Skip to main content
. 2023 Jun 27;11(10):5701–5735. doi: 10.1002/fsn3.3523

TABLE 2.

Effects of lycopene against aging biomarkers.

Study type Study subjects Dose Duration Major functions Molecular biomarkers References
Animal studies HgCl2‐induced Wistar rats (40 rats) 5 mL/kg body weight (oral gavage and injection) 2 days Antioxidation

MDA, ROS↓

GSH‐Px, SOD, GSH↑

Yang et al. (2011)
Male albino rats (24 adult rats) 10 mg/kg. BW (orally) 5 weeks Antioxidation

MDA, LPO, Total nitrate/nitrite↓

GSH, SOD, TAC↑

Mansour and Tawfik (2012)
Cisplatin‐induced male Wistar rats (28 rats) 6 mg/kg. BW/day (Single‐injection) 10 days Antioxidation, anti‐inflammation

NF‐κB p65↓

Nrf2, and HO‐1↑

GSH, CAT, GPx, and SOD↑

Sahin et al. (2010)
Colistin‐induced female Kunming mice 5 or 20 mg/kg. BW/day (orally) 7 days Antioxidation

LPO↓

HO‐1↑

Nrf2, HO‐1 mRNA↑

GSH, CAT, SOD↑

NF‐κB mRNA↓

Dai et al. (2015)
Croton oil‐induced male Kunming mice 0.5 g/kg (oral gavage) 4 days Anti‐inflammation Edema rate↓ Yaping et al. (2003)
Streptozotocin‐induced diabetic Wistar rats 1, 2 and 4 mg/kg 10 weeks Antioxidation, anti‐inflammation

Oxidative stress, NO↓

TNF‐α production↓

Kuhad, Sethi, and Chopra (2008)
Hyperhomocysteinemic Sprague–Dawley rats (50 rats) 10, 15, and 20 mg/kg 12 weeks Anti‐inflammation VCAM‐1, MCP‐1, IL‐8↓ Liu et al. (2007)
Alcohol‐fed Fischer 344 rats (60 rats) 1.1, 3.3 mg/kg. BW/day 11 weeks Anti‐inflammation TNF‐α mRNA, hepatic inflammatory foci↑ Veeramachaneni et al. (2008)
Ovalbumin (OVA)‐induced BALB/c mice 8 or 16 mg/kg BW/day in 200 μL (IP injection) 3 days Anti‐inflammation

IFN‐γ and T‐bet mRNA↑

IL‐4 mRNA↓

Lee et al. (2008)
Young male and female rats (48 rats/sex) 0, 267, 534, 1068 mg/kg. BW 30 days Antioxidation

CAT, SOD & GSH‐Px↑

MDA, ROS formation↓

Hu et al. (2013)
28 male Wistar‐Albino male rats 10 mg/kg. BW/day 28 days Antioxidation

Blood glucose and HbA1c↓

Oxidative DNA damage↓

8‐OHdG↓

Karahan et al. (2018)
Clinical trials Prostate cancer patients (32 men) 30 mg/day 3 weeks Antioxidation Oxidative DNA damage↓ Chen et al. (2001)
Type 2 diabetic patients (57 patients) 500 mL/day 4 weeks Antioxidation

Plasma lycopene level (3‐fold)↑

LDL resistance to oxidation↑

Upritchard et al. (2000)
Healthy, normolipidemic female volunteers (12 females) 8 mg/day 3 weeks Antioxidation

Plasma lycopene level↑

8 iso‐PGF2α in urine↓

LDL susceptibility to oxidation↓

Visioli et al. (2003)
Well‐nourished, healthy elderly persons (33 female and 20 male) 330 mL/day tomato or, 47.1 mg lycopene 8 weeks Immunomodulation

Plasma lycopene level↑

TNF‐α, and IL‐4↑

IL‐2↓

Watzl et al. (2000)
Healthy young volunteers (26 individuals) 5.7 mg 26 days Anti‐inflammation TNF‐α↓ Riso et al. (2006)
Healthy, non‐smoking post‐menopausal women (37 women) 4 mg/day (mixed supplementation) and 12 mg/day (individually) 56 days Antioxidation Oxidative DNA damage↓ Zhao et al. (2006)
Cell level study Lipopolysaccharide (LPS)‐mediated (RAW 264.7) Murine macrophages 0.5, 1, 2 μM 24 h Anti‐inflammation

IL‐6 and IL‐1β mRNA↓

JNK phosphorylation↓

Marcotorchino et al. (2012)
Lipopolysaccharide (LPS)‐mediated (RAW 264.7) macrophages

1–10 μM

24 h Antioxidation, anti‐inflammation

mRNA of iNOS, NO↓

IL‐6↓

p38, ERK1/2, IκB phosphorylation↓

NF‐κB translocation↓

Feng et al. (2010)
THP‐1 (human monocytic cell line)

0.5–2 μM

6 h Antioxidation, anti‐inflammation

IL‐8↓

ROS and NOX‐4↓

NF‐κB DNA binding, NF‐κB/p65 nuclear translocation↓

IKKα and IκBα phosphorylation↓

ERK1/2, JNK, p38 MAPK phosphorylation↓

Simone et al. (2011)
0.5–2 μM 24 h Antioxidation, anti‐inflammation

ROS and 8‐OHdG formation↓

NOX‐4 and NADPH oxidase↓

Hsp70, Hsp90 expressions↓

p38, ERK, JNK, MAPK phosphorylation↓

Palozza et al. (2010)
3 T3‐L1 (murine pre‐adipocytes) 0.5, 1, or 2 μM 24 h Anti‐inflammation mRNA expression of IL‐6, MCP‐1, IL‐1β, RANTES, CXCL1, CXCL10, SAA3, and haptoglobin↓ Gouranton et al. (2011)
LPS‐induced Human umbilical vein endothelial cells (HUVECs) 0–20 μM 6 h Anti‐inflammation

HMGB1, HMGB1‐mediated TNF‐α and sPLA2‐IIA↓

VCAM‐1, ICAM‐1, E‐selectin↓

TLR‐2, TLR‐4, and receptors of RAGE↓

Lee et al. (2012)

Note: ↑ = increase; ↓ = decrease/inhibit; → = normal/no change.

Abbreviations: 8‐OHdG, 8‐hydroxy‐2′‐deoxyguanosine; CAT, catalase; CXCL, chemokine (C‐X‐C motif) ligand; ERK, extracellular signal‐regulated kinases; GSH, glutathione; GSH‐Px, glutathione peroxidase; HMGB1, high mobility group box 1; HO‐1, heme oxygenase‐1; ICAM‐1, intercellular adhesion molecule‐1; IFN‐α, interferon type I; IKKα, IκB kinase α; IL, interleukin; iNOS, inducible nitric oxide synthase; JNK, c‐Jun N‐terminal kinases; LPO, lipid peroxidation; MAPK, mitogen‐activated protein kinases; MCP‐1, monocyte chemoattractant protein‐1; MDA, malondialdehyde; NF‐κB, nuclear factor kappa B; NO, nitric oxide; NOX4, NADPH oxidase 4; Nrf2, nuclear factor erythroid 2–related factor 2; PGF2α, prostaglandin F2α; RANTES, regulated upon activation, normal T cell expressed and presumably secreted; SOD, superoxide dismutase; sPLA2‐IIA, group II secretory phospholipase A; TLR, toll‐like receptor; TNF‐α, tumor necrosis factor‐alpha; VCAM‐1, vascular cell adhesion molecule‐1.