Skip to main content
. 2023 Sep 28;9(10):e20515. doi: 10.1016/j.heliyon.2023.e20515

Table 3.

Eigenvalues of the Jacobi matrix corresponding to each equilibrium point.

Balancing Point λ1 λ2 λ3
E1(0,0,0) RT– CT –CP + RPRC RG−CG + P
E2(1,0,0) CT– RT –CP + RPRC + μL RG−CG
E3(0,1,0) RT– CT + βRM RC + CP-RP RG−CG + P
E4(0,0,1) RT– CT+ P –CP + RP-(1-α) RC CG−RG−P
E5(0,1,1) RT– CT + βRM + P + T (1–α) RC + CPRP CG−RG−P
E6(1,0,1) CT– RT–P –CP + RP–(1–α) RP + μL CG−RG
E7(1,1,0) CT– RT–βRM CPRP+ RC-μL RG−CG−T
E8(1,1,1) CT– RT–βRM–P –T (1–α) RC+ CP–RP–μL CG –RG + T