancer growth, showing high activity in various cancers 
such as breast cancer, glioma, ovarian cancer, which is consistent with the results of our enrichment analysis, 
FAO is also significantly altered in HR-NB, indicating the important role of FAO in HR-NB34–37. Interestingly, 
it has been shown that the activation of FAO can protect cancer cells from effects such as glucose deprivation 
and hypoxia whereas most cancer cells use glycolysis as the main energy source, therefore we deemed that the 
glycolysis in HR-NB activated FAO and affected the metabolic pathway of HR-NB. In order to further search for 
potential abnormal metabolic pathways and visualize the results, pathway analysis was performed. Mitochondrial 
β-oxidation of long-chain saturated fatty acids, β-oxidation of very long chain fatty acids, plasmalogen synthe-
sis, betaine metabolism, oxidation of branched chain fatty acids and methionine metabolism were significantly 
changed in the pathway analysis (Fig. 3B). Therefore, 10 significantly altered metabolic pathways were identified 
by enrichment analysis and 6 significantly altered metabolic pathways were identified by pathway analysis, which 
are helpful to understand the abnormality of NB pathway network.

To explore the plasma biomarkers of HR-NB in metabolomics and provide a non-invasive strategy for NB 
risk classification, receiver operating characteristic (ROC) curves of differential metabolites were analyzed. The 
iconic biomarkers SM (d16:1/16:0) and SM (d18:2/14:0) were found (Fig. 3C,D). Other biomarkers are shown 
in Fig. S4, Table S3. Area under curve (AUC) of the ROC for all biomarkers were > 0.7, indicating that these 
metabolites may be potential biomarkers of HR-NB. Both SM (d16:1/16:0) and SM (d18:2/14:0) belong to the 
sphingolipids, a class of lipids that are expressed in all eukaryotic cells. They are relatively abundant in neuronal 
tissue cells, enriched in the plasma membrane of cells, and more strongly enriched in certain plasma membrane 
structural domains, such as the myelin sheath of oligodendrocytes or the parietal membrane of  enterocytes38. In 
addition, they play a signaling role in many cellular functions, such as growth, cell cycle progression, differentia-
tion and  apoptosis39,40. Therefore, we inferred that alterations in sphingolipid content were associated with the 
development of NB and might be a valid biomarker for NB. Hence, 10 altered metabolic pathways were found 
in the enrichment analysis, 6 altered metabolic pathways were found in the pathway analysis, and 7 biomark-
ers were found by the biomarker analysis. These findings are helpful to understanding the abnormality of NB 
pathway network and targeted therapy.

Transcriptomics analysis uncovers the abnormal expression gene between HR‑NB and LIR‑NB
To further analyze the differences between HR-NB and LIR-NB, transcriptomics differences between 32 HR-NB 
tissues and 23 LIR-NB tissues were investigated. The detailed results of total RNA concentration,  A260/A280,  A260/
A230, 28S/18S and RNA integrity number of the extracted samples are shown in Table S4. The RNA integrity 
number values extracted in this study were all greater than 7. The pre-processing results of sequencing data 
quality showed that the RawBases values of each sample ranged from 6.49 to 7.76 G, the CleanBases values 
ranged from 6.00 to 7.22 G, and the percentage of Q30 bases in each sample ranged from 92.59 to 95.18%. The 
GC content of each sample ranged from 44.29 to 50.53% (Table S5). Combining with FPKM (Figure S5) and the 
total number of mRNAs detected in the samples (Figure S6), the RNA quality of both groups met the standard 
and could be used for subsequent analysis.

In order to visually express the transcriptomics differences between LIR-NB and HR-NB, the tissue RNA 
of NB was clustered based on RNA correlation and presented it in the form of a heatmap (Fig. S7), illustrating 
the obvious differences between the two groups. NB tissue RNAs with P < 0.05 and |log2(fold change)|> 1 in the 
volcano plot (Fig. 4A) were identified as differential genes. A total of 1,408 differential genes were found, includ-
ing 1,116 for the number of up-regulated genes and 292 for the number of down-regulated genes (Fig. 4B). The 
top 20 up-regulated and down-regulated genes in HR-NB and LIR-NB tissues are shown in Tables 3 and 4. It 
has been suggested that in FABP4-mediated macrophages can promote the proliferation and migratory pheno-
type of NB cells by inactivating the NF-κB-IL1α pathway through ubiquitination of ATPB, which increases the 
migration, invasion and tumor growth of NB  cells41 and in turn, is consistent with our results where the level 
of FABP4 increased 14.238-fold. Therefore, we surmised that highly expressed FABP4 may be associated with 
the risk of NB. In addition, the study by Zhu, Y et al. found that the expression level of UNC5D in the LR-NB 
group was significantly higher than that in the HR-NB group, suggesting that a high level of UNC5D expres-
sion was significantly associated with a good  prognosis42, which was consistent with our results where UNC5D 
expression exhibited a significantly different fold change of 0.281. Therefore, we thought that low expression of 
UNC5D might be significantly associated with aggressive tumor behavior. The top 100 differential genes were 
displayed by a cluster analysis heatmap (Fig. 4C), which was used to more intuitively distinguish the differences 
between HR-NB and LIR-NB, indicating that there were significant differences between the two groups. RT-PCR 
is a standard method for measuring gene expression due to its high sensitivity and convenience for validating 
RNA-seq results. Eleven of our selected differential genes were validated by RT-PCR. The RT-PCR results were 
consistent with transcriptomic results, illustrating the reliability of our transcriptomics results (Fig. 4D). There-
fore, 1,408 significantly different genes were found between HR-NB and LIR-NB by transcriptomics, illustrating 
the differences between the two groups and the results were validated by RT-PCR.

KEGG and GO analysis between HR‑NB and LIR‑NB in transcriptomics
To discover abnormal pathways on the basis of differential genes, GO analysis and KEGG analysis were per-
formed. GO annotation analysis of the obtained differential genes was performed to analyze the metabolic 
pathways in which the genes are located to determine their possible biological functions. The GO enrichment 
analysis top 30 bar chart shown in Fig. 5A. GO classification bar chart is shown in the Figure S8A. Regarding bio-
logical processes, the top three regulated expression were extracellular matrix organization, chemokine-mediated 
signaling pathway, neutrophil chemotaxis. Regarding cellular component, the top three significantly regulated 
expressions were extracellular space, extracellular region, extracellular matrix. Regarding molecular function, 
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the top three significantly up-regulated expressions were chemokine activity, extracellular matrix structural 
constituent, CCR chemokine receptor binding. In addition, KEGG analysis (Figs. 5B, S8B) was performed and 
cytokine receptor interaction was found to be the most altered pathway, with 69 mRNAs enriched. Cytokines 
act by binding to specific receptors in the plasma membrane of target cells. The exploration of cytokine receptor 
interaction is important for understanding the pathogenesis of various human diseases, especially cancers, as well 
as for identifying potential therapeutic targets. In this study, it was confirmed that cytokine receptor interaction 
plays an important role in HR-NB. Therefore, more research on cytokine receptor interaction provides a new 
perspective to understand the molecular mechanism of HR-NB. Relationships between differential genes were 
visualized by protein–protein interaction circle diagrams (Figure S9), illustrating the close connection between 
genes such as HBB, HBD, HBA1, HBG2, etc. Therefore, the complex pathways in the transcriptomics between 
HR-NB and LIR-NB were excavated by GO analysis and KEGG analysis, such as glycan biosynthesis and metabo-
lism and lipid metabolism, which provided experimental support for the subsequent targeted therapy of NB.

Integrated transcriptomics and metabolomics analyses between HR‑NB and LIR‑NB
In order to facilitate the systematic study of NB by linking important metabolites and genes through shared meta-
bolic pathways, joint-pathway analysis was used. Nine significantly altered pathways were revealed by integrated 
analysis of transcriptomics and metabolomics data (Table 5). These altered pathways can be visualized in Fig. 6A, 
which includes glycerolipid metabolism, retinol metabolism, arginine biosynthesis and linoleic acid metabolism 
with P-values < 0.05 and impact ≥ 0.5, indicating that dysregulation of these pathways may lead to increased 
COG grading in NB. The differentially expressed genes associated with these pathways are shown in Table 6.

According to the results of the joint analysis, three pathways were found to be of interest: glycine, serine and 
threonine metabolism; glycolysis or gluconeogenesis and glycerolipid metabolism, each of which with significant 
differences in gene expression. In the network diagram of glycine, serine and threonine metabolism (Fig. 6B), 
the expression of GXT, ALAS2, AOC3, BHMT, CHDH and SDS were up-regulated in HR-NB compared to LIR-
NB, which was consistent with metabolomic results (decreased levels of glycine and threonine and marked 

Figure 4.  Tumor tissue transcriptomics and validation between HR-NB and LIR-NB. (A) The volcano plot 
shows differentially expressed genes across transcriptomics. Red represents up-regulated mRNAs, green 
represents down-regulated mRNAs, and gray represents mRNAs with no change in expression. (B) Differentially 
expressed genes of HR-NB compared to LIR-NB in tumor tissues. (C) The heatmap shows segregation of 
HR-NB and LIR-NB based on mRNA profile. (oebiotech, https:// cloud. oebio tech. com/ task/) (D) Expression 
trends of genes in RT-PCR are consistent with transcriptomics results. 1 to 11 represent: FABP4, CXCL9, 
MFAP4, CD3, IL-10, CDK2, CIP2A, CHL1, TCF7L2, UNC5D, ERBB3. 

https://cloud.oebiotech.com/task/
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Table 3.  The top 20 genes significantly up-regulated in HR-NB vs. LIR-NB.

No Gene Description Fold Change P value

1 H4C3 H4 clustered histone 3 30.916 3.43E−08

2 THRSP Thyroid hormone responsive 25.793 1.70E−09

3 TRARG1 Trafficking regulator of GLUT4 (SLC2A4) 1 21.326 3.84E−06

4 CYP21A2 Cytochrome P450 family 21
Subfamily A member 2 20.358 7.25E−10

5 CIDEC Cell death inducing DFFA like effector c 18.992 6.04E−07

6 DES Desmin 18.251 5.47E−12

7 DPT Dermatopontin 18.023 6.90E−12

8 S100A12 S100 calcium binding protein A12 17.576 2.00E−11

9 H1-4 H1.4 linker histone, cluster member 17.292 1.23E−07

10 DLK1 Delta like non-canonical Notch ligand 1 16.116 2.76E−10

11 MRAP Melanocortin 2 receptor accessory protein 15.255 4.62E−07

12 PLIN1 Perilipin 1 15.235 2.36E−08

13 NTS Neurotensin 15.205 3.23E−08

14 GPD1 Glycerol-3-phosphate dehydrogenase 1 14.816 7.06E−10

15 FABP4 Fatty acid binding protein 4 14.238 3.53E−10

16 SFRP2 Secreted frizzled related protein 2 13.779 3.78E−09

17 PRG2 Proteoglycan 2, pro eosinophil
major basic protein 13.389 1.36E−10

18 FAM166B Family with sequence
Similarity 166 member B 11.802 2.98E−09

19 HBB Hemoglobin subunit beta 10.902 2.01E−11

20 MGST1 Microsomal glutathione S-transferase 1 10.654 4.85E−08

Table 4.  The top 20 genes significantly down-regulated in HR-NB vs. LIR-NB.

No Gene Description Fold change P value

1 TMEM163 Transmembrane protein 163 0.281 2.66E−06

2 UNC5D unc-5 netrin receptor D 0.281 0.000631

3 VWDE von Willebrand factor D
and EGF domains 0.280 0.000974

4 ZCCHC12 Zinc finger CCHC-type containing 12 0.270 0.000174

5 SLC5A7 Solute carrier family 5 member 7 0.263 0.001530

6 GRIN3A glutamate ionotropic receptor
NMDA type subunit 3A 0.263 0.000867

7 TPBGL Trophoblast glycoprotein like 0.254 2.42E−08

8 GFAP Glial fibrillary acidic protein 0.250 0.002749

9 SST somatostatin 0.249 0.001242

10 CDH10 Cadherin 10 0.236 0.000629

11 HTR1B 5-Hydroxytryptamine receptor 1B 0.222 0.000863

12 SPHKAP SPHK1 interactor, AKAP
domain containing 0.220 5.53E−05

13 LRRTM3 Leucine rich repeat
Transmembrane neuronal 3 0.193 7.60E−05

14 UPP2 Uridine phosphorylase 2 0.193 6.05E−08

15 UTS2 Urotensin 2 0.168 3.07E−05

16 DPP10 Dipeptidyl peptidase like 10 0.128 6.47E−06

17 UCN3 Urocortin 3 0.118 3.34E−07

18 ADCYAP1 Adenylate cyclase activating
Polypeptide 1 0.112 1.04E−06

19 GRP Gastrin releasing peptide 0.084 5.88E−06

20 CGA Glycoprotein hormones,
Alpha polypeptide 0.062 4.93E−09
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alterations in amino acid metabolism), but inconsistent in terms of serine (increased levels of serine). Glycine, 
serine and threonine are important precursors for protein, nucleic acid and lipid synthesis and participate in 
carbohydrate metabolism pathways. Glycolysis provides 3-phosphoglycerate to promote serine biosynthesis. 
Serine can be interconverted with glycine through serine hydroxymethyltransferase and excess serine biosyn-
thesis drives tumorigenesis. Therefore we theorized that the activation of HR-NB glycolysis may promote serine 
synthesis whereas the interconversion of serine and threonine may cause glycine, serine, and threonine results to 
vary  inconsistently43–47. In the glycerolipid metabolism pathway (Fig. 6C), the expressions of AGPAT2, DGAT2, 
DGKB, GPAM and PNPLA2 were affected. Glycerolipid, an abundant cellular lipid with physiological roles in 
energy metabolism and membrane structure, is synthesized by modifying the 3-phosphoglycerol backbone 
through acylation and dephosphorylation  reactions48–50. GPAT, AGPAT, and DGAT  are key genes in this path-
way by regulating the glycerol-3-phosphate pathway to control intracellular glycerolipid levels enzymes. Studies 
have shown that overexpression of GPAT3 leads to increased formation of triacylglycerols, and AGPAT-2 is also 
overexpressed in various cancers where specific inhibition of AGPAT can induce apoptosis in cancer  cells51,52. 
These studies are consistent with the increased expression of GPAT, AGPAT, and DGAT  genes in joint pathway 

Figure 5.  GO and KEGG analysis between HR-NB and LIR-NB in transcriptomics. (A) GO analysis of 
biological processes, cellular components and molecular functions of up- and down-regulated genes. (B) Bubble 
chart of the KEGG pathways (top 20) that differentially expressed genes significantly involved in. The dot color 
represents the p-value and the dot size represents the number of differential genes.



12

Vol:.(1234567890)

Scientific Reports |        (2023) 13:16991  | https://doi.org/10.1038/s41598-023-43988-w

www.nature.com/scientificreports/

analysis. Therefore, changes in lipid metabolism are closely related to NB and glyceride metabolism may be an 
important pathway for the development of HR-NB. Finally, the expression of FBP1, HK2, PCK1 was up-regulated 
and the expression of PKLR was down-regulated in the altered glycolysis or gluconeogenesis pathway (Fig. 6D). 
In contrast to normal cells relying on mitochondrial oxidative phosphorylation to release energy, most cancer 
cells use glycolysis as their primary energy source, which produces ATP faster than oxidative phosphorylation to 
power rapid cell  division53. This is consistent with our results, indicating the abnormality of glycolysis in HR-NB. 

Table 5.  Joint analysis pathways of differential metabolites and genes.

No Pathway name Match status P value Impact

1 Nitrogen metabolism 4/10 0.000899 0.22222

2 Glycerolipid metabolism 7/35 0.001183 0.5

3 Retinol metabolism 8/47 0.001603 0.58696

4 Drug metabolism—other enzymes 10/70 0.00172 0.31884

5 Neomycin, kanamycin and
gentamicin biosynthesis 2/4 0.013268 0.66667

6 Glycolysis or Gluconeogenesis 7/61 0.026867 0.23333

7 Arginine biosynthesis 4/27 0.039573 0.5

8 Glycine, serine and threonine metabolism 7/68 0.045145 0.47761

9 Linoleic acid metabolism 3/17 0.046638 0.625

Figure 6.  Integrated transcriptomics and metabolomics analyses of NB metabolic pathways. (A) Joint-pathway 
analysis of differential genes and differential metabolism. (B) The glycine, serine and threonine metabolism 
pathway, (C) the glycerolipid metabolism pathway and (D) the glycolysis or gluconeogenesis pathway with 
altered significantly genes in HR-NB compared to LIR-NB. Significant overexpression in red, significant 
downexpression in green.
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Therefore, these abnormally expressed genes may be used as targets for clinical therapy of NB. Other altered 
pathways are shown in Figure S10. Nine abnormal pathways were found through combined metabolomics and 
transcriptomics analysis and three interesting pathways were further mined and speculated to play a role in 
expanding the scope of targeted therapy.

Classification of NB with selected transcriptome candidate biomarkers
Currently, the risk stratification methods for HR-NB are intricate, clinical presentations are atypical, imaging 
examinations pose diagnostic challenges, and histological diagnosis remains controversial. HR-NB necessitates 
comprehensive evaluation involving imaging studies, pathology assessments and other investigations, resulting 
in the majority of cases being detected at advanced stages. In order to improve the low rate of early diagnosis 
of HR-NB, a more efficient early diagnostic model was established as a supplement to existing early diagnostic 
methods. The 24 candidate genes screened according to the results of transcriptomics and literature were analyzed 
by RT-PCR in order to find biomarkers that could be used for diagnosis (Table S6). The results for individual 
candidate genes were calculated using Eq.  2−ΔΔCt and the sensitivity and specificity were further calculated. How-
ever, the results showed that the areas under the ROC curve of the S100A9, CDK2 and UNC5D were 0.685, 0.564 
and 0.809, respectively, indicating that the detection performance of individual biomarkers was limited (Figure 
S11). Therefore, a diagnostic model combining the three biomarkers was established and the regression equation 
of the diagnostic model Y = 1.495 − 0.510 X1 (S100A9) − 0.713 X2 (CDK2) + 0.647 X3 (UNC5D) was obtained by 
logistic regression analysis. In the validation set, the sensitivity and specificity of the diagnostic model were 80% 
and 80%, respectively, the cutoff value was 0.025 (Fig. 7A) and the AUC of the ROC was 0.836, indicating the 
effectiveness of the diagnostic model (Fig. 7B). In addition, a close association between these 3 genes and NB 
was also found. Overexpression of S100A9 enhanced the proliferation, migration and invasion of NB  cells54–57, 
suggesting that S100A9 may be involved in the development of NB  tumors58. In this study, S100A9 increased 

Table 6.  Related differentially expressed genes by joint-pathway analysis.

Gene Enriched pathway Function

ADH1A Retinol metabolism, Glycolysis
or Gluconeogenesis Alcohol dehydrogenase 1A (class I), alpha polypeptide

AGPAT1 Glycerolipid metabolism 1-Acylglycerol-3-phosphate O-acyltransferase 2

AGXT Glycine, serine and threonine metabolism Alanine–glyoxylate and serine–pyruvate aminotransferase

ALAS2 Glycine, serine and threonine metabolism 5′-Aminolevulinate synthase 2

AOC3 Glycine, serine and threonine metabolism Amine oxidase copper containing 3

AOX1 Retinol metabolism Aldehyde oxidase 1

ARG1 Arginine biosynthesis Arginase 1

ASS1 Arginine biosynthesis Argininosuccinate synthase 1

BHMT Glycine, serine and threonine metabolism Betaine–homocysteine S-Methyltransferase

CA1 Nitrogen metabolism Carbonic anhydrase 1

CDK2 Glycolysis or Gluconeogenesis Cyclin dependent kinase 2

CHDH Glycine, serine and threonine metabolism Choline dehydrogenase

CYP1A1 Retinol metabolism Cytochrome P450 family 1 subfamily A member 1

CYP2J2 Linoleic acid metabolism Cytochrome P450 family 2 subfamily J member 2

CYP3A4 Retinol metabolism,
Linoleic acid metabolism Cytochrome P450 family 3 subfamily A member 4

DGAT2 Glycerolipid metabolism Diacylglycerol O-acyltransferase 2

DGKB Glycerolipid metabolism Diacylglycerol kinase beta

DHRS9 Retinol metabolism Dehydrogenase/reductase 9

FBP1 Glycolysis or Gluconeogenesis Fructose-bisphosphatase 1

GPAM Glycerolipid metabolism Glycerol-3-phosphate acyltransferase, mitochondrial

HK2 Glycolysis or Gluconeogenesis Hexokinase 2

HSD17B6 Retinol metabolism Hydroxysteroid 17-beta dehydrogenase 6

LRAT Retinol metabolism Lecithin retinol acyltransferase

NOS1 Arginine biosynthesis Nitric oxide synthase 1

OTC Arginine biosynthesis Ornithine transcarbamylase

PCK1 Glycolysis or Gluconeogenesis Phosphoenolpyruvate carboxykinase 1

PKLR Glycolysis or Gluconeogenesis Pyruvate kinase L/R

PLA2G2C Linoleic acid metabolism Phospholipase A2 group IIC

PNPLA2 Glycerolipid metabolism Patatin like phospholipase domain containing 2

S100A9 Arginine biosynthesis S100 calcium binding protein A9

SDS Glycine, serine and threonine metabolism Serine dehydratase

UNC5D Glycolysis or Gluconeogenesis unc-5 netrin receptor D
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7.23-fold in RNA-seq, therefore the high expression of S100A9 may be related to the risk classification of NB. 
The CDK2 gene encodes a member of the serine/threonine protein kinase family of proteins that can regulate cell 
cycle  progression59,60, which is consistent with our results of altered glycine, serine and threonine metabolism. 
Zhu et al. found that the expression level of UNC5D mRNA in the LR-NB group was significantly higher than 
that in the HR-NB group, suggesting that high levels of UNC5D expression were significantly associated with a 
good  prognosis42. Our results are consistent with their study, showing that UNC5D expression was decreased 
in the HR-NB group and increased in the LIR-NB group. It has also been indicated that low UNC5D expression 
was significantly associated with aggressive tumor behavior and overexpression of UNC5D significantly inhibited 
malignant cell behavior, including cell proliferation and migration as well as tumor  growth61. Therefore, S100A9, 
CDK2 and UNC5D are viable biomarkers that can be utilized in combination as an early diagnostic model for 
predicting the plasma risk classification of NB. This approach holds promise for non-invasive, low-cost detec-
tion of NB at an early stage.

Conclusions
In this study, 96 clinical plasma samples and 55 clinical NB tissue samples were analyzed and 1,408 differential 
genes and 44 differential metabolites were identified. The metabolomics and transcriptomics characteristics of 
HR-NB patients were demonstrated and a comprehensive network analysis was carried out. Compared with LIR-
NB, HR-NB showed significant differences in glycerolipid metabolism, retinol metabolism, arginine biosynthesis 
and linoleic acid metabolism. The combination of S100A9, CDK2 and UNC5D was subsequently selected as the 
risk stratification early diagnostic model for HR-NB. The area under the ROC was 0.837 and the sensitivity and 
specificity were both 80.0%, indiciated that the diagnostic model could be used for early diagnosis of HR-NB and 
can be therapeutic targets in the future. In summary, the dysregulated network was examined by joint analysis 
of metabolomics and transcriptomics and a diagnostic model for HR-NB was developed.

Data availability
We have submitted the raw RNA-seq data to NCBI (https:// www. ncbi. nlm. nih. gov/ sra) under the accession 
number PRJNA884866. Besides, we have uploaded mass spectrometry data to the MetaboLights (https:// www. 
ebi. ac. uk/ metab oligh ts/) with the number of MTBLS6359.
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