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a b s t r a c t 

This dataset presents global soil organic carbon stocks in 

mangrove forests at 30 m resolution, predicted for 2020. We 

used spatiotemporal ensemble machine learning to produce 

predictions of soil organic carbon content and bulk density 

(BD) to 1 m soil depth, which were then aggregated to 

calculate soil organic carbon stocks. This was done by using 

training data points of both SOC (%) and BD in mangroves 

from a global dataset and from recently published studies, 

and globally consistent predictive covariate layers. A total 

of 10,331 soil samples were validated to have SOC (%) 

measurements and were used for predictive soil mapping. 

We used time-series remote sensing data specific to time 

periods when the training data were sampled, as well as 

long-term (static) layers to train an ensemble of machine 

learning model. Ensemble models were used to improve 
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performance, robustness and unbiasedness as opposed to 

just using one learner. In addition, we performed spatial 

cross-validation by using spatial blocking of training data 

points to assess model performance. We predicted SOC 

stocks for the 2020 time period and applied them to a 2020 

mangrove extent map, presenting both mean predictions and 

prediction intervals to represent the uncertainty around our 

predictions. Predictions are available for download under 

CC-BY license from 10.5281/zenodo.7729491 and also as 

Cloud-Optimized GeoTIFFs (global mosaics). 

© 2023 Published by Elsevier Inc. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

, 
Specifications Table 

Subject Agricultural Sciences (Soil Science), Environmental Science, Computer Science 

(Computer Science Applications) 

Specific subject area Soil carbon in mangroves, remote sensing signal processing, spatiotemporal 

machine-learning modeling 

Type of data Raster data (TIF files) 

Code files 

How the data were acquired Training data was compiled from published sources 

USGS Earth Resources Observation and Science (EROS): Analysis Ready Data 

Landsat bands (Blue, Green, Red, NIR, SWIR1, SWIR2) 

Climatologies at high resolution for the earth’s land surface areas (CHELSEA): 

precipitation, mean, min. and max. air temperature 

NASA Moderate Resolution Imaging Spectroradiometer (MODIS): land surface 

temperature and enhanced vegetation index 

MERIT digital elevation model: elevation 

EC JRC/Google: global surface water probability 

Data format Processed 

Description of data collection Training data were based on a previous dataset [1] , and recent publications 

[2–6] . For predictions, we used a number of covariate layers: 

• Time-series 20 0 0–2020: ARD Landsat bands [7] , derived vegetation indices

CHELSA images (precipitation, mean, min. and max. air temperature [8] ), 

MODIS LST (1km) and EVI (250m) 

• Static layers: MERIT DEM elevation [9] , global surface water probability 

[10] , long-term climatic variables, global composites of Landsat bands [11] 

Data source location Global, using a recent 2020 mangrove extent map [12] . This represents a total 

mangrove extent of 147,359 km 

2 ranging from 39 degrees South to 33 degrees 

North 

ARD Landsat bands: https://glad.umd.edu/ard/home 

CHELSEA images: https://chelsa-climate.org/ 

MODIS LST: https://modis.gsfc.nasa.gov/data/dataprod/mod11.php 

MODIS EVI: https://modis.gsfc.nasa.gov/data/dataprod/mod13.php 

MERIT DEM: http://hydro.iis.u-tokyo.ac.jp/ ∼yamadai/MERIT _ Hydro/ 

Global surface water: https://global- surface- water.appspot.com/ 

Long-term climatic variables and global composites of Landsat bands: 

https://storage.googleapis.com/earthenginepartners- hansen/GFC- 2022- v1.10/ 

download.html 

Data accessibility The predicted soil organic carbon maps at 30m resolution and their upper and 

lower prediction intervals can be found in the following repository [13] : 

Repository name: Zenodo 

Data identification number: 10.5281/zenodo.7729492 

Direct URL to data: https://doi.org/10.5281/zenodo.7729491 

( continued on next page ) 

https://doi.org/10.5281/zenodo.7729491
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https://global-surface-water.appspot.com/
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Detailed code associated with the data analysis is available from the Github 

repository https://github.com/OpenGeoHub/spatial-prediction-eml/ , which is 

archived in the following repository [14] : 

Repository name: Zenodo 

Data identification number: 10.5281/zenodo.5894924 

Direct URL to data: https://zenodo.org/record/5894924 

1. Value of the Data 

• The map provides global soil organic carbon stock estimates for mangroves, using refined

statistical methods such as spatiotemporal ensemble machine learning 

• The map can support research on changes in soil organic carbon stocks over time, can guide

restoration and protection effort s, and can be used to inform Nationally Determined Contri-

butions as defined by the Paris Agreement under the United Nations Framework Convention

on Climate Change (UNFCCC). It can also be used to compare soil organic carbon stocks be-

tween different coastal typologies, marine ecoregions of the world, or other administrative

units (i.e. countries, protected areas, etc.) 

• The methodology and code can be reproduced to calculate soil organic carbon stocks in other

ecosystems or local scale analyses 

2. Objective 

The main objective of this dataset was to improve the previously produced map of soil or-

ganic carbon (SOC) in mangroves at 30m resolution [1] by using more training data points, map-

ping to an updated mangrove 2020 extent layer [12] instead of the 20 0 0 extent layer, and im-

plementing improved statistical methods. More specifically, we used spatiotemporal (time-series

images + long-term layers + soil depth as predictors) Ensemble Machine Learning (EML). We

selected EML as it is less prone to overfitting and extrapolation problems, as opposed to using

one learner such as Random Forest. We modeled SOC content (%) and bulk density separately,

which were then aggregated to SOC density and to fixed depths. Additionally, we used spatial

cross-validation instead of random cross-validation methods, as this has been shown to more

accurately assess models’ predictive performance in spatial modeling. 

3. Data Description 

Predictions are provided in the “mangroves_tiles_SOC_predictions_2020.zip” folder in a tiled 

format. Each tile is named according to its geographic location (i.e. 089E_21N corresponds to

89E to 90E, 21N to 22N). The “tile_mangroves_typology_v3_modis_sinu.gpkg” file contains the

tile locations, and the “mangroves_typology_v3_cog.tif” file contains the mangrove extent into

which predictions were made [12] . 

The data presented in each tile are maps of predicted soil organic carbon (%), bulk density (g

cm 

-3 ), and soil organic carbon stocks (tonnes per hectare, hereafter referred to as megagrams C

per hectare) in mangroves at 30 m resolution, predicted for the soil horizon 0–100 cm ( Table 1 ).

There are three stock maps, which are GeoTIFF raster files: the mean prediction, the lower pre-

diction interval and the upper prediction interval, to indicate modeling uncertainty around pre-

dicted values. We estimated prediction intervals using the 95 % probability lower and upper

ranges. 

Detailed code associated with the data analysis is available from the Github repository ( https:

//github.com/OpenGeoHub/spatial- prediction- eml/ ), allowing for predictions to be reproduced.

The corresponding code file for this analysis “spatiotemporal-soc.Rmd” is located in the main

Github repository folder. 

https://github.com/OpenGeoHub/spatial-prediction-eml/
https://doi.org/10.5281/zenodo.5894924
https://zenodo.org/record/5894924
https://github.com/OpenGeoHub/spatial-prediction-eml/
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Table 1 

Files located in each tile of the “mangroves_tiles_SOC_predictions_2020.zip” folder, corresponding to global maps of 

SOC in mangroves to 1m depth at 30m resolution, for the most recent predicted time period (2020-2021). 

File description File name 

Predicted SOC content (%) for 

0–100 cm 

sol_soc.wpct_mangroves.typology_m_30m_s0..100cm_2020_global_v1.1.tif 

Predicted bulk density (g cm-3) for 

0–100cm 

sol_db.od_mangroves.typology_m_30m_s0..100cm_2020_global_v0.1.tif 

Predicted mean SOC stocks 

(Mg ha-1) for 0–100 cm 

sol_soc.tha_mangroves.typology_m_30m_s0..100cm_2020_global_v0.1.tif 

Lower 95% probability prediction 

interval of predicted SOC stocks 

(Mg ha-1) for 0–100 cm 

sol_soc.tha_mangroves.typology_l.std_30m_s0..100cm_2020_global_v0.1.tif 

Upper 95% probability prediction 

interval of predicted SOC stocks 

(Mg ha-1) for 0–100 cm 

sol_soc.tha_mangroves.typology_u.std_30m_s0..100cm_2020_global_v0.1.tif 

Fig. 1. Global distribution of mangrove soil organic carbon stocks (metric tons SOC per hectare) predicted in 2020 for 

the top meter of soil (pixel ∼ 10 0 0 0 km 

2 ), and detailed maps (30 m resolution) for selected regions of the world: (A) 

Sundarbans along the India/Bangladesh border, (B) Bahía de los Muertos, Pacific coast of Panama, (C) southwest coast of 

Papua, Indonesia, (D) Hinchinbrook Island, Queensland, Australia, (E) Ambaro Bay, Madagascar, and (F) Guinea-Bissau and 

Guinea along the West African coast. In the top panel, data presented as mean stock (Mg C ha −1 ) for mangrove forest 

area only within each pixel. In the bottom panel, red crosses represent training data from both mangrove sampling and 

from complementary sources used to help map the transition zones. 
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4. Experimental Design, Materials and Methods 

4.1. Training data 

We used a compilation of soil samples analyzed in the laboratory and digitized primarily

from peer-reviewed literature. The original set from Sanderman et al. 2018 [15] was extended

with additional samples collated from more recent literature sources [2–6] . We also incorporated

some points in non-mangrove areas, to help model transition zones from mangroves to non-

mangrove areas ( Fig. 1 ) ( Fig. 2 ). 

Fig. 2. Global distribution of mangrove training data points from all sources falling into mangrove tiles, used to model

SOC. From all samples, a total of 10,331 samples (3299 unique locations) had measurements of SOC. 

4.2. Spatial modeling of soil organic carbon stocks 

To produce a reliable estimate of global SOC stock in mangroves and also to map their distri-

bution, we used spatiotemporal EML [14] . We used an approach where SOC (g kg −1 ) and BD

were predicted independently as a function of depth ( d ) and spatially explicit temporal and

static covariate layers (X p ), then aggregated to derive SOC stocks [16] : 

OC pred 

[
g kg −1 

]
= d + X 1 ( x, y ) + X 2 ( x, y ) + .... X p ( x, y ) 

BD pred 

[
g cm 

−3 
]

= d + X 1 ( x, y ) + X 2 ( x, y ) + .... X p ( x, y ) 

SOC stock Mg ha −1 = OC pred 

[
g kg −1 

] ∗10 ∗ BD pred 

[
g cm 

−3 
] ∗horizon thickness [ cm ] ∗

100 
[
Mg ha −1 / g cm 

−2 
]

where xyd are the 3D coordinates: latitude and longitude in decimal degrees and soil depth

(measured to the center of a horizon). By including depth in the model, this avoided the need

to extrapolate training points to a 1 m depth. 

To integrate time for the spatiotemporal modeling, we divided the training data points into

five time periods (2002 = 2000–2003, 2006 = 2004–2007, 2010 = 2008–2011, 2014 = 2012–

2015, 2018 = 2016–2019, 2020 = 2020–2021), and used time-series from these periods for the

predictive modeling, along with the same long-term (static) variables for all periods. Thus, the

model is trained using data points from all time periods and their corresponding time-series

data, improving overall accuracy for the most recent 2020 soil carbon map presented here.

We see from Fig. 3 that there are enough points spread over time for spatiotemporal mapping

of SOC. 
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Fig. 3. Distribution of training points through time. This figure compares SOC content data in mangroves from the 

mangrove database [1] and the recently compiled data [2–6] , as well as data used to help model the transition zones 

(CSIRO_NatSoil from [17] , and PRONASOLOS from [18] ). 
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Finally, we used EML by combining predictions from three learners using the mlr R package

19] . For EML the modeling algorithm becomes secondary, so that the final model is less prone

o overfitting and extrapolation problems, as opposed to using one learner such as a Random

orest. 

.3. Covariate layers 

The spatially explicit temporal and static covariate layers (X p ) we used to predict soil organic

arbon include: 

• Globally consistent time-series 20 0 0–2020 ARD Landsat bands (Blue, Green, Red, NIR,

SWIR1, SWIR2) [7] , aggregated and gap-filled to produce complete consistent lower quantiles

(P25 = lower 0.25 probability) [9] , 

• Time-series of CHELSA images representing climate precipitation, mean, minimum and max-

imum air temperature [8] , 

• MODIS LST (1km) and EVI (250m) monthly time-series (covering 20 0 0–2020 period) gener-

ated using aggregation, 
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• Number of static (long-term) layers including MERIT DEM elevation [9] , global surface water

probability [10] , long-term climatic variables, and global composites of Landsat bands from

2010, 2014 and 2018 [11] . 

In addition to original Landsat bands, we also used the Landsat Enhanced Vegetation Index

(EVI) that can be derived from Landsat data. The Landsat bands and derivatives are available at

30-m spatial resolution, while the 250m and 1km resolution images had to be downscaled to

30-m spatial resolution (here we used GDAL and cubic-spline downscaling). 

4.4. Model validation 

To account for spatial clustering of training data points in the model cross-validation, we

validated the machine learning models using spatial blocks so that a subset of points was either

used for training or cross-validation (CV). To do so, we used the mlr R package [19] and a spatial

block ID. This led to a drop of the R-squared of the model, from 0.82 (using random CV) to 0.44

(using spatial CV), but reduced overfitting the training points ( Figs. 4 and 5 ). 
Fig. 4. Accuracy plot for soil organic carbon fitted using Ensemble Machine Learning (EML). 
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Fig. 5. Variable importance for 3D prediction model for SOC based on random forest. SW2 = Short wave infrared, 

ARD = analysis ready data [7] , B N = band number N , nbr2 = Normalized Burn Ratio 2, ndmi = Normalized Difference 

Moisture Index, CLM LST daytime p95 = climate land surface temperature of the 95th quantile probability of daytime. 

Processing of the Landsat time-series of images is described in [20] . 
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.5. Producing predictions of SOC and BD 

Once we fitted independent models for SOC and BD, we generated predictions for all time-

eriods and for standard depths (0, 30, 60, 100 cm), within the 2020 global mangrove extent

ap at 30 m resolution [12] . We aggregated these predictions to calculate SOC stocks for the

orizon 0-100 cm. The maps in this dataset include the mean predictions, as well as the lower

rediction interval and the upper prediction interval, to indicate modeling uncertainty around

redicted values. We used two standard deviations to estimate prediction intervals so these are

he 95 % probability intervals. 

Based on spatiotemporal prediction of SOC stocks, we estimated that the global SOC stocks

or world mangrove forests in 2020 are, on average, about 350 MgC/ha for 0–100 cm depth (67 %

rob. interval: 232–470 MgC/ha) i.e. about 4.6 gigatonnes (67 % prob. interval: 3.1–6.2). 

thics Statements 

The authors declare that the hereby presented data and data article fully comply with the

ournal’s policy in terms of authors’ duties, data integrity, and experimental requirements. 

ata Availability 

Global mangrove soil carbon data set at 30 m resolution for year 2020 (0-100 cm)

Original data) (Zenodo). 

https://zenodo.org/record/7729492


T.L. Maxwell, T. Hengl and L.L. Parente et al. / Data in Brief 50 (2023) 109621 9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CRediT Author Statement 

Tania L. Maxwell: Writing – original draft, Data curation; Tomislav Hengl: Data curation, 

Methodology, Software, Validation, Visualization, Writing – review & editing; Leandro L. Par- 

ente: Data curation, Methodology, Software, Validation; Robert Minarik: Visualization, Writing –

review & editing; Thomas A. Worthington: Writing – review & editing; Pete Bunting: Method-

ology, Writing – review & editing; Lindsey S. Smart: Data curation, Writing – review & editing;

Mark D. Spalding: Supervision, Writing – review & editing; Emily Landis: Supervision, Funding 

acquisition, Writing – review & editing. 

Funding 

This work has received funding from the Global Mangrove Alliance . Global Mangrove Alliance

is currently coordinated by the following members: Conservation International, The Interna-

tional Union for the Conservation of Nature, The Nature Conservancy, Wetlands International

and World Wildlife Fund. 

Acknowledgments 

We thank all contributors to the previous soil organic carbon map in mangroves and collated

the training data points: Jonathan Sanderman, Greg Fiske, Kylen Solvik, Maria Fernanda Adame,

Lisa Benson, Jacob J Bukoski, Paul Carnell, Miguel Cifuentes-Jara, Daniel Donato, Clare Duncan,

Ebrahem M Eid, Philine zu Ermgassen, Carolyn J Ewers Lewis, Peter I Macreadie, Leah Glass,

Selena Gress, Sunny L Jardine, Trevor G Jones, Eugéne Ndemem Nsombo, Md Mizanur Rahman,

and Christian J Sanders. We also thank all authors from studies from which we collected the

recent training data points. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial interests or personal rela-

tionships that could have appeared to influence the work reported in this paper. 

References 

[1] J. Sanderman, Global Mangrove Soil Carbon: Dataset and Spatial Maps, 2019, doi: 10.7910/DVN/OCYUIT . 

[2] S. Conrad, D.R. Brown, P.G. Alvarez, B. Bates, N. Ibrahim, A. Reid, L.S. Monteiro, D.A. Silva, L.T. Mamo, J.R. Bowtell,
H.A. Lin, N.L. Tolentino, C.J. Sanders, Does regional development influence sedimentary blue carbon stocks? A case

study from three Australian Estuaries, Front. Mar. Sci. 5 (2019) 518, doi: 10.3389/fmars.2018.00518 . 
[3] C.Ewers Lewis, P. Carnell, P. Macreadie, Victoria Coastal Blue Carbon Sediment Dataset, 2020, doi: 10.7910/DVN/

6PFBO0 . 
[4] C. Fu, Y. Li, L. Zeng, H. Zhang, C. Tu, Q. Zhou, K. Xiong, J. Wu, C.M. Duarte, P. Christie, Y. Luo, Stocks and losses of

soil organic carbon from Chinese vegetated coastal habitats, Glob. Change Biol. 27 (2021) 202–214, doi: 10.1111/gcb.

15348 . 
[5] N.S. Khan, C.H. Vane, S.E. Engelhart, C. Kendrick, B.P. Horton, The application of δ13C, TOC and C/N geochemistry of

mangrove sediments to reconstruct Holocene paleoenvironments and relative sea levels, Puerto Rico, Marine Geol.
415 (2019) 105963, doi: 10.1016/j.margeo.2019.105963 . 

[6] L. Schile, J.B. Kauffman, J.P. Megonigal, J. Fourqurean, S. Crooks, Abu Dhabi Blue Carbon Project, 2016, doi: 10.15146/
R3K59Z . 

[7] P. Potapov, M.C. Hansen, I. Kommareddy, A. Kommareddy, S. Turubanova, A. Pickens, B. Adusei, A. Tyukavina,

Q. Ying, Landsat analysis ready data for global land cover and land cover change mapping, Remote Sens. 12 (2020)
426, doi: 10.3390/rs12030426 . 

[8] D.N. Karger, O. Conrad, J. Böhner, T. Kawohl, H. Kreft, R.W. Soria-Auza, N.E. Zimmermann, H.P. Linder, M. Kessler,
Climatologies at high resolution for the earth’s land surface areas, Sci. Data 4 (2017) 170122, doi: 10.1038/sdata.2017.

122 . 

https://www.mangrovealliance.org
https://doi.org/10.7910/DVN/OCYUIT
https://doi.org/10.3389/fmars.2018.00518
https://doi.org/10.7910/DVN/6PFBO0
https://doi.org/10.1111/gcb.15348
https://doi.org/10.1016/j.margeo.2019.105963
https://doi.org/10.15146/R3K59Z
https://doi.org/10.3390/rs12030426
https://doi.org/10.1038/sdata.2017.122


10 T.L. Maxwell, T. Hengl and L.L. Parente et al. / Data in Brief 50 (2023) 109621 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

 

[9] D. Yamazaki, D. Ikeshima, J. Sosa, P.D. Bates, G.H. Allen, T.M. Pavelsky, MERIT Hydro: a high-resolution global

hydrography map based on latest topography dataset, Water Resour. Res. 55 (2019) 5053–5073, doi: 10.1029/
2019WR024873 . 

[10] J.-F. Pekel, A. Cottam, N. Gorelick, A.S. Belward, High-resolution mapping of global surface water and its long-term

changes, Nature 540 (2016) 418–422, doi: 10.1038/nature20584 . 
[11] M.C. Hansen, P.V. Potapov, R. Moore, M. Hancher, S.A. Turubanova, A. Tyukavina, D. Thau, S.V. Stehman, S.J. Goetz,

T.R. Loveland, A. Kommareddy, A. Egorov, L. Chini, C.O. Justice, J.R.G. Townshend, High-resolution global maps of
21st-century forest cover change, Science 342 (2013) 850–853, doi: 10.1126/science.1244693 . 

[12] P. Bunting, A. Rosenqvist, L. Hilarides, R.M. Lucas, N. Thomas, T. Tadono, T.A. Worthington, M. Spalding, N.J. Murray,
L.-M. Rebelo, Global mangrove extent change 1996–2020: global mangrove watch version 3.0, Remote Sens. 14

(2022) 3657, doi: 10.3390/rs14153657 . 

[13] T. Hengl, T. Maxwell, L. Parente, Global mangrove soil carbon data set at 30 m resolution for year 2020 (0-100 cm),
Zenodo (2023), doi: 10.5281/zenodo.7729492 . 

[14] T. Hengl, L. Parente, C. Bonannella, Spatial and spatiotemporal interpolation /prediction using ensemble machine
learning, Zenodo (2022), doi: 10.5281/zenodo.5894924 . 

[15] J. Sanderman, T. Hengl, G. Fiske, K. Solvik, M.F. Adame, L. Benson, J.J. Bukoski, P. Carnell, M. Cifuentes-Jara, D. Do-
nato, C. Duncan, E.M. Eid, P. zu Ermgassen, C.J.E. Lewis, P.I. Macreadie, L. Glass, S. Gress, S.L. Jardine, T.G. Jones,

E.N. Nsombo, M.M. Rahman, C.J. Sanders, M. Spalding, E. Landis, A global map of mangrove forest soil carbon at 30
m spatial resolution, Environ. Res. Lett. 13 (2018), doi: 10.1088/1748-9326/aabe1c . 

[16] T. Hengl, R.A. MacMillan, Predictive Soil Mapping with R, OpenGeoHub Foundation, Wageningen, the Netherlands,

2019 http://soilmapper.org (Accessed 3 November 2022) . 
[17] CSIROCSIRO National Soil Site Database, 2020, doi: 10.25919/5EEB2A56EAC12 . 

[18] J.C. Polidoro, M.R. Coelho, A. de Carvalho Filho, J.F. Lumbreras, A.P. de Oliveira, G.de M. Vasques, C.G.do N. Macario,
D.de C. Victoria, S.B. Bhering, P.L. de Freitas, C.F. Quartaroli, M.de L. Mendonça Santos, Programa Nacional de Lev-

antamento e Interpretação de Solos do Brasil (PronaSolos): Diretrizes Para Implementação, Embrapa Solos, Rio de
Janeiro, 2021 http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1135056 . 

[19] B. Bischl, M. Lang, L. Kotthoff, J. Schiffner, J. Richter, E. Studerus, G. Casalicchio, Z.M. Jones, mlr: machine learning

in R, J. Mach. Learn Res. 17 (2016) 5938–5942 . 
20] M. Witjes, L. Parente, C.J. van Diemen, T. Hengl, M. Landa, L. Brodský, L. Halounova, J. Križan, L. Antoni ́c, C.M. Ilie,

V. Craciunescu, M. Kilibarda, O. Antonijevi ́c, L. Glušica, A spatiotemporal ensemble machine learning framework
for generating land use/land cover time-series maps for Europe (20 0 0–2019) based on LUCAS, CORINE and GLAD

Landsat, PeerJ 10 (2022) e13573, doi: 10.7717/peerj.13573 . 

https://doi.org/10.1029/2019WR024873
https://doi.org/10.1038/nature20584
https://doi.org/10.1126/science.1244693
https://doi.org/10.3390/rs14153657
https://doi.org/10.5281/zenodo.7729492
https://doi.org/10.5281/zenodo.5894924
https://doi.org/10.1088/1748-9326/aabe1c
http://www.soilmapper.org
https://doi.org/10.25919/5EEB2A56EAC12
http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1135056
http://refhub.elsevier.com/S2352-3409(23)00706-0/sbref0019
https://doi.org/10.7717/peerj.13573

	Global mangrove soil organic carbon stocks dataset at 30 m resolution for the year 2020 based on spatiotemporal predictive machine learning
	1 Value of the Data
	2 Objective
	3 Data Description
	4 Experimental Design, Materials and Methods
	4.1 Training data
	4.2 Spatial modeling of soil organic carbon stocks
	4.3 Covariate layers
	4.4 Model validation
	4.5 Producing predictions of SOC and BD

	Ethics Statements
	Data Availability
	CRediT Author Statement
	Funding
	Acknowledgments
	Declaration of Competing Interest

	References

