Skip to main content
. 2023 Oct 9;13:17001. doi: 10.1038/s41598-023-42203-0

Table 5.

Accuracy, precision, recall, and F1 score of tested models for AKI prediction.

AKI prediction
Model Accuracy (%) Precision (%) Recall (%) F1 score
FTTransformer31 82.12 51.37 39.59 0.4156
TabTransformer30 84.39 56.91 61.20 0.5890
TabNet40 82.05 45.37 14.40 0.2071
XGBoost32 88.05 68.40 64.79 0.6653
LightGBM33 87.91 75.75 50.80 0.6053
CatBoost34 87.17 67.79 57.20 0.6200
Random forest39 86.15 69.79 43.20 0.5334
Logistic regression 81.97 51.73 21.19 0.3001
XGBoost with22 tunning 83.07 54.35 42.79 0.4777
Random forest with22 tunning 83.29 58.35 31.60 0.4090

Significant values are in bold.