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a b s t r a c t 

Wastewater-based epidemiology has emerged as a viable tool for monitoring disease prevalence 

in a population. This paper details a time series machine learning (TSML) method for predicting 

COVID-19 cases from wastewater and environmental variables. The TSML method utilizes a num- 

ber of techniques to create an interpretable, hypothesis-driven framework for machine learning 

that can handle different nowcast and forecast lengths. Some of the techniques employed include: 

• Feature engineering to construct interpretable features, like site-specific lead times, hypoth- 

esized to be potential predictors of COVID-19 cases. 

• Feature selection to identify features with the best predictive performance for the tasks of 

nowcasting and forecasting. 

• Prequential evaluation to prevent data leakage while evaluating the performance of the ma- 

chine learning algorithm. 
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Method details 

Introduction 

Wastewater-based epidemiology (WBE) is a relatively quick, cost-effective, and unobtrusive tool for monitoring infections, such 

as Coronavirus disease 2019 (COVID-19), in a population using wastewater data. Although much of the focus has been on devel-

oping methods for accurate forecasts, creating interpretable models for epidemiologists is also important. Parametric time series 

models, such as auto-regressive integrated moving average with exogenous variables (ARIMAX) models, are widely considered to 

be interpretable. ARIMAX models have a rich history steeped in rigorous statistical theory which has made them a popular choice

for forecasting. Parametric time series models, however, have drawbacks for wastewater data. First, these models require data to

be collected at regular, evenly spaced intervals. In practice, wastewater data is often collected multiple times within a week. Addi-

tionally, ARIMAX models involve strict stationarity assumptions which must be met, including that the mean and variance of the

response remain constant over time. ARIMAX models also rely on the use of cross-correlation functions (CCF) to determine lagged

predictors. Determining predictors based upon correlation metrics makes intuitive sense, provided that the observed correlation is 

not spurious. Dean and Dunsmuir [ 1 ] point out that pairs of autocorrelated series, such as COVID case numbers and observed viral

load in wastewater, can exhibit spurious correlations. Additionally, variable selection for ARIMAX models can be sensitive to the 

presence of multicollinearity [ 2 ]. 

Machine learning (ML) models have shown promise with forecasting and are flexible enough to handle complex and irregular

data. Despite these benefits, ML models are generally criticized for lacking interpretability. Feature selection is a process where a

subset of features with high performance accuracy are identified. This reduction of the feature pool can also aid in the interpretation

of ML models [ 3 ]. Traditionally, few ML methods for WBE systematically incorporate temporal feature selection into model selection.

Furthermore, many ML methods focus on short-term lengths, particularly one-step ahead forecasts. While these forecasts have merit, 

medium and long-term predictions can provide epidemiologists with enough time to prepare for potential public health challenges. 

The time series machine learning (TSML) method developed and illustrated in Lai et al. [ 4 ] is an interpretable, hypothesis-driven

framework for machine learning that can handle varied nowcast and forecast lengths ( Fig. 1 ). Expert knowledge is used to engineer

interpretable features hypothesized to be potential predictors of COVID-19 case data, such as site-specific lead times [ 5 ]. Feature

selection is then used to identify the features that have the best predictive performance for the tasks of nowcasting and forecasting.

The identified features are then used to create predictions for the desired window length and task. 

In Lai et al. [ 4 ], the gradient boosting machine (GBM, [ 6 ]) technique (available in the R package gbm [ 7 ]) is used to illustrate

the feature selection framework for TSML. In tree-based methods, the predictor space is split into distinct, non-overlapping regions.

To predict a new observation, the region which it belongs to is first identified, then the prediction is built from the mean or mode

of the training observations in that same region [ 8 ]. Gradient boosting builds an ensemble of decision trees by sequentially building

trees, correcting the performance of the previous tree [ 6,9 ]. While GBM is utilized in Lai et al. [ 4 ], other ML algorithms could be

substituted into the TSML approach. 

Lai et al. [ 4 ] contrasts the performance of TSML for predicting weekly COVID-19 cases from wastewater data using feature

selection compared to manual selection of features. In this manuscript, the TSML methodology is further validated by comparing

the performance to an ARIMAX model using data from Indiana, Pennsylvania. The purpose of this comparison is to characterize and

differentiate the TSML method from the ARIMAX method for monitoring infections using data from WBE. The Indiana data includes

cumulative weekly COVID-19 cases and the quantification of target genes indicative of the presence of SARS-CoV-2 in wastewater

samples at the Indiana Borough Regional Wastewater Treatment Facility for 119 weeks. Sampling took place from April, 2020 to

July, 2022. The training data consists of 96 weeks, while the testing data consists of 23 weeks. When investigating the performance

of time series models, it is important to have a baseline with which to evaluate predictions. The baseline is determined from the Naïve

model as shown in Fig. 2 [ 4 ]. The Naïve model uses the last available data point to form predictions. For short-term predictions, the

number of COVID-19 cases at time 𝑡 is used to predict the number of COVID-19 cases for the following week ( 𝑡 + 1 ) . For long-term

predictions, the number of COVID-19 cases at time 𝑡 is used to predict the number of COVID-19 cases eight weeks out ( 𝑡 + 8 ) . 
Fig. 1. Pictorial representation of the TSML method. 
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Fig. 2. Naïve predictions for COVID-19 case data. (a) Short-term naïve predictions. (b) Long-term naïve predictions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time series data considerations 

Analyzing and forecasting time series data requires careful consideration of the underlying temporal process. This is due to the

fact that the current value of a time series variable is often influenced by its past values. Because of this, traditional ML models

and validation techniques, which assume independence, are not well-suited for time series data. When developing robust time series 

models, it is crucial to consider the following factors. 

Stationarity 

Many statistical time series methods rely on a stationarity assumption where it is assumed that the statistical properties of a

temporal process, such as the mean, variance, and autocovariance, remain constant over time [ 10 ]. Violations of this assumption,

due to trends or seasonality, can impact model performance and interpretability. When dealing with a non-stationary temporal 

process, pre-processing techniques, such as differencing and transformations, can help to satisfy the assumptions of stationarity. 

However, it is likely that many temporal processes will remain non-stationary despite preprocessing techniques [ 11 ]. Furthermore, 

while differencing is well-studied for linear models, it is unclear whether differencing remains a good strategy in the presence of

nonlinearity [ 12 ]. 

While machine learning techniques do not necessarily rely on stationarity assumptions, many practitioners use pre-processing tech- 

niques, such as differencing, in an attempt to achieve stationarity. However, Selvam and Rajendran [ 13 ] found better performance for

time series forecasting using artificial neural networks (ANN) when features were engineered to capture trend compared to removing

the trend using a preprocessing step. The use of feature engineering to capture non-stationarity can improve interpretability. For in-

stance, seasonal variables might not be specifically identified if attempts to remove stationarity from the temporal process have been

undertaken. Furthermore, reversing the pre-processing steps used to create stationarity can make it difficult to interpret and visualize

forecasts, particularly when double differencing is involved. For these reasons, the TSML method accommodates non-stationarity 

instead of trying to eliminate it. The TSML approach involves engineering features such that the features capture characteristics such

as autocorrelation, seasonality, and trend. 

Forecasting versus nowcasting 

Depending on the availability and accuracy of clinical COVID-19 test data, the prediction task can be classified into two types:

forecasting and nowcasting ( Fig. 3 ). With forecasting, only past and present information from both exogenous variables (ex. viral

copies in wastewater data) and endogenous variables (ex. COVID-19 case data) are used to make future predictions. Forecasting is

of interest to an epidemiologist who wishes to use existing information through time 𝑡 to predict upcoming COVID-19 case metrics.

For nowcasting, information from exogenous features is available at future time points to help predict COVID-19 cases, but it is

assumed that case data in the future will not be available. Nowcasting is of interest to a public health official who would like to

predict upcoming COVID-19 case metrics assuming that viral load and environmental information will continue to be available each 

period beyond time 𝑡 , but that COVID-19 case metrics will cease to be available past some time point 𝑡 , such as when testing becomes

unavailable or is viewed as unreliable. 

Data leakage 

Data leakage occurs when information is available during model training and validation that would not be available under ordinary

prediction circumstances. Because training and validation contain more information than is given during the prediction stage, this 
3 
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Fig. 3. Forecasting and nowcasting COVID-19 infections with wastewater data. COVID-19 cases are represented by y t and the virus load in the 

wastewater samples are represented by x t (a) When forecasting, environmental variables are not known beyond x t . (b) For nowcasting, environmental 

variables are known for future time points. This is analogous to the situation where traditional COVID-19 testing stops, but wastewater testing 

continues. 

Table 1 

This table illustrates a toy time series 

consisting of values 1-10 and three en- 

gineered features, lag 1, lag 2, and lag 

3. The training set consists of values 

above the highlighted box while the 

test set consists of the last three val- 

ues inside the box. The values bolded 

in red illustrate instances of data leak- 

age since the values 8-10 would not 

be known in an actual predictive sce- 

nario. 

TS Lag 1 Lag 2 Lag 3 

 

 

 

 

 

 

can lead to overly optimistic estimates of model performance [ 14 ]. For time series data, this can be particularly difficult when it

comes to validation techniques. If not cautious, engineered features such as lagged values of the response variable can bleed into the

validation set, giving the validation set access to values of the response variable past the prediction point ( Table 1 ). 

Avoiding data leakage becomes even more complicated when developing a model that accommodates both forecasting and now- 

casting. With nowcasting, exogenous variables are still available past the prediction point, whereas with forecasting, exogenous 

variables are not available past the prediction point. Consequently, forecasting is susceptible to data leakage of exogenous variables.

However, some variables, particularly temporal variables like month, are always known past the prediction point. Overall, engineered 

features can be placed into three categories: (1) endogenous features that always need to be checked for data leakage, (2) exogenous

features that need to be checked for data leakage when forecasting, and (3) temporal features that are always available past the pre-

diction point. To prevent data leakage, every time the data is split for model training and validation, the features are reconstructed

to ensure features do not exhibit data leakage based on the specified validation window and prediction task ( Table 2 ). 
4 
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Table 2 

This table illustrates a toy time series consisting of values 1-10, the en- 

dogenous feature, Lag 1, the exogenous features, Predictor and Lag 1 

Predictor, and the temporal feature, month. The training set consists of 

values above the highlighted box while the test set is inside the box. The 

values bolded in blue (18-20) are available during nowcasting, but un- 

available during forecasting. If interest is in predictions for three months 

out, predictions would be made for the final line of the test set. 

TS Lag 1 Predictor Lag 1 Predictor month 

 

 

 

 

 

 

 

Temporal cross-validation 

Cross-validation is a popular technique used to evaluate the performance of machine learning algorithms. Traditional k-fold cross- 

validation assumes observations are independent, and this assumption is obviously suspect for temporal processes. Furthermore, 

in traditional cross-validation, the training data is shuffled and randomly divided into multiple folds, where each fold serves as a

validation set while the remaining folds are used for training. With time series data, this can lead to data leakage, where information

from future time points leaks into the training set. To avoid data leakage during cross-validation, observations in the training set

should precede observations in the test set. 

The TSML method uses a specialized time series validation technique, prequential evaluation, that preserves the temporal order 

of the data for model learning and validation [ 11 ]. For the prequential method, the training data is divided into 𝑘 blocks with order

preserved. For the first iteration, the first block is used for training while the second block is used for validation. For each iteration

thereafter, the new training set will encompass the training and validation set from the previous iteration, and the block following

the new training set will become the new validation set. This continues until the last iteration where block 𝑘 is used for validation

( Fig. 4 a). By using prequential evaluation, data leakage is avoided as the training set always precedes the test set ( Fig. 4 a). 
Fig. 4. Illustration of prequential evaluation with K = 4 blocks. Adapted from Cerqueira et al. [ 11 ]. (b) Short-term rolling predictions, predicting 

one week in advance. (c) Long-term rolling predictions, predicting 8 weeks in advance. Adapted from Hyndman and Athanasopoulos [ 15 ]. 

5 
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TSML method details 

The steps of the TSML framework are shown in Fig. 1 . Detailed steps are as follows: 

1. Split the data into a training and test set. 

1.1 Set aside the test set to evaluate final model performance. 

2. Engineer hypothesis-driven features. 

2.1 Use expert knowledge to identify features hypothesized to be potential predictors from the relevant variables collected. 

2.2 Consider short versus medium versus long-term features and the desired predictive task. 

2.3 Create/engineer desired endogenous, exogenous, and temporal features. 

2.4 Check endogenous features for data leakage. 

2.5 If forecasting, check exogenous features for data leakage. 

3. Use feature selection to identify those features from the candidate pool derived in Step 2 which are most useful for the desired

predictive task and the given window length. 

Forward selection algorithm [ 16 ] 

Let  = { 𝑋 1 , 𝑋 2 , … , 𝑋 𝑛 } denote the feature pool,  denote the selected features, and 

#(  ) = 𝑠 denote the number of selected features. 

Initialize  = ∅ to store selected features. 

for each subset size 𝑠 of interest do // typically 𝑠 is in { 1 , 2 , … , 𝑚 } where 𝑚 < 𝑛 

for each feature in  do: 

Add feature 𝑋 𝑖 , to  . 

Tune the ML algorithm with  , for the window length and predictive task of interest 

// tuning involves finding optimal hyperparameters for a particular ML algorithm for feature 𝑋 𝑖 

for each prequential evaluation iteration do: 

Train the model using the optimal hyperparameters and features on the training set. 

Evaluate the model using RMSE on the validation set for the given window length and predictive task. 

end for 

Average the model performance measured by RMSE across prequential validation blocks. 

end for 

Add feature 𝑋 

∗ 
𝑘 

to  which has the minimum RMSE and remove 𝑋 

∗ 
𝑘 

from  . 

Store the minimum RMSE and continue if #(  ) < 𝑠 
end for 

Once the above algorithm is performed for all 𝑠 , plot the RMSE values by 𝑠 to determine the number of features to select. Select

the value 𝑠 ∗ where the model performance as measured by RMSE no longer improves. The selected features are then given by 

where #(  ) = 𝑠 ∗ . 

4. Tune the final model with the selected features to identify the best hyperparameters. 

4.1 Hyperparameter tuning algorithm 

For GBM, four hyperparameters are tuned: (1) the number of trees, (2) the interaction depth, (3) shrinkage, and (4) the minimum

number of observations in the terminal nodes [ 17 ]. Although there are two additional hyperparameters that can be tuned, they relate

to subsampling and out-of-sample estimates. These hyperparameters should be fixed to avoid subsampling and out-of-sample estimates 

through GBM. Instead, subsampling should be performed manually to ensure temporally preserved ordering with a prequential 

evaluation process. 

4.2 Create a hyperparameter grid consisting of relevant unique combinations of hyperparameters [ 18 ], except that that the

tuning is based upon the prequential evaluation strategy. 

for each prequential evaluation iteration do : 

for each row in the hyperparameter grid do : 

Train the model using the hyperparameters specified in the current row with the selected features on the training set from Step 3. 

Evaluate model using RMSE on the validation set for given window length and predictive task. 

end for 

end for 

Average the model performance as measured by RMSE across all prequential validation blocks. Store the RMSE. Identify the 

hyperparameter values with the smallest mean RMSE across all prequential validation blocks. 

5. Assess performance of the final model on the test set using the selected features and hyperparameters to forecast or nowcast

for the desired horizon. 

The prediction accuracy of the test set will be evaluated on a rolling origin (Hyndman, [ 15 ], Fig. 4 b-c). In this scenario, the origin

at which predictions are made moves forward in time, ultimately stepping through each available prediction point in the test set. As
6 
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Table 3 

Features engineered for TSML method. 

Endogenous Exogenous Temporal 

cases-lag1 viral copies month 

cases-lag2 Viral copies-lag1 viral copies-lag2 month-lag1 

cases-lag3 viral copies-lag3 month-lag2 

cases-lag8 viral copies-ma4 month-lag3 

cases-lag 10 viral copies-ma8 month-lag4 year 

cases-lag12 min. temperature 

cases-ma4 

cases-ma8 

Table 4 

Features selected for TSML method. 

Nowcasts Forecasts 

Short-term Cases-lag3, month, viral copies-ma8, month-lag1 Cases-lag3, month, viral copies-ma8, month-lag1 

Long-term Viral copies-ma4, month-lag4 Month, cases-lag8 

 

 

 

 

 

 

 

 

 

 

 

the origin moves forward one time step, the training set grows by one time step. As the training set grows, the model is refit with the

hyperparameters learned from step #4 to incorporate the new observation. 

A number of short and long-term features were engineered for the weekly COVID-19 cases observed in the PA data. The exogenous

features included SARS-CoV-2 viral copies in wastewater, minimum ambient temperature, and temporal features, such as month and 

year ( Table 3 ). It is important to note that these features were included since they were accessible. However, other features that could

be of interest to the epidemiologist could easily be incorporated as well. 

Table 4 lists the features selected for each window length and prediction task. For short-term predictions, forward selection found

the same features to be important for both forecasts and nowcasts. The number of COVID-19 cases from three weeks prior, the

average viral copies from wastewater for the previous 8 weeks, the current month, and the previous week month are all important for

predicting the COVID-19 cases for the next week. For long-term nowcasts, the average viral copies from wastewater for the previous

4 weeks and the month 4 weeks back were the most useful for predicting COVID-19 cases eight weeks ahead. For long-term forecasts,

the current month and COVID-19 cases from eight weeks ago were the important for predicting COVID-19 cases eight weeks ahead.

The performance of the selected features is illustrated in Fig. 5 with the associated performance measures in Table 6 . 

ARIMAX method details 

The ARIMAX model is a parametric model that is described by Box et al. [ 19 ] and Hyndman and Athanasopoulos [ 15 ]. However,

details are provided here to illustrate the implementation of the ARIMAX model in the context of WBE and for purposes of comparison

with the TSML strategy. The ARIMAX model, without seasonality, is given by [ 2 ] as 

𝑌 𝑡 = 

𝑚 ∑

𝑘 =1 
𝛽𝑘 �̃� 𝑡,𝑘 + 𝐸 𝑡 , (1) 

𝑌 𝑡 = ( 1 − 𝐵 ) 𝑑𝑦 𝑌 𝑡 is the differenced response of order 𝑑𝑦 , 

�̃� 𝑡,𝑘 = ( 1 − 𝐵 ) 𝑑𝑥,𝑘 𝑋 

𝑘 
𝑡 

is the differenced feature 𝑘 of order 𝑑𝑥, 𝑘 , 

𝛽𝑘 is the regression coefficient for �̃� 𝑡,𝑘 

{ 𝐸 𝑡 } is an autoregressive moving average (ARMA) process satisfying Φ𝑝 ( 𝐵 ) 𝐸 𝑡 = Θ𝑞 ( 𝐵 ) 𝑍 𝑡 , 

{ 𝑍 𝑡 } is a white noise process satisfying 𝑍 𝑡 i . i . d Normal ( 0 , σ2 ) , 
Φ𝑝 = 1 − 𝜙1 𝐵 − 𝜙2 𝐵 

2 − …− 𝜙𝑝 𝐵 

𝑝 is the autoregressive operator, 

Θ𝑞 = 1 − 𝜃1 𝐵 − 𝜃2 𝐵 

2 − …− 𝜃𝑞 𝐵 

𝑞 is the moving average operator, 

𝐵 is the backshift operator satisfying 𝐵𝑧 𝑡 = 𝑧 𝑡 −1 . 

For the ARIMAX model, the following steps were performed ( Fig. 6 ). 

1. Split the data into a training and test set. 

1.1 Set aside the test set to evaluate final model performance. 

2. Check the stationarity of the temporal process. 

2.1 Use the autocorrelation function (ACF) and partial autocorrelation function (PACF) plots. 

2.2 Conduct an Augmented Dickey-Fuller (ADF) Test [ 10 ]. 

3. Transform data to achieve stationarity of the temporal process, if needed. 

3.1 Perform checks in Step 2 with transformed data. 

4. Select exogenous features using the CCF [ 20 ]. 

4.1 If data is missing, impute by using the previous value [ 21 ]. 
7 
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Fig. 5. TSML method results. (a) Short-term nowcasts. (b) Long-term nowcasts. (c) Short-term forecasts. (d) Long-term forecasts. 

Table 5 

Features selected for ARIMAX model. 

ARIMAX features 

Viral copies 

Viral copies-lag1 

Viral copies-lag3 

 

 

 

 

 

 

 

4.2 Identify significant lags of features ( 𝑑𝑥, 𝑘 ) based on the CCF after prewhitening [ 10 ]. 

5. Engineer data-driven features. 

5.1 Use the lags for the features identified from Step 4. 

6. Identify the best ARMA correlation structure for the ARIMAX model errors { 𝐸 𝑡 } with features identified in Step 4. 

6.1 Use information criteria, such as corrected Akaike information criterion (AICc) [ 22 ]. 

7. Check the model assumptions of the ARIMAX model errors { 𝐸 𝑡 } using residuals. 

7.1 Plot the ACF and histogram of residuals. 

7.2 Conduct the Shapiro-Wilk test [23] and Ljung-Box test [ 24 ]. 

8. If forecasting, predict exogenous features, such as viral copies, beyond the training data up to the forecast horizon. 

8.1 Obtain a separate ARIMA model for each exogenous feature. 

8.2 Repeat Steps 2, 3, 6 to select the best ARIMA for each feature. 

8.3 Engineer lagged features of forecasted values, if needed. 

9. Assess performance of the final model on the test set using the selected features to forecast or nowcast for the desired horizon.

9.1 Evaluate the prediction accuracy of the test set using a rolling origin. 

Plots and stationarity tests suggest a first order difference meets stationarity assumptions for COVID-19 cases, viral copies, and

minimum temperature. Since pairs of autocorrelated series can exhibit spurious correlation, prewhitening is used to separate linear 

relationship between two variables from the associated autocorrelations [ 10 ]. Based on the prewhitened CCF for COVID-19 cases

and viral copies, lags 1 and 3 of the viral copies in wastewater are potential predictors of COVID-19 cases ( Fig. 7 , Table 5 ). No lags

for minimum temperature were observed for the prewhitened CCF, so it was excluded from the ARIMAX model. It is worth noting

that even if minimum temperature was included in the model, the regression coefficient for minimum temperature would not be

significant or declared to be non-zero at the 0.05 level. Thus, if only significant variables were used to build the ARIMAX model, as

seen in Rahman and Chowdhury [ 25 ], minimum temperature would still end up being excluded from the model. 
8 
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Fig. 6. Flow diagram for the ARIMAX method. 

 

 

 

 

 

 

 

 

The auto.arima function from the forecast package in R [ 26 ] found the optimal model to be an ARIMAX(0, 1, 1). The residual

diagnostics from this model fit do not provide evidence of a violation of the model assumptions. For example, there is no evidence of

unexplained autocorrelation in the model errors as all residuals lie within the 95% confidence limits in the ACF. The Ljung-Box test

had a p-value of 0.9 and the Shapiro-Wilk test had a p-value of 0.15. The ARIMAX model performance is illustrated in Fig. 8 with its

performance measures in Table 6 . 

TSML method versus ARIMAX method 

When comparing the features selected for the TSML method and the ARIMAX method, there are some similarities between the

features. For instance, both the TSML method and the ARIMAX method found the concentration of viral copies in wastewater within

the previous month to be useful predictors of COVID-19 cases. The TSML method found the average viral copies of the previous

month (4 weeks) to be useful, while the ARIMAX found the average viral copies for the week prior and three weeks prior to be useful

(lag 1 and lag 3). In terms of minimum temperature, neither method found it to be a useful predictor of COVID-19 cases. 
9 
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Fig. 7. (a) CCF for prewhitened wastewater and COVID-19 case data. (b) CCF for prewhitened minimum temperature and COVID-19 case data. 

Table 6 

Performance results for wastewater data. 

Nowcasts Forecasts 

Short-term Long-term Short-term Long-term 

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE 

Naïve 10.98 9.81 61.78 21.59 15.75 115.70 10.98 9.81 61.78 21.59 15.75 115.70 

TSML 8.68 6.98 38.74 13.59 12.52 80.89 8.68 6.98 38.74 20.95 15.61 112.45 

ARIMAX 10.73 8.34 50.00 16.37 13.12 92.60 11.32 9.18 57.17 22.09 17.32 118.28 

 

 

 

 

 

 

 

 

 

 

Unlike the ARIMAX method, the TSML method was able to explicitly identify temporal features, lags of COVID-19 cases, and viral

copies features that contain information beyond the previous month that were important for predicting COVID-19 cases. The ARIMAX

method, on the other hand, did not have any features with information from more than three weeks ago, which could explain its

inability to beat the Naïve model for long-term forecasts ( Table 6 ). Although the viral copies CCF for the ARIMAX method showed a

spike at lag 7, it was not deemed important and therefore was not included in the model. 

Overall, the TSML features outperformed the ARIMAX features according to the performance criteria ( Table 6 ) for this application.

However, the TSML method has a major advantage over ARIMAX as it can select features based on the desired prediction task and

window. ARIMAX, on the other hand, maintains the same features whether it is making nowcasts or forecasts, either short-term or long-

term. This appears to hurt model performance, particularly when considering long-term forecasts. Even when ARIMAX outperforms 

the Naïve model, as with short-term and long-term nowcasts, the performance still lags behind that of the TSML method. While

future research might be able to incorporate more refined feature selection strategies in ARIMAX, perhaps by leveraging temporal

cross-validation strategies [ 22 ] or with theoretical approaches [ 2 ], the TSML method benefits from having a feature selection strategy

that can be tailored to a specific prediction task and window without needing to meet specific model assumptions. 
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Fig. 8. ARIMAX method results. (a) Short-term nowcasts. (b) Long-term nowcasts. (c) Short-term forecasts. d) Long-term forecasts. 
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