Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1987 Jan;83(1):53–57. doi: 10.1104/pp.83.1.53

Voltage-Dependent K+-Channel in Protoplasmic Droplets of Chara corallina1

A Single Channel Patch Clamp Study

Fabrice Homblé 1,2,2, Jack M Ferrier 1,2, Jack Dainty 1,2
PMCID: PMC1056298  PMID: 16665215

Abstract

Passive transport of potassium through the plasma membrane of a protoplasmic droplet isolated from large internodal cells of Chara corallina Klein ex Willd., em, R.D.W. has been investigated using the patchclamp technique. When the membrane is hyperpolarized the conductance of a single K+-channel is of the order of magnitude of 100 picoSiemens and is reduced by tetraethylammonium chloride. Its open time is voltage dependent. This voltage-dependent K+-channel displays rectifying properties. The channel density is about 0.1 channel per square micrometer of membrane. When the membrane is depolarized the conductance of a single channel is of the order of magnitude of 30 picoSiemens and is insensitive to tetraethylammonium chloride. These results suggest that K+-channels are incorporated in the plasma membrane during membranogenesis of a protoplasmic droplet. They constitute further evidence for the existence of voltage-dependent K+-channels in plant cells.

Full text

PDF
53

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belton P., Van Netten C. The effects of pharmacological agents on the electrical responses of cells of Nitella flexilis. Can J Physiol Pharmacol. 1971 Sep;49(9):824–832. doi: 10.1139/y71-113. [DOI] [PubMed] [Google Scholar]
  2. Bisson M. A. Calcium effects on electrogenic pump and passive permeability of the plasma membrane of Chara corallina. J Membr Biol. 1984;81(1):59–67. doi: 10.1007/BF01868810. [DOI] [PubMed] [Google Scholar]
  3. Grygorczyk R., Schwarz W. Ca2+-activated K+ permeability in human erythrocytes: modulation of single-channel events. Eur Biophys J. 1985;12(2):57–65. doi: 10.1007/BF00260428. [DOI] [PubMed] [Google Scholar]
  4. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  5. Inoue I., Ishida N., Kobatake Y. Studies of excitable membrane formed on the surface of protoplasmic drops isolated from Nitella. IV. Excitability of the drop membrane in various compositions of the external salt solution. Biochim Biophys Acta. 1973 Nov 30;330(1):27–38. doi: 10.1016/0005-2736(73)90281-2. [DOI] [PubMed] [Google Scholar]
  6. Inoue I., Ueda T., Kobatake Y. Structure of excitable membranes formed on the surface of protoplasmic drops isolated from Nitella. I. Conformation of surface membrane determined from the refractive index and from enzyme actions. Biochim Biophys Acta. 1973 Mar 29;298(3):653–663. doi: 10.1016/0005-2736(73)90081-3. [DOI] [PubMed] [Google Scholar]
  7. Keifer D. W., Lucas W. J. Potassium Channels in Chara corallina: CONTROL AND INTERACTION WITH THE ELECTROGENIC H PUMP. Plant Physiol. 1982 Apr;69(4):781–788. doi: 10.1104/pp.69.4.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Koppenhöfer E. Die Wirkung von Kupfer, TTX, Cocain und TEA auf das Ruhe- und Aktionspotnetial von Nitella. Pflugers Arch. 1972;336(4):299–309. doi: 10.1007/BF00586955. [DOI] [PubMed] [Google Scholar]
  9. Moran N., Ehrenstein G., Iwasa K., Bare C., Mischke C. Ion channels in plasmalemma of wheat protoplasts. Science. 1984 Nov 16;226(4676):835–838. doi: 10.1126/science.6093255. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES