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Abstract

One of the strongest prognostic predictors of chronic kidney disease is interstitial fibrosis and 

tubular atrophy (IFTA). The ultimate goal of IFTA calculation is an estimation of the functional 

nephritic area. However, the clinical gold standard of estimation by pathologist is imprecise, 

primarily due to the overwhelming number of tubules sampled in a standard kidney biopsy. 

Artificial intelligence algorithms could provide significant benefit in this aspect as their high-

throughput could identify and quantitatively measure thousands of tubules in mere minutes. 

Towards this goal, we use a custom panoptic convolutional network similar to Panoptic-DeepLab 

to detect tubules from 87 WSIs of biopsies from native diabetic kidneys and transplant kidneys. 

We measure 206 features on each tubule, including commonly understood features like tubular 

basement membrane thickness and tubular diameter. Finally, we have developed a tool which 

allows a user to select a range of tubule morphometric features to be highlighted in corresponding 

WSIs. The tool can also highlight tubules in WSI leveraging multiple morphometric features 

through selection of regions-of-interest in a uniform manifold approximation and projection plot.
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I. INTRODUCTION

Histological changes in renal biopsies serve as diagnostic and prognostic markers. One of 

the strongest prognostic markers of chronic kidney disease (CKD) is interstitial fibrosis 

and tubular atrophy (IFTA) [1]. Increasing amounts of IFTA represent increasing amounts 

of irrecoverable chronic damage that reduce the kidney’s ability to filter blood [2]. It 

is the final common pathway for all chronic kidney diseases [3]. The level of chronic 

changes in kidney biopsy are also important for therapeutic decisions, sparing patients with 
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advanced chronicity from the potentially cytotoxic side-effects of common drug therapies 

[4]. However, there is significant variability in IFTA grading among pathologists, as it 

develops in a patchy fashion across broad regions of the biopsy, making it difficult to 

mentally aggregate the total affected area. This variability can potentially cause inaccurate 

assessment. Additionally, the broad grading scale of IFTA currently used clinically: minimal 

(≤5%), mild (≤25), moderate (≤50%), and severe (>50%), reduces the precision of IFTA 

as a prognostic marker [5]. The primary limitation hindering pathologists from providing a 

more precise estimation is data volume – there are tens of thousands of tubules in a single 

biopsy, which would require an exhausting amount of manual effort to quantify with a high 

degree of precision. Computational image analysis, on the other hand, has the potential to 

automatically recognize and analyze clinically valuable features in biopsies at large scale 

[6]. This can not only save time but greatly augment the level of quantitative precision used 

for pathology reporting [7]. To improve the objectivity of morphometric analysis of IFTA, 

we trained a panoptic convolutional neural network to segment individual tubules contained 

in digitized renal biopsies stained with periodic acid-Schiff (PAS). From each individual 

tubule detected automatically by this network, a large number of digital morphometric 

and textural features were measured using an automated pipeline. This pipeline quantitated 

over 200 features, a few of which included tubular radius, luminal radius, and tubular 

basement membrane thickness. To help parse this overwhelming dataset (thousands of 

tubules per patient * 206 features * 87 patients), we developed a visualization tool to parse 

the segmented tubules’ morphometry and isolate tubules with morphometric qualities of 

interest in the whole biopsy image. The tool is capable of isolating tubules not just based 

on a range of values within a single morphometric dimension but also based on a non-linear 

combination of all morphometric measurements. These tools will assist us in our future 

works to develop a more objective method of assessing tubular pathology in renal biopsy.

II. RESULTS

To detect the tubules in kidney biopsies, a previously trained convolutional panoptic neural 

network model was utilized [8]. The outputs of this model were translated to an XML based 

annotation file that can be viewed in a whole slide image (WSI) viewer such as Aperio® 

ImageScope. The segmented tubular boundaries can be seen as blue outlines in Figure 2.

Diameter Measurement.

To calculate the tubular radius of tubules with widely variant sectioning profiles, we used 

the maximum value of the distance transform[9] of the tubular region. This approximates the 

radius of the tubule in a generalized fashion regardless of its sectioning angle, as shown in 

Figure 1. In Figs 1A–C, the radius and diameter area measured for a curved tubule, in Figs. 

1D–F, the radius and diameter are measured for a circular tubule, while in Figs 1G–I, the 

radius and diameter are measured for a straight tubule

Single morphometric isolation.

Each detected tubule (total ~303K) was measured with the 206 digital histomorphometric 

features. To facilitate investigation of this massive dataspace, we developed an algorithm 

to highlight tubules in biopsies based on a user specified range in morphometric feature. 
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To demonstrate its utility, we first calculated the mean and standard deviation of the radii 

of pooled tubules from either diabetic nephropathy (DN) or transplant patients. For the 

transplant biopsy tubules, the mean radius and standard deviation were found to be μt = 

73.15 pix / 18.29 microns and σt = 31.1 pix / 7.8 microns; for the diabetic patients, μd 

= 65.24 pix / 16.31 microns and σd = 29.8 / 7.45 microns. Using these values and the 

automatically segmented boundaries, we isolated tubules with radius less than the global 

mean inside the original WSI. Figs. 2A and 2B respectively show the histogram of measured 

radii for transplant and DN tubules. Figs. 2C (transplant) and 2D (DN) respectively show 

the corresponding tubules of Figs. 2A and 2B mapped back to two individual WSI. The 

highlighted tubules primarily correspond to tubular atrophy. This tool could easily be 

repurposed on a set of control tissues to define a reference range of ‘normal/healthy’ tubular 

morphometrics.

Multimorphometric tubular isolation.

Although individual morphometric measurements are useful, clinical assessments are rarely 

based on a single morphometric measurement. To further investigate the morphological 

properties of the tubules accounting for multiple features, we expanded our tool to highlight 

tubules based on user-selected coordinates of a uniform manifold approximation and 

projection (UMAP) dimensionality reduction plot[10]. Fig. 3A shows the reduction plot 

for the 206 features of tubules in transplant kidney biopsies, whereas Fig. 3B shows the 

reduction plot for the morphological features extracted from each tubule of native DN 

kidney. Color labels correspond to the recorded CKD stage of the patient from which the 

tubule was extracted. In each reduced dimensional space, a number of distinct and separate 

point clouds can be observed, implying the existence of several distinct morphological 

signatures. Moreover, within each point cloud, there is a variable distribution of structures 

from CKD stages, such as CKD 4 tubules preferring to cluster on the northern end of the 

largest cluster in Figure 3A. Black boxes in Figs. 3A and 3B were selected manually by the 

user, and the tubules in this cluster were mapped back onto the WSI with black outlines in 

Figs. 3C and 3D. Points identified in Figs. 3A/3C appear to correspond to smaller radius 

tubules, the majority of which display casts in their lumen. Points identified in Figs. 3B/3D 

appear to correspond to severely atrophic tubules without any observable nuclei (Fig. 3D).

III. METHODS

Image data.

WSIs of PAS-stained biopsy sections (2μm thick) from 57 native diabetic kidneys and 30 

transplant kidneys were used, as collected for a previous study [8, 11]. All images were 

scanned with a whole slide scanner (Aperio®, Leica) at 40x magnification resulting in 

images with a resolution of 0.25 μm/pixel. Human data collection procedure followed a 

protocol approved by the Institutional Review Board at University at Buffalo.

Tubular Segmentation.

Tubules were detected with a custom designed convolutional panoptic segmentation network 

[12]. The network identified a total of 302,696 tubules in the 87 WSIs.
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Tubular Features.

The tubular feature measurement process was similar to that published in recent previous 

work by the authors [11], but expanded and modified for application to tubules. Each 

individual tubule was sub-compartmentalized using simple color transformations and 

thresholded into five classes: nuclei, epithelia, lumina, tubular basement membrane (TBM), 

or intra-tubular PAS objects (PAS stained droplets, apical brush borders, casts, or other PAS 

stained cellular debris). 206 features were measured on each identified tubule using these 

sub-components, measuring a number of characteristics such as morphometry, texture, color, 

and intrastructual and interstructural distances.

To ensure a proper measurement of the tubular diameter regardless of tubular shape or 

type of cut, we first performed a distance transformation, which calculates, for each pixel 

foreground pixel, the distance to the nearest background pixel. First, for each pixel, distance 

to the background in the x direction and y directions is calculated, and the Pythagorean 

theorem is used on these to yield the magnitude of the vector which points directly to 

the closet background pixel. Then, each of these vectors describes one inscribed circle 

centered around every pixel, and therefore, the largest of these would yield a radius which is 

equivalent to half the diameter of the overall tubule.

Feature dimensional reduction.

Dimensionality reduction was done using the Seurat package[13]. Image features were first 

centered and scaled to have zero mean and unit variance. Then, a principal component 

analysis was performed, and principal dimensions greater than 20 discarded. The remaining 

20 PCA dimensions were reduced to two with a UMAP. The points in the UMAP space were 

then labeled by the CKD stage of their patient of origin.

Tubular feature visualization.

The visualization tool takes as input the list of extracted features and the associated image 

names for each feature. Each image name corresponds to a unique identifier linking the 

particular image to the patient from whence it came and the coordinates of the bounding box 

used to crop the region. These coordinates are converted to a simple XML-based bounding 

box annotation readable by Aperio® ImageScope.

IV. CONCLUSION

We have developed a tool to automatically isolate and study tubules based on their 

histomorphometric qualities. In future works, we will utilize our tools to develop statistical 

reference ranges of normal tubules, which can be used as a baseline to be compared to 

diseased tubular morphometry.
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Figure 1. Tubular Diameter Measurement
A) Curved tubule with its B) predicted boundary and the C) distance transformation (blue: 

high values, red: low values). D) Circular tubule with E) predicted boundary and F) distance 

transformation. G) Straight tubule with H) predicted boundary and I) distance transform of a 

straight tubule.
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Figure 2. Visualization of tubules with radius less than the global mean (μ).
Histogram of tubular radii in A) transplant tubules and B) DN tubules (red box - less than 

μ). Example of C) transplant and d) diabetic nephropathy WSI with black boxes highlighting 

tubules with radius below μ.
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Figure 3. Multimorphometric tubular isolation.
UMAP of extracted A) transplant tubular morphological measurements and B) DN tubular 

morphological measurements. Example of C) transplant and D) DN kidney with tubules-of-

interest (from A and B) highlighted. Numerical labels indicate CKD stage.
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