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Abstract 
Biological age captures a person’s age-related risk of unfavorable outcomes using biophysiological information. Multivariate biological age 
measures include frailty scores and molecular biomarkers. These measures are often studied in isolation, but here we present a large-scale 
study comparing them. In 2 prospective cohorts (n = 3 222), we compared epigenetic (DNAm Horvath, DNAm Hannum, DNAm Lin, DNAm epi-
TOC, DNAm PhenoAge, DNAm DunedinPoAm, DNAm GrimAge, and DNAm Zhang) and metabolomic-based (MetaboAge and MetaboHealth) 
biomarkers in reflection of biological age, as represented by 5 frailty measures and overall mortality. Biomarkers trained on outcomes with 
biophysiological and/or mortality information outperformed age-trained biomarkers in frailty reflection and mortality prediction. DNAm GrimAge 
and MetaboHealth, trained on mortality, showed the strongest association with these outcomes. The associations of DNAm GrimAge and 
MetaboHealth with frailty and mortality were independent of each other and of the frailty score mimicking clinical geriatric assessment. 
Epigenetic, metabolomic, and clinical biological age markers seem to capture different aspects of aging. These findings suggest that mor-
tality-trained molecular markers may provide novel phenotype reflecting biological age and strengthen current clinical geriatric health and 
well-being assessment.
Keywords: DNA methylation, Frailty, Mortality

Age is the most prominent risk indicator for common chronic 
diseases, frailty, and mortality (1–3). However, there are large 
interindividual differences in the biological aging process and 
rate of functional decline. Hence, standardized markers that 
reflect biological age and can provide aging rate phenotypes to 
be studied in depth are needed in aging research. Geriatricians 
use the comprehensive geriatric assessment (CGA) to identify 
the medical, social, and functional needs of older patients (4) 
and determine whether invasive treatments are suitable for 
older patients (5). Although considered the gold standard for 
treating frail patients (4), CGA is time- and resource-consum-
ing, and primarily narrative based (4). To date, no consensus 
exists for a multivariate molecular biomarker to accurately 
capture the complexity of the aging process and serve as a bi-

ological age phenotype for aging research or an overall health 
indicator in the clinic.

Simultaneously, consensus is lacking on the operational-
ization of frailty in research practice, leading to the intro-
duction of a variety of frailty measures with their own 
approaches (2,6–10). The frailty index (FI) assesses frailty 
as an accumulation of deficits over a wide range of health 
domains (11), while the frailty phenotype (FP), also known 
as Fried frailty (2), is a widely used measure that focuses on 
physical frailty. Recently, the FP has been translated into a 
continuous score called continuous frailty phenotype (CFP) 
(7). The Tilburg Frailty Indicator (TFI) is metric combining 
the physical, psychological, and social domains (8). Finally, 
the Multidimensional Prognostic Index (MPI) (9) quantifies 
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the CGA, providing information on the medical, social, and 
functional status of participants.

Furthermore, several attempts have been made to cap-
ture the discrepancy between an individual’s chronological 
age and their age based on biological and clinical informa-
tion, known as biological age, in a biomarker. In the past 
2 decades, large-scale molecular data were used to develop 
several molecular markers of biological age based on, for 
example, telomeres, DNA methylation (DNAm), and metab-
olomics (12). Well-known are the DNAm or epigenetic aging 
clocks. These epigenetic aging clocks are biomarkers based on 
methylation values at a combination of specific CpG sites by 
which chronological age is best reflected. The first-generation 
epigenetic aging clocks, DNAm Horvath (13) and DNAm 
Hannum (14), DNAm Lin (15) were trained on chronolog-
ical age and outperformed other aging biomarkers, such as 
telomere length, in the reflection and prediction of the aging 
process (12). To develop a mitotic-age biomarker that is cor-
related with chronological age, DNAm epiTOC was trained 
on chronological age using CpGs that map to Polycomb group 
target gene promoters, which are constitutively unmethylated 
in fetal tissue (16). Since physiological deficits resulting from 
and contributing to aging do not develop in a regular, clock-
like manner, the second-generation epigenetic aging bio-
markers trained CpG-models on outcomes that incorporate 
information on biopsychology or mortality, or both. DNAm 
DunedinPoAm (17) was trained on the Pace of Aging (18), 
a score based on 18 biomarkers measured 3 times between 
the ages of 26 and 38 years. DNAm PhenoAge was trained 
on a multi-system proxy for physiological dysregulation (19). 
DNAm GrimAge (20) and DNAm Zhang (21) were trained 
on mortality risk. More recently, metabolomics-based aging 
biomarkers were established using a nuclear magnetic reso-
nance platform (22,23). These biomarkers of biological age 
were trained on either chronological age (MetaboAge (24)) 
or mortality (MetaboHealth (25)).

Previous studies have shown that second-generation aging 
biomarkers outperform the first-generation epigenetic aging 
biomarkers in reflecting frailty, physical health outcomes, 
cognitive and physical capacity, and prediction of overall 
mortality (26–28). However, the performances of the newly 
developed metabolomic biological age biomarkers have not 
been compared with either the first- or second-generation epi-
genetic aging biomarkers. Moreover, whether epigenetic and 
metabolomic aging biomarkers capture different aspects of 
the aging process is unknown. Lastly, it is unclear whether 
aging biomarkers have added value to the CGA and, thus, 
their possible clinical applicability.

The current study compares the reflection of biological age 
of the first and second-generation epigenetic and metabolo-
mic aging biomarkers by determining their association with 
5 different frailty scores and with mortality. These outcomes 
largely reflect the aging process.

Method
Study Cohorts
The current study is a nested cohort study of data from 
the second and third cohorts of the population-based 
Rotterdam Study (RS) (29) and the second generation of 
the Leiden Longevity Study (LLS) (30). In the RS (29)1 347 
participants were grouped into 2 subcohorts based on the 
platform of their epigenetic data, 450K-data (n = 611) or 

EPIC-data (n = 736). From the LLS, 1  875 participants 
with metabolomic information were selected as the exter-
nal validation cohort for our findings of whom in a subco-
hort of 591 participants additional information on DNAm 
was available. A more detailed description of both cohorts 
and inclusion criteria can be found in the Supplementary 
Methods.

DNA Methylation
Genome-wide DNAm data was obtained from whole blood. 
In 687 RS participants and the LLS, we analyzed the samples 
using Illumina Infinium Human Methylation 450 K (450K) 
array (31,32). In the other 737 RS samples, we used Illumina 
Infinium MethylationEPIC BeadChip v1 manifest B5 (EPIC) 
arrays (33). The quality control procedures are described in 
the Supplementary Methods.

Metabolomics
Metabolomic biomarkers from EDTA plasma were measured 
using high-throughput NMR metabolomics (Nightingale 
Health Ltd., Helsinki, Finland; biomarker quantification ver-
sion 2016) (23). This technique quantifies over 200 metabolic 
measures, including routine lipids, lipoprotein subclass profil-
ing with lipid concentrations within 14 subclasses, fatty acid 
composition, and various low-molecular-weight metabolites 
in molar concentration units (22,23).

Biomarkers of Biological Aging
We calculated DNAm Horvath (13), DNAm Hannum (14), 
DNAm Lin (15), DNAm epiTOC (16), DNAm PhenoAge 
(19), DNAm DunedinPoAm (17), DNAm GrimAge (20), 
and DNAm Zhang (21) using the coefficients, R and Python 
scripts, and packages provided by the researchers who devel-
oped these measures and the R methylclock package (34). To 
calculate epigenetic aging biomarkers, missing information 
for 3  339 CpG sites on the EPIC array and 2  831 sites in 
RS and 1 638 in LLS on the 450K-array was imputed with 
the mean value from the GOLD consortium, as previously 
described (35). Unfortunately, 2 out of the 10 CpG-sites 
needed to calculate DNAm Zhang were missing on both our 
EPIC arrays as in the GOLD consortium. For these 2 CpGs, 
we imputed the mean value from the 450K-subcohort, where 
information on all 10 CpGs was present. The metabolomic 
biomarkers were used to compose MetaboAge (24) and 
MetaboHealth (25). MetaboAge and MetaboHealth were 
calculated using MiMIR (36), the dedicated R-shiny package, 
on the raw metabolomic biomarkers (24,25)

Finally, we calculated the chronological age-independent 
part of the above-mentioned variables that we defined as the 
biomarkers of biological aging to use in all analyses in this 
study. We did so by taking the residual from the linear regres-
sion model of chronological age on the before-mentioned 
epigenetic and metabolomic variables. The presented bio-
markers, thus, represent the chronological age-independent 
part of the biomarkers.

Assessment of Mortality
Based on a linkage with the mortality registry of the munici-
pality and the digitally connected medical records of the GPs 
working in the study area, we gathered information on the 
vital status of the participants on a bimonthly basis (37). The 
information on the vital status of participants in Rotterdam 
was last updated on the 20th of October 2022.
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The vital status of the participants in the LLS was updated 
in January 2021 through the Personal Records Database, 
which is managed by the Dutch governmental service for 
identity information (38).

Frailty Assessment
We used interviews, physical examinations, blood sampling, 
and general practitioners’ records to obtain information 
on the participants’ frailty. Using this information, we con-
structed the FP (2), CFP (7), FI (6), TFI (39), and MPI (9). 
A more detailed description of the construction of these 5 
frailty measures and the literature-described cut-offs to clas-
sify participants as either frail or nonfrail can be found in the 
Supplementary Methods.

Assessment of Covariates
A questionnaire at baseline provided information on the 
sex and chronological age at blood sampling for all partic-
ipants. We weighted and measured participants when they 
visited the research center; based on this information, BMI 
was calculated (kg/m2). We classified participants as smok-
ers or nonsmokers based on the answer to the question: 
“are you currently smoking?.” We defined cell counts as the 
measured white blood count percentage of lymphocytes and 
monocytes, making the percentage of granulocytes a given. 
Socioeconomic status was defined based on the highest level 
of attained education following UNESCO classification (40).

Statistical Analysis
The biomarkers of biological aging were constructed per 
dataset by calculating the residual of a linear regression of 
chronological age on the epigenetic and metabolomics mea-
sures. Spearman’s rank correlation was used to assess the 
correlation between the biomarkers of biological aging and 
frailty scores, and a Yeo–Johnson transformation using the 
bestNormalize R-package (41) was applied to the frailty indi-
ces to increase homoscedasticity. We decided upon using Yeo–
Johnson transformations as it can incorporate zeroes (41), 
which were informative in our frailty scoring system and thus 
should not be lost in power transformations. Linear regres-
sion models were used to determine the association between 
cross-sectional continuous Yeo–Johnson transformed 
Z-scored frailty and Z-scored biological aging biomarkers. 
Standardization was performed in the subcohorts separately 
for the subcohort analyses and in the combined information 
on all participants for the analyses involving the overall study 
population. Z-scores were used to improve comparability 
of effect sizes. Logistic regression analyses were used for the 
associations with frailty as binary outcome. The linear and 
logistic regression analyses were adjusted for chronological 
age at blood sampling, sex, cell counts, BMI, and visit and 
cohort within RS. The analyses in the entire RS study popula-
tion were additionally adjusted for underlying subcohort and, 
thereby, methylation array and metabolomics batch used. 
Moreover, a sensitivity analysis was conducted, in which 
adjustments were made for smoking status and socioeco-
nomic status. Additionally, we tested for effect modification 
of sex, and a sex-stratified sensitivity analysis was performed 
for all aforementioned analyses.

We used the R-package survival (42) to create Cox 
Proportional hazard regression models to determine the 
association between standardized aging predictors and over-
all mortality. We used chronological age at blood sampling 

as the starting point and chronological age at censoring as 
the endpoint of the analysis. We performed the analyses in 
4 models in the RS and validated only the first 2 models in 
LLS as the MPI was not available in the LLS. The first model 
adjusted for sex, cell counts, BMI, and study-specific covari-
ates. In the second model, we additionally adjusted for smok-
ing status and socioeconomic status. Thirdly, we adjusted for 
the same covariates as in the first model, but additionally 
for the MPI. The MPI mimics the CGA, as used in the clinic, 
best. Adjusting for the MPI provides an opportunity to deter-
mine the value of aging predictors beyond ongoing practice. 
Fourthly, we additionally adjusted the third model for smok-
ing status and socioeconomic status. Moreover, we performed 
sensitivity analyses to examine effect modification by includ-
ing interaction terms with sex in the model. Additionally, we 
conducted survival analyses stratified by sex. We determined 
the association between frailty measures per standard devia-
tion increase and overall mortality with a Cox Proportional 
Hazard model with again age at blood sampling and age at 
censoring as timescale. We adjusted the analyses for the first 2 
abovementioned models.

To investigate the role of frailty in linking biomarkers and 
mortality, we performed a formal mediation analysis using 
the mediation R-package (43) with all-cause mortality as 
main outcome. We have fitted a parametric regression with 
Weibull distribution using the survival R-package (42) and 
a linear regression. To correct for multiple comparisons, we 
applied a Benjamini–Hochberg false discovery rate (FDR) 
correction (44). We performed all analyses in R version 4.1.3. 
Figure 1 was created with BioRender.com.

Results
We used 2 distinct cohorts for our analyses: the RS (29), a 
population-based study, and the LLS (30), a long-living fam-
ily study (Figure 1, Supplementary Table 1). The RS was 
separated into 2 subcohorts, where the distinguishing factor 
was the DNAm array used, either 450K (n = 611) or EPIC 
(n = 736). For the LLS, the study population consisted of 
all participants with metabolomics information (n = 1 849) 
with a multiomics subcohort (n = 584) of offspring and their 
partners from families without a family history of longevity, 
thereby selecting a subcohort closest to the population at 
large (45). We calculated the biomarkers of biological aging 
as the age-independent part of the aging biomarkers and used 
this metric in all further analyses (Methods: Biomarkers of 
biological aging).

Correlation Between Biological Aging Biomarkers
Spearman’s rank correlation coefficients between 8 epigen-
etic and 2 metabolomic aging biomarkers were low neg-
ative to moderate positive, ranging between −0.29 and 
0.69 in the overall population (Figure 2A). The highest 
correlation was found between DNAm DunedinPoAm and 
DNAm GrimAge. The metabolomic aging biomarkers had 
the highest correlations with each other and with DNAm 
DunedinPoAm, DNAm GrimAge, and DNAm Zhang. 
The correlations between biomarkers trained on chrono-
logical age (clocks) from different molecular origins, ie, 
DNAm Horvath, DNAm Hannum, or DNAm Lin versus 
MetaboAge, were low negative to low positive, namely 0.04 
between MetaboAge and DNAm Hannum, 0.16 between 
MetaboAge and DNAm Horvath and −0.22 between 
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MetaboAge and DNAm Lin. Interestingly, these correla-
tions were lower than the associations between MetaboAge 
and the pace of aging-trained DNAm DunedinPoAm (0.21) 
and those between MetaboAge and the mortality-trained 
DNAm GrimAge (0.20) and DNAm Zhang (0.21). The mor-
tality-trained epigenetic aging biomarkers DNAm GrimAge 
and DNAm Zhang had a correlation with the metabolo-
mic-based mortality biomarker of, respectively, 0.30 and 
0.29. Comparable correlation patterns were observed 
across methylation arrays (within RS) and between RS and 
LLS cohorts (Supplementary Figure 1). Post hoc analysis 
revealed similar correlation patterns among participants 
who survived the study period and those who died, except 
for a decline in correlation between epigenetic clocks and 
MetaboAge observed in RS but not LLS (Supplementary 
Figure 2).

Frailty
Frailty measures, like the biological aging biomarkers, were 
developed to capture the individual aging process (11,12,46); 
they represent measures of biological age. We assessed the 
interchangeability of various frailty measures developed 
based on different rationales by measuring 5 different frailty 
scores in our study population: FI (6), FP (2), CFP (7), TFI 
(8,39), and MPI (9) (Supplementary Texts 1 and 2). When 

elements from these frailty measures were lacking in our data 
set, we used proxies (Supplementary Text 2).

As shown in Figure 2B, the correlation between the differ-
ent frailty measures ranged from 0.20 to 0.50. The highest 
correlation was observed between the 2 physical frailty mea-
sures, FP and CFP, and the lowest between FP and the MPI, 
the latter being the frailty measure directly derived from the 
CGA. All frailty measures were associated with an increased 
risk of overall mortality. We observed higher hazard ratios 
for broad frailty scores than for the physical frailty measures, 
yet this difference was not statistically significant (Figure 2C, 
Supplementary Table 2).

We concluded that the frailty measures could not be used 
interchangeably. Therefore, we examined 10 biological aging 
biomarkers (8 epigenetic and 2 metabolomic aging bio-
markers) for their association with all 5 frailty measures. 
All biological aging biomarkers and the frailty scores were 
standardized to improve comparability. We observed that an 

Figure 1. Outline of the study and study population characteristics. 
*Smoking status was unknown for 5 Rotterdam Study participants 
(3 participants of the 450K-subcohort, 2 participants of the EPIC-
subcohort) and for 17 LLS participants, of whom 4 belonged to the 
multiomics subcohort. (A) The Rotterdam Study overall study population 
with population characteristics; (B) the Rotterdam Study 2 subcohorts, 
450K and EPIC, stratified by the DNA methylation array used and their 
population characteristics; (C) the external validation cohort, the Leiden 
Longevity Study with population characteristics; (D) the subcohort of the 
Leiden Longevity Study, where epigenetic information was available with 
population characteristics; and (E) we used both the overall Rotterdam 
Study population and its two subcohorts (i) to determine the correlations 
between each of the biological aging biomarkers, (ii) to perform a linear 
regression for the association between the biological aging biomarkers 
and frailty, and (iii) to determine the association between each of the 
biological aging biomarkers and all-cause mortality. We externally 
validated the correlations between the biological aging biomarkers and 
the association between the biological aging biomarkers and all-cause 
mortality in the Leiden Longevity Study and its subcohort. In A–D, BMI 
indicates body mass index; DNAm, DNA methylation; and n, size of 
the study population. Population characteristics in A–D are shown as a 
number for the population size; mean ± standard deviation (range) for 
age and BMI; and number (percentage) for the number of women and 
the number of participants currently smoking.

Figure 2. Correlations between biological age measures and the 
association between biomarkers of biological aging and frailty. (A) 
Spearman’s correlation of the different biological aging biomarkers in 
1 424 Rotterdam Study participants with the histograms of epigenetic 
aging biomarkers in yellow and metabolomic-based aging biomarkers 
in blue. Labels in bold indicate aging biomarkers trained on outcomes 
including phenotypic and/or mortality information; the regular font, an 
aging biomarker trained on chronological age. Biomarkers are arranged 
by omics layer, ordered from fully age-trained to fully mortality-trained. 
Values after r = represent Spearman’s rank coefficient; values after 
p = represent the p value; the background color is darker for higher 
correlations. epiTOC = DNAm epiTOC; GrimAge = DNAm GrimAge; 
Hannum = DNAm Hannum; Horvath = DNAm Horvath; Lin = DNAm 
Lin; mHealth = MetaboHealth; Pheno = DNAm PhenoAge; PoAM = 
DNAm DunedinPoAm; Zhan = DNAm Zhang; mAge = MetaboAge. (B) 
Spearman’s correlation between the different Yeo–Johnson-transformed 
frailty measures in the 746 Rotterdam Study participants with information 
on all 5 frailty measures. Values represent Spearman’s rank coefficient; 
the background color is darker for higher correlations. CFP = continuous 
frailty phenotype; FI = frailty index; FP = frailty phenotype; MPI = 
Multidimensional Prognostic Index; TFI = Tilburg Frailty Indicator. 
(C) Risk of all-cause mortality per standard deviation increase of the 
Yeo–Johnson transformed FI (n cases = 130/n = 1 330), FP (n cases = 
132/n = 1 328), CFP (n cases = 69/n = 743), TFI (n cases = 129/n = 1 
328), MPI (n cases = 132/n = 1 333) in the RS overall study population. 
The figure represents the adjusted hazard ratios and 95%-confidence 
intervals. (D) Associations of standardized biological aging biomarkers 
with standardized FI (n = 1 341), FP (n = 1 339), CFP (n = 748), TFI (n = 
1 339), and MPI (n = 1 344) based on linear regression analyses in all 
participants for whom data on biological aging biomarkers and frailty 
were available in the overall Rotterdam Study dataset. Analyses were 
adjusted for age, sex, BMI, cell counts, subcohort, and Rotterdam 
Study cohort and visit. The figure represents the adjusted betas and 
95%-confidence intervals. Biomarkers are arranged by omics layer, 
ordered from fully age-trained to fully mortality-trained. DNAm Zhang is 
missing information on 2 out of 10 CpGs in the EPIC-subcohort (736 of 
the 1 347 participants). BMI = body mass index.
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increase in biomarkers trained on biophysiological or mor-
tality information had consistently more prominent asso-
ciations with frailty than we observed for the clocks, with 
MetaboAge among the clocks showing the most prominent 
association with frailty scores. The strongest associations 
were found for MetaboHealth (adjusted beta in the RS com-
bined study population per standard deviation increase [B 
0.20 95% confidence interval {CI}: 0.15; 0.25]) and DNAm 
GrimAge (B 0.21 [CI: 0.16; 0.26]) with the MPI (Figure 2D, 
Supplementary Figure 2, Supplementary Table 3). These asso-
ciations exhibited higher magnitudes than the associations 
previously observed between frailty scores and all-cause mor-
tality (Figure 2C, Supplementary Table 2). Furthermore, our 
observations revealed variability among frailty measures in 
the association with biological age biomarkers. The phys-
ical-oriented FP especially displayed a distinct association 
pattern from other frailty measures. FP showed a weaker 
association with epigenetic biomarkers trained on biophysio-
logical measures associated with health and/or mortality and 
with MetaboAge. This drop was most prominent in the asso-
ciation with DNAm DunedinPoAm and DNAm GrimAge. 
Broad frailty measures were significantly associated with 
multiple biological aging biomarkers, with FI and MPI linked 
to 4 out of 10 biomarkers after adjustment for multiple test-
ing, and TFI with 3. Surprisingly, constructing CFP using the 
same information as FP resulted in associations more similar 
to those of FI, TFI, and MPI, and we observed a significant 
association with 3 biological aging biomarkers.

The analyses were adjusted for age despite using chronolog-
ical age-independent biological aging biomarkers to address 
the inherent correlation of frailty measures, for example, the 
FI, with chronological age. BMI was included as a covari-
ate as both epigenetic- (47) and metabolomic-based (24) 
aging biomarkers are known to associate with a higher BMI 
and BMI information is included in all frailty scores (2,6–9) 
(Supplementary Texts 1 and 2). We performed a sensitivity 
analysis adjusting for smoking status and socioeconomic sta-
tus to determine whether the inclusion of smoking-pack years 
in the construction of the DNAm GrimAge was driving the 
results or that factors associated with socioeconomic status 
influenced the performance of the biomarkers. The sensitivity 
analysis did not remarkably alter the results (Supplementary 
Table 3). We tested for effect modification of sex on the aging 
biomarkers by adding an interaction term between the two in 
the model. None of these contrasts were FDR-corrected signif-
icant. A sex-stratified analysis did not indicate sex differences 

in the association between biomarkers of biological age and 
frailty (Supplementary Table 4).

Subsequentially, we determined whether the associations 
with the frailty measures of the best-performing epigen-
etic and best-performing metabolomic aging biomarkers 
were independent of each other. Both DNAm GrimAge and 
MetaboHealth remained independently associated with frailty 
in a linear regression adjusted for the same covariates as the 
univariable analyses (Table 1, Supplementary Table 5). There 
were some small improvements in the explained variance of 
the models when both DNAm GrimAge and MetaboHealth 
were included, for example, the explained variance of the 
association with FI improved from 0.22 for DNAm GrimAge 
and 0.23 for MetaboHealth to 0.24 in the combined model 
(Supplementary Tables 3 and 5). Additionally, adjusting 
for smoking status did, again, not considerably change the 
results (Supplementary Table 5), and the results were not 
statistically significantly different between men and women 
(Supplementary Table 6). Furthermore, the same pattern 
appeared when categorizing participants as nonfrail and frail 
using the traditional cut-offs (Supplementary Text 1) of the 
frailty measures (Supplementary Table 7).

Mortality
Beyond reflecting on an individual’s current state, biomark-
ers of biological age are believed to capture predictive infor-
mation on the aging process (12). We, therefore, determined 
the association of biological aging biomarkers with mortal-
ity during 11 281 person-years of follow-up in the RS. The 
median follow-up time was 8.6 years. During follow-up, 132 
participants died. A higher score on all biomarkers of biolog-
ical age was associated with an increased risk of overall mor-
tality in the combined study population. Moreover, DNAm 
GrimAge and MetaboHealth were consistently associated 
with increased mortality risk in both RS-subcohorts. The 
highest risk estimates for all-cause mortality were observed 
for DNAm GrimAge (adjusted hazard ratio in the RS com-
bined study population per standard deviation increase 
[HR] 1.79 95%-CI [1.52;2.12]) and MetaboHealth (HR 
1.79 [CI 1.52;2.09]; Figure 3A, Supplementary Figure 3, 
Supplementary Table 8). Yet, the observed hazard ratios were 
a bit more stable for DNAm GrimAge than for MetaboHealth. 
The Cox Proportional Hazard models were adjusted for the 
same covariates as used in the linear regression except for age, 
which was included in the timescale. A sensitivity analyses to 
determine whether smoking status and socioeconomic status 

Table 1. Results of Multivariable Regression Models Including Both DNAm GrimAge and MetaboHealth as Exposures and Frailty Measures as Outcome

  DNAm GrimAge MetaboHealth

Adjusted* Beta Per SD (CI) pFDR Adjusted* Beta Per SD (CI) pFDR 

FI n = 1 339 0.08 (0.03; 0.14) .02 0.17 (0.11; 0.22) 7.35 × 10−9

FP n = 1 339 0.01 (-0.05; 0.07) .79 0.11 (0.05; 0.17) 5.51 × 10−4

CFP n = 748 0.11 (0.03; 0.19) .02 0.10 (0.02; 0.17) .02

TFI n = 1 339 0.07 (0.01; 0.13) .06 0.11 (0.06; 0.17) 3.38 × 10−4

MPI n = 1 344 0.15 (0.10; 0.21) 6.06 × 10−6 0.17 (0.12; 0.22) 8.08 × 10−9

Notes: CFP = continuous frailty phenotype; CI = confidence interval; FI = frailty index; FP = frailty phenotype; MPI = multidimensional prognostic index; 
n = number of participants for whom we have information on this frailty score; pFDR = p value after adjustment for multiple testing by the false discovery 
rate method; SD = standard deviation; TFI = Tilburg Frailty Indicator.
*Adjusted for chronological age at blood sampling, sex, body mass index, cell counts, subcohort, and visit and cohort within the Rotterdam Study.
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influenced the risk entailed by the aging biomarkers, again, 
did not noteworthy shift the results (Supplementary Table 8).

We then assessed whether the observed associations 
between the aging biomarkers and mortality were explained 
by frailty. For this, we used the MPI since it is the frailty score 
most closely related to the CGA. Earlier, we showed that the 
MPI itself is associated with an increased risk of overall mor-
tality (Figure 2C, Supplementary Table 2). Nevertheless, the 
associations between the aging predictors and mortality were 
independent of and not notably changed by the MPI (Figure 
3A, Supplementary Figure 3, Supplementary Table 8). These 
results remained, yet again, unchanged in a sensitivity anal-
ysis adjusting for smoking status and socioeconomic status 
(Figure 3A, Supplementary Figure 3, Supplementary Table 8). 
We evaluated the potential modification of sex on the impact 
of aging biomarkers by including an interaction term between 
these variables in our model. Nevertheless, none of the iden-
tified interaction terms achieved statistical significance after 
applying FDR correction. A sex-stratified analysis did not 
reveal any differences in the association between the biological 
age biomarkers and mortality based on sex (Supplementary 
Table 9). Lastly, to further assess the associations between 
frailty, biomarkers of biological age, and all-cause mortality, 
mediation analyses were conducted. Our results gave no indi-
cation of frailty mediating the association between biomark-
ers of biological age and mortality (Supplementary Table 10).

To determine whether the risk of mortality captured by 
the best-performing epigenetic aging predictor and metab-
olomic aging predictor were mutually independent, we per-
formed a Cox proportional hazard analysis including both 
aging predictors and adjusted for sex, BMI, and cell count. 
When combining DNAm GrimAge and MetaboHealth in a 
model, both showed an independent risk of all-cause mortal-
ity, respectively, DNAm GrimAge (HR 1.56 [CI 1.31;1.85]) 
and MetaboHealth (HR 1.60 [CI 1.35;1.89]). The concor-
dance increased slightly from 0.69 when only using DNAm 
GrimAge and 0.67 when only including MetaboHealth 
to 0.70 in the combined model. These results were robust 
among the RS overall study population and subcohorts 
(Supplementary Table 11). These results remained, again, 

similar when adjusting for the MPI and smoking status and 
socioeconomic status and no-sex differences were found 
(Table 2, Supplementary Tables 11 and 12).

In our external validation cohort, the LLS, 147 partici-
pants died during 23 977 person-years of follow-up (median 
13.3 years), of whom 43 were part of the multiomics subco-
hort representing 7 553 person-years of follow-up (median 
13.2 years). In the subcohort, where we could validate both 
the epigenetic and the metabolomic aging predictors, the 
results of DNAm PhenoAge, DNAm DunedinPoAm, DNAm 
GrimAge, DNAm Zhang, and MetaboAge were comparable 
to the results in the RS. By contrast, the associations between 
the other aging predictors, especially MetaboHealth, and 
mortality drops significantly (Figure 3B, Supplementary Table 
8). In the overall population of the LLS, MetaboHealth out-
performed MetaboAge in the prediction of mortality, yet the 
mortality risk of both aging predictors was smaller than in 
the RS overall population and more comparable to the EPIC-
subcohort (Supplementary Figure 3, Supplementary Table 8).

Discussion
There is no consensus on which biomarkers that can be 
measured in human studies in standardized fashion reflect 
biological age. In the present study, we considered frailty 
measures and mortality as phenotypes representing bio-
logical age. We compared 5 frailty measures in a popula-
tion-based cohort and 8 epigenetic and 2 metabolomic 
biomarkers of biological age in 2 distinct cohorts of mainly 
nonclinically frail older participants. Our most prominent 
findings were: (a) the rather weak to moderate correlations 
between DNAm and metabolomics biological aging bio-
markers especially between biomarkers from different ori-
gins trained on chronological age; (b) the outperformance 
of the mortality- and biophysiological-trained biomarkers, 
especially MetaboHealth and DNAm GrimAge, in reflec-
tion of biological age, as represented by frailty and mor-
tality, compared to clocks and frailty measures; (c) the 
mutually independent associations between the mortali-
ty-trained biomarkers of biological age, DNAm GrimAge, 
and MetaboHealth with frailty and mortality; and (d) the 
independence of the mortality association of the biomarkers 
of biological age from the MPI, the frailty measure directly 
derived from the CGA, smoking and socioeconomic status. 
These findings stress that the different molecular markers of 
biological age complement each other in estimating frailty 
and mortality risk and potentially complement standardized 
health assessment in the clinical setting.

Similar to previous reports (9,48–54), we found an associ-
ation between higher frailty scores and an increased mortal-
ity risk for all frailty measures of interest. Despite the wide 
variety of frailty measures, most studies focused on the FI 
and FP (54–57). Our results are consistent with previous 
studies reporting a higher risk of overall mortality for the 
FI compared to FP (56,57). However, this difference was not 
statistically significant in our study, which may be due to a 
lack of power. Given (55) the varied findings regarding the 
association between biomarkers of biological age and dif-
ferent frailty measures in our study, we recommend care-
fully choosing the frailty measure best suited to the research 
question.

Our results show that epigenetic aging biomarkers trained 
on longitudinal data outperform epigenetic clocks. This is in 

Figure 3. Aging predictors and their univariable risk of all-cause mortality 
per SD. Risk of all-cause mortality per standard deviation increase of 
the aging biomarkers in (A) the overall Rotterdam Study population (n = 
1 336). DNAm Zhang is missing information on 2 out of 10 CpGs in the 
EPIC-subcohort (727 of the 1 336 participants); and (B) the subcohort 
of the Leiden Longevity Study with information on the epigenetic aging 
predictors (n = 584). CpGs = methylation sites; BMI = body mass 
index; HR = hazard ratio; MPI= multidimensional prognostic index; SD = 
standard deviation. Biomarkers are arranged by omics layer, ordered from 
fully age trained to fully mortality trained.
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line with earlier reports on epigenetic biomarkers. A num-
ber of studies determined the association between various 
epigenetic biomarkers and frailty measures, and other hall-
marks of aging and showed that only biomarkers trained on 
mortality and biophysiological information were associated 
with FI (28,58), CFP (58), cognitive and physical capacity 
(26,27), hallmarks of aging (59), and all-cause mortality 
(26,60).

A limited number of previous studies compared frailty and 
aging biomarkers for their ability to predict mortality. A pre-
vious study reported that DNAm Horvath, DNAm Hannum, 
DNAm PhenoAge, DNAm GrimAge, and FI were all asso-
ciated with mortality when separately analyzed. When these 
measures were combined in a model with 6 other biological 
age measures, the largest effect sizes were reported for FI and 
DNAm GrimAge (61).

One modestly sized study solely focused on DNAm 
Horvath in comparison to the FI, but did not find an asso-
ciation of DNAm Horvath with mortality (62). Our results 
did show an association between DNAm Horvath and all-
cause mortality. This is probably due to the larger sample 
size of our study. However, the association between DNAm 
Horvath and mortality was also weaker in our study than 
the association with either mortality- or biophysiologi-
cal-trained biomarkers of biological age. In our study, the 
longitudinal-based epigenetic and metabolomic biomarkers 
showed a profound association with mortality independent 
of the MPI. Our study, therefore, is in line with a previous 
study emphasizing the added value of using biomarkers in 
frailty assessment as they report higher discriminative ability 
when both the biomarker-based frailty and FI are included in 
mortality prediction (55).

The performance of the metabolomic-based aging bio-
markers trained on chronological age and mortality has, 
to our knowledge, not been evaluated in other studies. In 
2 RS cohorts, the outperformance of the mortality-trained 
markers in reflecting frailty and predicting mortality was evi-
dent, as was the case for the comparison of metabolomics 
aging predictors in the LLS overall study population. The 
lower performance of MetaboHealth in the LLS multiomics 
subcohort might be caused by the small sample size since 
in the original studies of this cohort (24,25) the metabolo-
mic markers predicted adverse outcomes equally well in RS 
and LLS. Another possible explanation might be the differ-
ence in follow-up time between the 2 cohorts. Due to the 
small sample size, we cannot check the latter. In the RS, we 
observed somewhat unstable results for DNAm Horvath 
and MetaboAge, and to a lesser extent, MetaboHealth. This 

might have resulted from the usage of the age-independent 
part of the aging biomarkers. We used the age-independent 
part of our biomarkers by regressing out chronological age. 
This approach is more vulnerable to outliers when fewer par-
ticipants are included in the study. In case of the epigenetic 
biomarkers, some CpGs were lacking on the EPIC-platform; 
in the case of DNAm Zhang, even 2 out of 10 were lacking, 
which may have led to differences between the subcohorts in 
RS. We also noted a decline in overall mortality risk identi-
fied by the frailty measure in the EPIC-subcohort compared 
to the 450K-subcohort. Demographic differences between 
the subcohorts may have played a role in the differences in 
performance of the aging biomarkers between the subco-
horts, the 450K-subcohort was older and had a higher mor-
tality incidence. Further analysis of the performance of these 
aging biomarkers in small studies is recommended to deter-
mine their applicability in studies with smaller sample sizes. 
The molecular markers of biological age could potentially be 
used in the clinical setting to improve health and resilience 
estimates and as response monitors in intervention studies. 
In both future applications, the performance in limited sam-
ple-sized groups and ultimately even in individual patients 
is crucial.

DNAm GrimAge, DNAm Zhang, and MetaboHealth were 
developed using prospective mortality data. MetaboHealth 
and DNAm Zhang were trained directly, while the DNAm 
GrimAge model used DNAm surrogates of plasma proteins 
and smoking-pack years developed in elastic net Cox regres-
sion on overall mortality. DNAm PhenoAge was trained on 
phenotypic age, a predictor of mortality consisting of 9 bio-
markers and chronological age. Phenotypic age had a cor-
relation with chronological age of 0.94 in NHANES IV (19). 
DNAm DunedinPoAm was trained on the longitudinally 
measured page of aging score, DNAm epiTOC on age-as-
sociated hyper- and hypomethylation, and DNAm Horvath, 
DNAm Hannum, and MetaboAge were trained directly 
on chronological age. MetaboHealth, DNAm GrimAge, 
and DNAm DunedinPoAm, along with DNAm Zhang in 
the 450K-subcohort, where all CpGs needed were present, 
outperformed other aging biomarkers not solely in mortal-
ity prediction but also in reflecting frailty, according to our 
study. Therefore, we believe that our study provides further 
support for the benefits of training on longitudinal informa-
tion regardless of the omics layer used. Our findings align 
with the theory that fast-agers die sooner and consequently 
contribute less to the construction of biomarkers based on 
age, while biomarkers containing longitudinal information, 
such as mortality, suffer less from this selection bias (63). 

Table 2. The Multivariable Risk of All-Cause Mortality of DNAm GrimAge and MetaboHealth

 Model 1 Model 2 Model 3 Model 4

n/N = 132/1 336 n/N = 132/1 325 n/N = 132/1 331 n/N = 131/1 325

HR (CI) pFDR HR (CI) pFDR HR (CI) pFDR HR (CI) pFDR 

DNAm GrimAge 1.56 (1.31; 1.85) 9.95 × 10−6 1.51 (1.22; 1.86) 3.01 × 10−4 1.55 (1.30; 1.84) 9.95 × 10−6 1.50 (1.21; 1.85) 3.79 × 10−4

MetaboHealth 1.60 (1.35; 1.89) 2.60 × 10−7 1.67 (1.40; 1.98) 1.12 × 10−7 1.59 (1.34; 1.89) 3.49 × 10−7 1.66 (1.39; 1.97) 1.13 × 10−7

Concordance 0.70 0.71 0.71 0.71

Notes: Model 1: Adjusted for sex, BMI, cell count, batch, and cohort within the Rotterdam Study. Model 2: Model 1 + additionally adjusted for smoking 
status and socioeconomic status. Model 3: Model 1 + additionally adjusted for the MPI. Model 4: Model 3 + additionally adjusted for smoking status and 
socioeconomic status. CI = confidence interval; DNAm = DNA methylation; HR = hazard ratio; MPI = multidimensional prognostic index; n = cases; N = 
persons at risk; pFDR = p value after false discovery rate adjustment for multiple testing.



1760 Journals of Gerontology: BIOLOGICAL SCIENCES, 2023, Vol. 78, No. 10

This finding could have important implications for the devel-
opment of future biomarkers. Specifically, it suggests that 
aging predictors using longitudinal outcomes seem better 
equipped to capture the physiological heterogeneity that 
increases with aging. However, the performance of biological 
aging biomarkers on short-term outcomes still needs to be 
evaluated.

The low correlation of the epigenetic and metabolomic 
aging biomarkers in combination with the independent 
association of DNAm GrimAge and MetaboHealth with 
frailty and mortality suggests that metabolomic and epigen-
etic aging biomarkers capture different aspects of the aging 
process. However, there was only a slight increase in the 
explained variance when using both DNAm GrimAge and 
MetaboHealth. Furthermore, since the associations of these 
aging biomarkers were also independent of the MPI, there is 
an indication that these aspects are not captured in the CGA. 
This could imply that using these aging biomarkers would 
strengthen clinical geriatric risk assessment. The fact that we 
observed no indication of frailty mediating the association 
between aging biomarkers and all-cause mortality strength-
ens the hypothesis that different methods of determining bio-
logical age capture different parts of the aging process. Yet, as 
we had information on aging biomarkers and frailty around 
the same time, we possibly have underestimated the effect of 
mediation of the association. Therefore, further research into 
the different aspects of aging captured by the different aging 
biomarkers, frailty, and their applicability in the clinic and 
research would be advisable.

The main strengths of this study are the relatively large study 
population for which we had information on both DNAm and 
metabolomics, internal validation as well as external valida-
tion, and only a small loss to follow-up in the mortality data. 
Furthermore, with 5 different frailty measures, we had data 
on a wide variety of aspects of aging and were able to give 
insight into the distinct features of frailty measures. Besides, 
having information on both frailty and mortality gave us the 
opportunity to determine the associations of biological aging 
biomarkers with mortality adjusted for the MPI and, thereby, 
obtain an indication of the performance of molecular markers 
of biological aging beyond ongoing clinical practice.

However, there are some limitations to the current study. 
Firstly, participants needed to be fit enough to visit the 
research centers to provide blood samples and participate 
in several assessments for the frailty examinations. This 
requirement led to a selection bias towards healthy individ-
uals. Secondly, RS and LLS were included in study selecting 
metabolites included in MetaboHealth, together accounting 
for 13.7% of the 44  168 study participants. The inclusion 
of these cohorts in the creation of MetaboHealth may have 
resulted in an overestimation of its association with frailty 
and mortality. Thirdly, we did not have all the original mea-
surements on which the frailty measures are usually based. 
When a specific measurement was not present, we used prox-
ies (Supplementary Text 2). We chose the proxies carefully 
with the help of a geriatrician; however, this could have had 
some impact on the estimations. Lastly, our study population 
consisted of White individuals aged 30 to 98 years; thus, val-
idation of our project in other study populations and other 
(middle-aged) aspects of biological age is needed to assess the 
robustness of our results.

To our knowledge, this is the first study comparing the per-
formance of both epigenetic and metabolomic-based aging 

biomarkers in reflecting frailty and mortality risk as mea-
sures of biological age. Furthermore, this is the first study to 
include information on 5 different frailty measures as well 
as information on molecular biomarkers of biological age. 
We showed that epigenetic and metabolomic-based aging 
biomarkers trained on longitudinal information, especially 
DNAm GrimAge, and MetaboHealth reflected these biologi-
cal age measures better than aging predictors trained on age 
or phenotypic age. The associations of DNAm GrimAge and 
MetaboHealth with frailty and mortality are independent of 
each other, suggesting that they capture information on differ-
ent aspects of aging and may both be studied as novel pheno-
types in research aimed at finding determinants of biological 
ageing. For the age and health categories we have studied, it is 
also relevant that the associations of the biological age mark-
ers with mortality are partly independent of the MPI, a proxy 
for the standardized geriatric health assessment CGA as used 
in the clinic. These findings suggest that DNAm GrimAge and 
MetaboHealth could be valuable to complement the current 
health, well-being, and risk assessments in clinical practice. 
Therefore, further research into the potential integration of 
these biomarkers of biological aging in a clinical setting is 
warranted as well as increasing the informativity of these 
markers on the level of the individual patient.

Supplementary Material
Supplementary data are available at The Journals of 
Gerontology, Series A: Biological Sciences and Medical 
Sciences online.
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