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Abstract
Substance use disorder (SUD) is a growing health problem that affects several millions of people worldwide, resulting in 
negative socioeconomic impacts and increased health care costs. Emerging evidence suggests that extracellular vesicles 
(EVs) play a crucial role in SUD pathogenesis. EVs, including exosomes and microvesicles, are membrane-encapsulated 
particles that are released into the extracellular space by most types of cells. EVs are important players in mediating cell-
to-cell communication through transfer of cargo such as proteins, lipids and nucleic acids. The EV cargo can alter the status 
of recipient cells, thereby contributing to both physiological and pathological processes; some of these play critical roles in 
SUD. Although the functions of EVs under several pathological conditions have been extensively reviewed, EV functions 
and potential applications in SUD remain less studied. In this review, we provide an overview of the current knowledge of 
the role of EVs in SUD, including alcohol, cocaine, heroin, marijuana, nicotine and opiate abuse. The review will focus 
on the biogenesis and cargo composition of EVs as well as the potential use of EVs as biomarkers of SUD or therapeutic 
targets in SUD.
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Introduction

Substance use disorder (SUD) is a chronic, relapsing dis-
ease caused by the persistent use of drugs such as alcohol, 
cocaine, tobacco, and opioids. SUD is now a significant 
public health problem that results in increased morbidity, 
mortality, loss of productivity, and increased health care 
costs [1]. The underlying mechanisms of SUD, however, 
have yet to be fully explored. While there are several cel-
lular processes linked to causing SUD, emerging evidence 
suggests that alterations in the quantity and the biological 
content of extracellular vesicles (EVs) play an essential role 
in SUD. Therefore, understanding how EVs are involved in 
the development of SUD could lead to the discovery of novel 
biomarkers and treatment options for this disease.

Extracellular vesicles are a heterogeneous group of mem-
brane-bound vesicles that are released by various types of 
cells [2]. EVs carry cargo of nucleic acids, proteins and 
lipids that can be exchanged between cells [3–5]. As per 
the International Society of Extracellular Vesicles (ISEV) 
classification, EVs, which range in diameter from 20 to 
1000 nm, consist of several subclasses, including exosomes, 
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microparticles (also termed ectosomes, microvesicles, shed-
ding vesicles, exosome-like vesicles, nanoparticles), and 
apoptotic bodies [6–8]. Historically, EVs were identified as 
early as the 1970s when Aaronson et al. found that Och-
romonas danica synthesized a variety of large and small 
intra and extra-cellular membrane-bounded structures 
derived from membranes associated with the flagella, mito-
chondria, chloroplasts and plasma membrane [9]. Work in 
the 1980s identified that the transferrin receptors located 
within reticulocytes were also linked with 50-nm-sized vesi-
cles that were released into the extracellular space as the 
reticulocytes matured [10–12]. Since then, EVs have been 
purified and characterized from several mammalian as well 
as prokaryotic cells.

The importance of EVs lies in their ability to mediate 
cell-to-cell communication and their significant roles in 
various normal physiological processes as well as in patho-
logical conditions such as cardiovascular disease (CVD) 
[13–15], cancer [16, 17], inflammation [18], and SUD 
[19–21]. Literature that describes the role of EVs and their 
cargo in the biogenesis and functional outputs related to 
drug abuse and addiction is reviewed here. Additionally, we 
provide a detailed analysis of how EVs could be used as 
biomarkers and therapeutic targets in SUD.

Biogenesis of EVs in SUD

The biogenesis of EVs occurs either dependent or inde-
pendent of the endosomal sorting complex required for 
transport (ESCRT) pathway [22–24]. In the ESCRT 
dependent pathway, intraluminal vesicles (ILVs) are 
formed within large multivesicular bodies (MVBs) by 
invagination of late endosomal membranes that then 
accumulate proteins and cytosolic components or are traf-
ficked to lysosomes for degradation [24]. The formation 
of ILVs is regulated by the ESCRT pathway which has 
been shown to facilitate MVB formation, vesicle budding, 
and protein cargo sorting [25]. The ESCRT machinery has 
four functional units known as ESCRT-0, I, II, and III that 
act together with other proteins to recruit cargo into the 
ILVs. Evidence also suggests that MVBs and ILVs can 
form independently of ESCRT function, instead involv-
ing proteins of the tetraspanin family (that include CD9, 
CD63, CD81, CD82, and CD151) [5]. For example, sort-
ing of pre-melanosomal protein (PMEL) to the ILVs of 
MVBs in melanocytic cells is independent of ESCRT 
mechanisms [26] but requires the tetraspanin CD63 [27]. 
Similarly, CD63 can be instrumental in the formation of 
small (< 40 nm) ILVs in MVBs of HeLa cells, which form 
independently of the hepatocyte growth factor regulated 
tyrosine kinase substrate that acts in association with 
ESCRT-I [28]. The ESCRT-independent pathway has 
been shown to be mediated via raft-based microdomains 

that are highly enriched in sphingomyelinases [29]. Two 
lipid metabolism enzymes (neutral sphingomyelinase and 
phospholipase D2) have been shown to generate lipids in 
the limiting membrane of MVBs, which induce inward 
budding and, thus, formation of ILVs in an ESCRT-inde-
pendent manner [22, 23]. These studies demonstrate that 
EVs can be formed by both ESCRT-dependent and inde-
pendent mechanisms. In this section we will describe how 
the biogenesis of EVs is modulated by SUD based on the 
available literature.

Alcohol impairs glial and astrocytic function in the brain, 
and exposure to alcohol in prenatal stages alters the devel-
opment of several brain regions such as the cerebellum, 
cortex, and hippocampus [30, 31]. Additionally, alcohol 
interferes with communication between nerve cells and sup-
presses excitatory nerve pathways [32]. Crenshaw B. et al. 
demonstrated that alcohol, increased heat shock protein-90 
(HSP90) and decreased CD18 in the exosomes derived from 
BV-2 microglial cells [33]. Similarly, increased levels of 
HSP60, HSP70 and apoptotic proteins FAS and caspase 9 
in EVs released from alcohol-stimulated HeLa cells have 
been observed [34]. In HIV-infected patients, the proteins 
hemopexin and properdin were decreased in the plasma EVs 
in  HIV+ smokers and  HIV+ drinkers compared to  HIV+ 
patients that did not smoke or drink alcohol [35]. These 
findings indicate that HIV and drug abuse could alter the 
biogenesis of EVs through the tetraspanins such as CD63.

Cocaine use has also been shown to alter EV character-
istics and content. Exposure of human glioblastoma cells 
to a low concentration of cocaine (150 nM) significantly 
increased the number of vesicles with 61–80 nm diameter, 
whereas exposure of these cells to higher concentrations of 
cocaine (300 nM and 150 μM) resulted in increased release 
of smaller vesicles (30–40 nm diameter) [36]. In another 
study, exposure to cocaine increased EV release from neu-
roblastoma cells through the dissociation of the sigma-1 
receptor (Sig-1R) from ADP-ribosylation factor (ARF6), a 
G-protein regulating EV trafficking, leading to activation 
of myosin light chain kinase (MLCK) [37]. Trubetckaia 
et al. showed that cocaine exposure in mice resulted in an 
increase in EVs release in the serum and the brain [38]. 
Cocaine-mediated increase of Alix and CD63 in the brain 
was blocked in α-syn knockout mice, demonstrating the 
crucial role of α-syn in Alix-mediated formation of MVB 
ILVs [38]. In line with these findings, a recent study also 
demonstrated that the use of substances such as cocaine, 
psychostimulants, marijuana, opiates, and alcohol promoted 
the secretion of semen EVs in people living with HIV that 
enhanced actin reorganization, chemotactic migration and 
adhesion of monocytes [39]. These findings have established 
that substance abuse alters both the number and composi-
tion of EVs in various cells, although the exact underlying 
mechanisms warrant further investigation.
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Composition of EVs in SUD

It is well established that EV cargo can include nucleic acids 
(messenger RNAs (mRNAs) and microRNAs (miRNA)), 
cytokines, organelles (mitochondria), bioactive lipids, pep-
tides, ions, growth factors, proteins and transcription fac-
tors [3–5]. This diverse and vast cargo can be exchanged 
between cells, thereby contributing to intercellular commu-
nication in a multitude of physiological and pathological 
conditions, including those seen in SUD. In the context of 
SUD, several studies have focused on characterizing miRNA 
cargo; however, much less is known about other EV cargos. 
Consequently, there is a rapidly growing interest aimed at 
understanding EV composition and function in the context 
of SUD. In this section, we discuss the composition of EVs 
in the context of SUD (Fig. 1).

Table 1 RNA and protein content of EVs 
and potential for use as biomarkers for SUD

RNA composition of EVs

Seminal studies have demonstrated that EVs contain func-
tional RNA species [40, 41]. Specifically, EVs have been 
shown to contain mRNAs [40, 42], long non-coding RNAs 
(lncRNA) [54], miRNAs [40, 50], piwi-interacting RNAs, 
and ribosomal RNAs (rRNA) [54]. miRNA processing 
components such as Dicer and AGO1 have also been found 
within EVs [55–59]. Several miRNAs have been identified 
as being altered in EVs in animal models or humans affected 

by SUD (Table 1). For example, miR-27a, let-7f, miR-29a, 
miR-340, miR-122, miR-155, miR-122, miR-192 and miR-
30a were found to be elevated in EVs from rodents exposed 
to alcohol [19, 43–46]. These miRNAs were implicated in 
alcohol-mediated polarization of monocytes into M2 proin-
flammatory status, liver injury and inflammation. In HIV-
infected and cocaine-treated human monocyte-derived mac-
rophages, Sharma et al., observed a significant increase in 
miR-130a levels in the EVs derived from these cells. Follow-
ing the addition of these EVs to primary human pulmonary 
arterial smooth muscle cells, a decrease in the expression 
of miR-130a targeted molecules such as phosphatase and 
tensin homolog and tuberous sclerosis 1 and 2, and con-
comitant activation of PI3K/protein kinase B signaling was 
observed [47]. In  HIV+ heroin users, Wang et al., showed 
that the levels of four neuroinflammation-related miRNAs 
(146a, 126, 21, and let-7a) in plasma exosomes were higher 
in HIV-infected heroin users as compared with the control 
individuals [48]. Similarly, opiates such as morphine have 
been shown to enhance HIV transactivator of transcription 
(Tat)-mediated toxicity in both human neurons and neuro-
blastoma cells [50]. Morphine and HIV Tat increased the 
release of miR-29b in EVs from astrocytes and exposure 
of neuronal SH-SY5Y cells to EVs from morphine-treated 
astrocytes showed a decrease in the expression of platelet-
derived growth factor-B (PDGF-B), with a concomitant 
decrease in viability of neurons [50]. Interestingly, HIV 
infection and heroin also upregulated the majority (98%) of a 
panel of plasma exosomal miRNAs associated with immune 
regulation and inflammation [48].

Fig. 1  Substance abuse affects 
the biogenesis of Extracellular 
Vesicles (EVs). Drugs of abuse 
are taken up either by receptor-
mediated mechanisms or by 
diffusion and are encapsulated 
as endosomes that can fuse 
with late endosomes to form 
multivesicular bodies (MVBs) 
containing intra-luminal 
vesicles (ILVs). In this process, 
drugs of abuse alter ESCRT and 
non-ESCRT components during 
biogenesis, ultimately result-
ing in altered EV cargo and/or 
release

Altered EV Cargo
Alcohol
Rab7, HSP70
Cocaine
ALIX , CD63, TSG101 
Opiates
miR-29b

Endosome

Substance of abuse 
(alcohol, cocaine, opiates, nicotine)

MVB

ILV

Altered EV quantity 
(increased EV numbers by 
alcohol, cocaine and opiates)

1. ESCRT–dependent
Cocaine
ALIX, TSG101

2. ESCRT–independent
Cocaine
CD63
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Increased expression of miR-145-3p and miR-181a-5p 
has also been reported in serum exosomes from rats 
exposed to methamphetamine [49]. While reports of lncR-
NAs in SUD are still scarce, in one study the expression 
of LINC00355 and MALAT1 was found to be significantly 
lower in urinary exosomes isolated from cigarette smokers 
and opium-addicted patients with transitional cell carcinoma 
(TCC) when compared with controls. On the other hand, 
the expression of LINC00355 tended to be higher in opium-
addicted TCC patients that did not smoke cigarettes com-
pared to opium-addicted smokers [51].

Protein composition of EVs

Proteomic analyses have revealed a set of proteins com-
monly found in EVs that are routinely used to character-
ize EVs [3]. Due to their endosomal origin, exosomes 
contain classical membrane transport and fusion proteins 
(GTPases, annexins and flotillin), tetraspanins (CD9, 
CD63, CD81 and CD82), specific stress proteins (Hsc70 

and Hsp90), protein members of the ESCRT (Alix and 
TSG101), and proteins involved in membrane fusion (Rabs 
and ARF6) [24, 60, 61]. EVs have also been described to 
contain ADAM10, ACE, EHD4, and major histocompat-
ibility complex [3].

In the context of SUD, Cho et al. reported the increased 
expression of CYP2E1 in plasma EVs obtained from rats 
exposed to oral doses of binge ethanol or dextrose controls 
and also in humans with alcoholism [52]. These EVs from 
alcohol-exposed rats and patients with alcoholism were 
shown to be functional and could promote cell death in 
naïve cells [52]. Verma et al. found that exposure of hepato-
cytes to alcohol resulted in the release of EVs that contain 
CD40L in a caspase-dependent manner, which, in turn, led 
to macrophage activation and inflammation [53]. As of now, 
the role of EVs containing other types of cargos such as 
organelles, bioactive lipids, peptides and ions in SUD has 
not been well studied and deserves attention in the future.

Table 1  RNA and protein content of EVs and potential for use as biomarkers for SUD

Molecule and/or 
potential biomarker

Drug Model Potential 
source of 
biomarker

Methods Change Function Ref

RNA species
 miR-27a Alcohol Monocytes Serum qPCR Up M2 monocyte 

polarization
[20]

 Let-7f, miR-29a, 
and miR-340

Alcohol Mouse hepatocytes Serum RNA-seq and qPCR Up Inflammation, liver 
injury

[43]

 miR-122 and miR-
155

Alcohol Mice Serum qPCR Up Liver damage and 
inflammation

[44], [44]

 miR-122, miR-192 
and miR-30a

Alcohol Mice and humans Serum miRNA microarray 
and qPCR

Up Liver damage and 
inflammation

[46]

 miR-130a Cocaine Macrophages Serum RNA-seq and qPCR Up Pulmonary smooth 
muscle prolifera-
tion

[47]

 miR-146a, miR-
126, miR-21 and 
let-7a

Heroin HIV+ heroin users Serum miRNA microarray 
and qPCR

Up Immune regulation 
and inflammation

[48]

 miR-145-3p and 
miR-181a-5p

Methamphetamine Rat Serum Gene-chip sequenc-
ing and qPCR

Up Neural plasticity and 
reward circuits

[49]

 miR-29b Morphine Macaques CSF, brain miRNA microarray 
and qPCR

Up Regulated PDGF-
B and neuronal 
viability

[50]

 Linc00355 Opiates Human Urine qPCR Up Cell proliferation [51]
 Malat 1 Opiates Human Urine qPCR Down Cell proliferation [51]

Protein
 CYP2E1 Alcohol Mice and humans Serum Immunoblot Up Oxidative hepato-

cyte injury
[52]

 CD40L Alcohol Mice hepatocytes Serum Chemokine/cytokine 
array, immunoblot 
and immunogold 
EM

Up Macrophage activa-
tion, inflammation

[53]
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Mechanisms and functions of EVs in SUD

Due to their rich and unique composition and the inher-
ent ability to interact with other cells, EVs play functional 
roles in many biological processes in the context of SUD, as 
shown in Fig. 2. EVs from macrophages exposed to alcohol 
are readily taken up by naïve macrophages leading, in turn, 
to cellular activation and polarization towards an inflamma-
tory (M2) phenotype [20]. Hepatocytes exposed to alcohol 
released EVs that contain miRNA cargo that contributes to 
liver injury and inflammation [43]. In the context of cocaine 
exposure, macrophage-derived EVs contributed to a signifi-
cant increase in the proliferation of primary human pulmo-
nary arterial smooth muscle cells (HPASMCs) [47]. Plasma 
exosomes from HIV-infected heroin users have high levels 
of neuroinflammation-related miRNAs such as miRs-146a, 
-126, -21, and -let-7a that contribute to immune regulation 
and inflammation [48]. Plasma EVs released in the context 
of methamphetamine in rats are involved in the regulation 
of neural plasticity, reward circuits and the development of 
addiction [49]. These examples demonstrate the functional 
roles of EVs in inflammation, immune regulation, cell pro-
liferation, as well as organ injury and damage (Fig. 2). In the 
following sub-sections, we discuss the current literature on 

the functional roles of EVs in alcohol, cocaine, marijuana, 
methamphetamine, nicotine and opioids.

Alcohol

According to the World Health Organization (WHO), alco-
hol abuse and its related complications contribute to 5% 
of the global health burden and 6% of total deaths world-
wide (WHO 2014) [62]. Alcohol is known to cause liver 
damage and damage to other organs, including the central 
and peripheral nervous system, gastrointestinal tract, heart 
and vascular systems, and endocrine and immune systems 
[63]. More recently, it has been reported that alcohol intake 
accelerates several disease conditions such as HIV, tuber-
culosis and pneumonia (WHO 2014) [62]. Consequently, 
multiple studies have been carried out to investigate differ-
ent alcohol-induced hepatic and extrahepatic complications 
[64, 65]. However, the detailed molecular mechanisms are 
poorly understood. Interestingly, several reports have identi-
fied the effects of alcohol abuse on EV release and altered 
EV functions, which may be associated with extrahepatic 
complications [66]. Exposure of human monocytes to alco-
hol led to increased release of EVs from these cells, which 
in turn stimulated naive monocytes to polarize into M2 

Fig. 2  Extracellular vesicles 
(EVs) released from cells in the 
context of substance abuse can 
exert various biological effects. 
EVs can activate macrophages 
and polarize these cells towards 
an M2 inflammatory phenotype, 
regulate immune function and 
inflammation in immune cells, 
induce liver damage in hepato-
cytes and modulate neural 
plasticity and reward circuits in 
neurons
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Lung smooth 
muscle cells

Immune cells
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Alcohol
miR-27a, CD40L & CYP2E1
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macrophages [66]. These activated macrophages increased 
secretion of IL-10, TGF-1β and phagocytic activity. Fur-
ther studies demonstrated that these effects were medi-
ated by the upregulation of M2-polarizing miR-27a in EVs 
released from alcohol-exposed monocytes [66]. Another 
study showed that plasma exosomes that contain substantial 
amounts of CYP2E1 aggravated alcohol-induced toxicity in 
both hepatic and monocytic cells [21]. Inhibition of CYP2E1 
enzyme activity abrogated the toxic effects in these cells. 
These authors also validated the induction of plasma exoso-
mal CYP2E1 in a murine alcohol binge drinking model [21].

In a model of alcoholic liver disease (ALD), exposure to 
alcohol was shown to dysregulate the autophagy pathway 
and lysosomal function that was accompanied by increased 
exosome production [67]. In this study, the authors also 
demonstrated that the release of exosomes in the context of 
alcohol was regulated by miR-155 [67]. Exposure to alcohol 
not only affects EV release in peripheral cells but also in the 
central nervous system (CNS). In line with these findings, 
ethanol administration to astrocytes increased the number 
of secreted nanovesicles containing increased amounts of 
TLR-4, NF-κB-p65, IL-1R, caspase 1, NLRP3, and miR-
146a and -182, and reduced amounts of miR-200b [68]. The 
authors further demonstrated that these EVs were taken-
up by neurons, which increased the neuronal levels of the 
inflammatory protein Cox-2 and miR-146a, compromising 
the viability of the neuronal cells [68]. A recent report has 
also shown that exposure of microglia to alcohol resulted 
in increased exosome biogenesis as well as significantly 
impacted the morphology, viability and protein content of 
the microglia [33]. A recent study conducted on humanized 
mice demonstrated that HIV-infection and ethanol admin-
istration increased secretion of human hepatocyte-derived 
EVs into the serum and the increase in EVs secretion was 
associated with lysosomal dysfunction [69]. Overall, these 
studies showed that alcohol abuse impacted several cellu-
lar functions by altering the function and content of EVs, 
which could be considered important targets for abrogating 
the effects of alcohol abuse.

Cocaine

Cocaine is a naturally occurring and highly addictive 
stimulant drug. As per the National Survey on Drug Use 
and Health (NSDUH), there is relatively stable use of 
cocaine since 2009 [70]. The action of cocaine has been 
shown to block the functions of the dopamine transporter, 
thus increasing concentrations of synaptic dopamine in the 
reward pathways of the brain. In addition, it is well known 
that exposure to cocaine results in dysregulation of miRNA 
expression and synaptic plasticity, which, in turn, leads to 
an increased propensity for the consumption of cocaine. The 
miRNAs that have been reported to be altered by cocaine 

include miR-132 [71], miR-181a [72], miR-134 [73], miR-22 
[73] and miR-124 [74]. As an example, exposure to cocaine 
has been shown to decrease the expression of miR-124 in the 
brain of cocaine-administered rodents [72, 75–77].

Delivery of these miRNAs into the recipient cells could 
be facilitated by EVs. In this regard, Jarvis et al. demon-
strated that cocaine-induced downregulation of astroglial 
internalization of neuronal CD63-GFP+ exosomes resulted 
in decreased transferred neuron-derived miR-124-3p into 
astrocytes, which, in turn, lead to decreased GLT1 expres-
sion [30]. GLT1 is a protein that regulates synaptic plastic-
ity in the nucleus accumbens (NAc) and is associated with 
cocaine-seeking behavior [78]. This work thus suggests 
that EV-miRNA-mediated interaction between neurons 
and astrocytes could contribute to cocaine addiction. In 
addition, emerging evidence suggested that cocaine could 
induce synthesis of the endocannabinoid 2-arachidonoylg-
lycerol (2-AG) in the midbrain, which, in turn, resulted in 
increased activity of dopaminergic neurons that contribute 
to cocaine addiction [37]. Nakamura et al. [37] examined 
a novel pathway by which cocaine induces the release of 
2-AG. The authors demonstrated that cocaine increased EV 
release in a Sig-1R dependent manner. Furthermore, cocaine 
can also induce the secretion of 2-AG via its interactions 
with the Sig-1R. This in turn led to the release of 2-AG in 
EVs, consequently engaging type-1 cannabinoid receptors 
(CB1) that contribute to cocaine addiction [37]. Another 
study revealed that cocaine exposure could also increase 
release of EVs by glioblastoma cells [36]. Sharma et al., 
demonstrated that HIV–infected and cocaine-treated human 
monocyte derived macrophages released a higher number of 
EVs compared to HIV-infected or uninfected cocaine-treated 
macrophages, with a significant increase in the particle size 
range to 100–150 nm. These EVs also had increased levels 
of miR-130a [47]. Overall, these studies showed that expo-
sure to cocaine could increase not only the release of EVs 
but also the delivery of EV-miRNAs, which, in turn, con-
tributes to cocaine addiction.

Marijuana

A recent study has shown that cannabidiol (CBD) is a 
potent inhibitor of the release of EVs in cancer cell lines 
such as prostate cancer (PC3), hepatocellular carcinoma 
(HEPG2),and breast adenocarcinoma (MDA-MB-231) [79]. 
It was also shown that cannabinoids sensitize cancer cells 
to chemotherapy. This study concluded that the anti-cancer 
effects of CBD are partly due to its effects on EV biogenesis, 
suggesting that CBD could be considered as a therapeutic 
agent for targeting EV-mediated pathological events [79]. 
In another study, exposure of glioblastoma cells to CBD 
resulted in released EVs containing reduced levels of pro-
oncogenic miR-21 and increased levels of anti-oncogenic 
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miR-126, compared to that of controls [80]. In addition, it 
was also observed that exposure of glioblastoma cells to 
CBD resulted in reduced expression of prohibitin, a mul-
tifunctional protein with mitochondrial protective proper-
ties and chemoresistant functions, suggesting that CBD has 
implications for the treatment of glioblastoma [80]. Of note, 
it was observed that EVs released from microglia serve as 
transporters of endocannabinoids. These endocannabinoids 
were associated on the surface of the EVs, leading to acti-
vation of CB1 and inhibit presynaptic transmission in tar-
get GABAergic neurons [81]. Only a few studies have been 
conducted on the effects of marijuana and its compounds on 
EVs. However, these reports show a strong effect of CBD 
on EV biogenesis, which open promising avenues for future 
research.

Methamphetamine

Methamphetamine is a potent psychostimulant that is among 
the most commonly used illicit drugs. There are over 35 mil-
lion users worldwide, thus making methamphetamine abuse 
a significant global health crisis [82]. Emerging studies have 
demonstrated that acute and chronic doses of methampheta-
mine exposure resulted in long-term damage in many brain 
regions, leading to neurocognitive impairment. However, the 
mechanisms by which methamphetamine mediates neurotox-
icity are still largely unknown.

The effect of methamphetamine on miRNA delivery via 
EVs has not been examined in detail. In one study, increased 
expression of miR-145-3p and miR-181a-5p was observed 
in the serum exosomes from methamphetamine exposed rats 
[49]. Another study in humans with methamphetamine use 
disorder demonstrated that the level of miR-9-3p was sig-
nificantly increased in methamphetamine abusers compared 
with normal controls [83]. Furthermore, an in vivo study 
demonstrated that methamphetamine treatment increased 
the release of endothelial cell-derived EVs with  Annexinv+/
CD144+/CD41−/CD31+ phenotype [84]. These studies sup-
port the idea that EVs could serve as an efficient carrier 
of miRNAs contributing to methamphetamine-mediated 
neurotoxicity.

Studies have shown that methamphetamine use can exac-
erbate HIV-1 infection and HIV-associated neuropathogene-
sis [85–89]. Since methamphetamine exposure can facilitate 
the release of EVs [84] with HIV-1 components such as Nef 
proteins [90, 91] and TAR RNA [92, 93], EVs could play 
an essential role in the development of neuropathogenesis 
in HIV-1 + methamphetamine users [94].

Nicotine

Smoking of cigarettes is known as a leading cause of pre-
ventable disease and premature death all over the world. In 

the United States, approximately 435,000 people die pre-
maturely from smoking-related diseases each year; overall, 
there is approximately a 50% chance that a lifelong smoker 
will die from a complication of smoking [95]. Cytokine pro-
filing analysis revealed that the levels of plasma EV IL-8 and 
IL-6 expression was significantly upregulated in HIV-posi-
tive smokers compared with HIV-positive non-smokers and 
HIV-negative subjects, respectively [96]. The cytochromes 
P450 (CYPs)-mediated metabolites of Benzo[a]pyrene 
(BaP), a major carcinogen in cigarette smoke, have been 
shown to induce HIV-1 replication [97]. The levels of 
CYPs 1A1, 1B1, 3A4 were significantly upregulated in EVs 
derived from HIV-infected U1 cells treated with cigarette 
smoke condensate (CSC) compared with EVs derived from 
uninfected U937 cells treated with CSC [98], suggesting 
upregulated CYPs in EVs could contribute to the enhance-
ment of HIV replication in macrophages. Interestingly, EVs 
released from CSC-exposed monocytic cells exhibited a pro-
tective effect against cytotoxicity [99], indicating a clinical 
value of EVs as proposed previously [100].

A recent study has demonstrated that nicotine exposure 
could result in the release of atherogenic exosomes from 
macrophages. These miRNA-containing exosomes medi-
ate cellular crosstalk which, in turn, leads to proatherogenic 
phenotypes of vascular smooth muscle cells (VSMCs) 
[101]. The nicotine-mediated development of atheroscle-
rosis is driven via macrophages-derived miR-21-3p induc-
ing migration and proliferation of VSMC through its target 
phosphatase and tensin homolog (PTEN) [101]. In addition, 
nicotine has been shown to increase levels of circulating 
endothelial cell-derived and platelet-derived EVs, which 
could be the mechanism by which nicotine induces cardi-
ovascular disease [102]. Although not many studies have 
been conducted on the effects of nicotine on EVs, the few 
reports show that EVs may serve as potential carriers of 
behavior-altering miRNAs that underly the mechanism(s) by 
which nicotine mediates the pathogenesis of several chronic 
diseases.

Opiates

Opiates are analgesics extensively used in clinical settings 
as well as drugs of abuse [103]. Chronic exposure leads to 
several complications leading to addiction, tolerance and 
cognitive impairment etc. [104]. EVs derived from mor-
phine-stimulated astrocytes were shown to be taken up by 
microglial cells which caused activation of the TLR-7-lin-
cRNA-Cox2 axis resulting in impaired microglial phagocy-
tosis [105]. Additionally, intranasal delivery of EVs loaded 
with lincRNA-Cox2 siRNA restored microglial phagocytic 
activity in mice administered morphine, suggesting a role 
for EVs in morphine mediated dysregulation of microglial 
phagocytosis [105]. In another study, EVs derived from 



4856 E. T. Chivero et al.

1 3

astrocytes that were exposed to morphine and HIV protein 
Tat were shown to contain miR-29b. When neuronal SH-
SY5Y cells were exposed to these EVs, there was decreased 
expression of PDGF-B along with decreased viability of 
neurons. miR-29b was identified to target PDGF-B mRNA 
resulting in translational repression in SH-SY5Y cells. This 
study demonstrated the important role of miR-29b in the 
EVs and its regulation of PDGF-B in HIV-infected opiate 
addicts [50]. Moreover, morphine has also been shown to 
induce the expression of miR-138 in morphine-stimulated 
astrocyte-derived EVs, which can be taken up by microglial 
cells and, in turn, activates the TLR7-NF-kB axis and ulti-
mately leading to microglial activation [106].

Several miRNAs, namely miR-15b, 181, 125b, and the 
let-7 family, have been implicated in morphine-induced 
tolerance as well as expression of the µ-opioid receptor. 
Chronic morphine treatment led to time-dependent increased 
expression of let-7 both in in vitro and in vivo models, which 
was associated with tolerance [107]. It has also been shown 
that exosomes loaded with µ-opioid receptor siRNA can 
effectively be used as treatment for morphine relapse [108]. 
Detailed studies on EVs from opiate-exposed cells as well 
as addicts will be necessary for developing strategies to cope 
with opioid tolerance leading to addiction.

EVs as potential biomarkers for SUD

The literature reviewed here clearly shows that several sub-
stances of abuse such as alcohol, cocaine, marijuana, meth-
amphetamine, nicotine and opiates modulate the release of 
EVs and alter the constituents of these EVs. Besides their 
roles in cell-to-cell communication, EVs have the potential 
to serve as potential biomarkers since their counts, content, 
and origin might provide useful information about patho-
physiology. Consequently, several research groups are inter-
ested and focused on examining the role of these EVs as 
potential biomarkers. The potential to use EVs as biomark-
ers for the diagnosis and prognosis of diseases is supported 
in part by the stability of exosomal cargo in plasma [109, 
110]. In addition, EVs can easily be obtained from blood 
and urine. In fact, EVs have long been considered as sources 
of potential molecular biomarkers for the early detection, 
monitoring and evaluation of drug response in various dis-
eases [111]. In this section, we discuss the potential of EVs 
as biomarkers of SUD.

Several types of biomarkers can be used in liquid biop-
sies. Table 1 summarizes potential biomarkers based on 
the altered composition of EVs in several SUD involv-
ing alcohol, cocaine, marijuana, methamphetamine, nico-
tine and opioids. To our knowledge, there are currently 
no universal biomarkers associated with SUD; however, 
the difference in EV composition may serve as potential 

biomarkers. Given that EVs can cross the blood–brain 
barrier, brain-derived EVs in the plasma could serve as 
biomarkers of neuropathogenesis [112–115]. For exam-
ple, the numbers of neuron-derived EVs in the plasma of 
neuropsychologically impaired individuals were decreased 
compared with normal controls [115]. The levels of high-
mobility group box 1 (HMGB1), NF-L, and amyloid β 
proteins were upregulated in the plasma neuron-derived 
EVs from neuropsychologically impaired individuals were 
decreased compared with normal controls [115]. Addition-
ally, astrocytic and neuronal-specific proteins—GFAP and 
L1CAM—are elevated in the plasma EVs from HIV-pos-
itive alcohol or tobacco users compared to HIV-positive 
nonsubstance users [112].

A study on ethanol-fed mice showed that increased 
CYP2E1 levels in EVs could serve as a general marker of 
liver injury [52]. Likewise, increased levels of three miR-
NAs (let-7f, miR-29a, and miR-340) in the blood EVs are 
associated with alcoholic steatohepatitis (ASH) in mice 
[43]. Four miRNAs (miR-146a, miR-126, miR-21, and 
let-7a) were also found elevated in the plasma of HIV-1 
infected heroin users, which make them potential biomark-
ers for diagnosis and prognosis of the neuroinflammatory 
disease [48]. High specificity and sensitivity of lncRNAs 
UCA1-201, UCA1-203, MALAT1, and LINC00355 have 
been reported previously to have potential for biomarkers 
in the diagnosis of bladder cancer in opium-addicted and 
cigarette smokers [51]. Presence of elevated levels of miR-
145-3p and miR-181a-5p in serum EVs has been associ-
ated with methamphetamine addiction [49]. Three miR-
NAs, including let-7b-5p, miR-206, and miR-486-5p, were 
verified to be significantly and steadily increased in heroin 
abusers [53] and miR-9-3p was significantly increased in 
methamphetamine abusers compared with normal con-
trols, demonstrating their ability as biomarkers [83]. It is 
interesting to note that in most of these studies listed in 
Table 1, not only one miRNA is altered, but also several of 
them. This suggests the need to develop panels of miRNAs 
as biomarkers that also need validation in large cohorts 
of study participants. Although EVs demonstrate prom-
ise as potential biomarkers, their clinical applicability is 
currently limited by lack of well-powered clinical studies 
investigating the correlation between EV biomarkers and 
SUD or SUD-related organ injury.

EVs as potential therapeutic vehicles for SUD

Substance abuse has been demonstrated to increase the 
release of endogenous EVs and alter the composition of the 
EVs that are released [36], demonstrating a reliance of the 
host system on EV signaling in response to drug exposure. 
Several studies have evaluated EVs as therapeutic vehicles 
because of their ability to carry diverse payloads, their 
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favorable immunogenic profiles, stability in circulation, 
biocompatibility, and low toxicity [105, 116]. Though there 
are many benefits to using EVs as therapies, potential side 
effects should also be considered. For example, EVs and 
their cargo have been shown to induce inflammation [117]. 
Full characterization and evaluation of EV properties such 
as cargo and source are required to better understand the 
promise of EV-based therapies. Moreover, optimizing tissue-
targeted delivery of EVs remains one of the major challenges 
in the field. Therapeutic administration of engineered EVs 
could regulate cellular signals in the brain that perpetuate 
substance use and addiction as well as decrease the end-
organ injury caused by substance use. Despite multiple stud-
ies addressing the miRNA and protein signaling involved 
in the abuse of nicotine [118], alcohol [119], opiates [120], 
cocaine [121], and cannabinoids [122] (Table 2), there are 
still minimal data directly demonstrating the EV-mediated 

shuttling of these molecules. Those that have been published 
are described below.

Decreasing substance dependence and relapse

Some of the earliest research into EV therapy in sub-
stance dependence and relapse focused on alcohol expo-
sure. Chronic alcohol consumption is known to cause 
neuroinflammation resulting in CNS toxicity. This pro-
inflammatory state appears to play a role in propagat-
ing additional voluntary alcohol consumption in animals 
[123]. As such, it has been hypothesized that the anti-
inflammatory effects of mesenchymal stem cell (MSC)-
derived EVs may decrease chronic alcohol consumption. 
A study performed in rats that were chronically consum-
ing alcohol demonstrated that intranasal administration of 
MSC-derived exosomes inhibited alcohol intake by 84%, 

Table 2  Selected miRNAs 
and proteins associated 
with substance addiction, 
withdrawal, and relapse that 
may be targeted by therapeutic 
EV-mediated delivery

Molecule Drug Function Reference

miRNA
 miR-27a Alcohol M2 monocyte polarization [20]
 miR-124 Alcohol BDNF downregulation [125]
 miR-206 Alcohol BDNF downregulation [126]
 miR-9 Alcohol Ca2+ and  K+ channel expression [127]
 miR-431 Cocaine Arc expression [128]
 miR-212 Cocaine CREB activation [129, 130]
 miR-101b Cocaine [128]
 miR-132 Cocaine CREB and BDNF-mediated synaptic plasticity [128, 130]
 miR-137 Cocaine [128]
 miR-190 Fentanyl µ opioid receptor expression [131]
 miR-218 Heroin Gabrb3, GluR2, Ube3a, Nrxn1, Gng3, and Mecp2 

expression
[132]

 Let-7d Marijuana CB1 receptor signaling [122]
 Let-7a/c/g Morphine µ opioid receptor expression [107]
 miR-27a Morphine Serpini1 expression [133, 134]
 miR-29b Morphine [50]
 miR-140-5p Nicotine Inhibits Dynamin-1 expression [135]
 miR-504 Nicotine Upregulates dopamine D1 receptors [136]
 miR-542-3p Nicotine Increased nicotinic acetylcholine receptors [137]

Protein
 GLT-1 Alcohol Glutamate transport [138, 139]
 mTORC1 Alcohol Protein synthesis/translation [140]
 LGALS3 Cocaine (+ HIV) Neuronal migration [141]
 GLUL Cocaine (+ HIV) Glutamate detoxification [141]
 HBB/HBD Cocaine (+ HIV) Learning and memory [141]
 MCP-5 Methamphetamine Chemokine [142]
 sTNFR1 Methamphetamine Chemokine [142]
 NMDAR1 Morphine Glutamate receptor [143]
 p-CREB Morphine Cellular transcription [144]
 Arc/Arg3.1 Morphine Synaptic plasticity/memory [145, 146]
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decreased relapses, and fully reversed neuroinflammation 
and hippocampal oxidative stress [124].

Since the study described above, much of the literature 
assessing the use of EVs as therapeutics for dependence 
and relapse has focused on opioid use. Exosomes from 
SH-SY5Y neuroblastoma cells have been pre-treated 
with sinomenine, an alkaloid used to prevent morphine 
dependence. When sinomenine pre-treated exosomes are 
administered to morphine-treated SH-SY5Y cells, the 
cells demonstrate a decrease in cAMP expression, intra-
cellular  Ca+, and expression of p-CREB/CREB compared 
to exosomes pre-treated with saline [143]. In our previous 
work, we demonstrated that morphine treatment is asso-
ciated with an increase in exosomal miR-29b expression 
from astrocytes. When administering astrocyte-derived 
exosomes containing miR-29b to Tat protein-treated SH-
SY5Y cells, we demonstrated attenuation of PDGF-BB 
expression and increased neuronal cytotoxicity [50]. 
Although this study focused on opioid effects in the con-
text of HIV infection, it successfully demonstrated the 
impact of morphine on the exosomal delivery of miRNAs 
with a correlation to neuronal protein expression and cell 
survival.

Extracellular vesicles-mediated therapy may also be 
able to target substance use relapse. A study by Liu et al. 
demonstrated that engineering the membrane surface of 
EVs to express the rabies virus glycoprotein (RVG) pep-
tide effectively delivers µ-opioid receptor siRNA into 
the brain, leading in turn to downregulation of µ-opioid 
receptor expression [108]. Importantly, delivery of 
µ-opioid receptor siRNA loaded EV to the brain prevented 
relapse in a mouse model of morphine addiction [108].

Additionally, other non-EV carriers have been used for 
suppression of drug addiction. For instance, the admin-
istration of glial cell line-derived neurotrophic factor 
(GDNF)-conjugated nanoparticles has been shown to 
decrease the amount of cocaine self-administration in rats 
[147]. More recently, exosomes have been found to carry 
pathogen antigens known to evoke immune response, and 
have, therefore, been examined as carriers for vaccination 
against various disease processes [148]. Although EVs 
have not yet been used for vaccination against addiction, 
nanoparticle-delivered toll-like receptor-based adjuvants 
have been shown to reduce the level of nicotine entering 
the brain and may therefore be a promising approach for 
treating nicotine addiction [149].

Role in repairing end‑organ injury induced by SUD

Extracellular vesicles are known to play a major role in 
the inflammatory response of alcohol-induced liver dis-
ease (ALD) through several signaling pathways, including 
activation of Hsp90, Bax, and caspase-3 [19, 52]. Thus, the 

administration of exogenous engineered EVs or targeted 
modulation of endogenous EVs could result in decreased 
inflammation and fibrosis after ALD. Hepatic stellate cells 
are liver-specific mesenchymal cells that facilitate repair of 
the injured liver through deposition of fibrillar collagens. 
The continued activation of these cells in chronic disease 
processes such as ALD results in fibrosis, in part due to 
over-expression of the CCN2 protein [150]. Delivery of 
miR-214 enriched hepatic stellate cell-derived exosomes to 
either activated stellate cells or hepatocytes decreases the 
expression of CCN2 and may protect against fibrosis [151]. 
Stem cell-mediated recovery of liver injury may be mediated 
by glutathione peroxidase 1 (GPX1) [152].

Exosomes or exosome-mimetic nanovesicles from hepat-
ocytes can also be used to aid in liver regeneration after 
ALD. The use of exosome-mimetic nanovesicles generated 
through serial extrusion of primary hepatocytes through 
polycarbonate membranes enhanced sphingosine kinase 2 
(SK2) after delivery to hepatocytes, resulting in hepatocyte 
proliferation and liver regeneration [153]. A similar study 
used exosomes derived from primary murine hepatocytes 
and also demonstrated transfer of ceramidase and SK2 to 
injured hepatocytes, resulting in increased cell proliferation 
and liver regeneration both in vitro and in vivo [154].

Of note, the origin cell for EVs appears to be important 
in providing the regenerative effects in ALD. The promo-
tion of hepatocyte proliferation was seen with administration 
of stellate cell- and hepatocyte-derived exosomes but was 
not demonstrated with exosomes derived from other liver 
cells such as Kupffer or sinusoidal endothelial cells [154]. 
Exosomes derived from non-liver stem cells may also pro-
vide benefit to the injured liver [155], however, and have 
the added benefit of potentially providing benefit to other 
non-liver organs when administered systemically.

Other organs have also been targeted for protection or 
repair by nanoparticle formulation, including using cerium 
oxide nanoparticles to inhibit reactive oxygen species pro-
duction and cell death in cardiomyocytes after cigarette 
smoke exposure [156].

The future of EV‑mediated therapies for SUD

There are no active clinical trials of EV-mediated therapies in 
drug abuse currently registered in Clinicaltrials.gov, though 
there are currently more than 20 active NIH-funded projects 
addressing this question. Most of these studies will provide 
additional pathophysiological insight into the effects of drug 
abuse on endogenous EV release and content. Three of the 
studies specifically focus on using EVs as potential therapeutic 
avenues. Given the widespread interest in EV signaling, it is 
likely that the literature in this field will continue to rapidly 
expand over the next several years.
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Conclusions and perspectives

The literature reviewed and summarized here demonstrate the 
variety of cargo transported by EVs and their effects on bio-
logical functions in the context of SUD. The research to date 
has clearly highlighted the role of EV-mediated transfer of 
RNA (miRNAs and lncRNAs) and proteins that play impor-
tant roles in immune regulation, inflammation, cell prolifera-
tion and organ injury. Additionally, EV features (number, size 
distribution, charge, etc.) and cargo (RNAs, DNAs, proteins) 
could serve as biomarkers and indicators for various human 
diseases, including SUD. The development of high-sensitivity 
single EV analysis techniques would significantly advance the 
potential to use EVs as biomarkers for diseases. Finally, the 
unique ability of EVs to cross biological barriers, such as the 
blood–brain barrier, makes EVs ideal for the delivery of thera-
peutics. Indeed, some studies have demonstrated this possibil-
ity, and studies on specific organ and cell type delivery of EVs 
are underway. All in all, the functional and application roles 
of EVs in the context of SUD open exciting possibilities for 
diagnostic and therapeutic advances.
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