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Abstract

Federated learning (FL) enables collaboratively training a joint model for multiple medical 

centers, while keeping the data decentralized due to privacy concerns. However, federated 

optimizations often suffer from the heterogeneity of the data distribution across medical centers. 

In this work, we propose Federated Learning with Shared Label Distribution (FedSLD) for 

classification tasks, a method that adjusts the contribution of each data sample to the local 

objective during optimization via knowledge of clients’ label distribution, mitigating the instability 

brought by data heterogeneity. We conduct extensive experiments on four publicly available image 

datasets with different types of non-IID data distributions. Our results show that FedSLD achieves 

better convergence performance than the compared leading FL optimization algorithms, increasing 

the test accuracy by up to 5.50 percentage points.

Index Terms—

Federated Learning; Prior distribution; Medical imaging; Classification

1. INTRODUCTION

Deep learning (DL) is well known for requiring a large amount of data for robust training of 

generalizable models. For DL in medical research [1, 2, 3], large datasets can be difficult to 

obtain since the data collected by medical centers and hospitals are often privacy-sensitive. 

Therefore, sharing of the raw data between institutions is usually constrained by the 

restrictions such as Health Insurance Portability and Accountability Act (HIPAA) in the 

United States, and General Data Protection Regulation (GDPR) in Europe.

The recent emergence of federated learning (FL) [4, 5, 6] has provided this issue with 

a feasible solution. FL is a distributed machine learning scenario where only the model 

weights are shared among the participating clients in the federation, while keeping the data 

decentralized. In medical research, by bringing different hospitals and medical centers into 
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the federation, researchers can collaboratively train a model utilizing different datasets from 

siloed institutions besides their own [7, 8, 9].

However, the federated settings generate a new major challenge, namely the statistical 

data heterogeneity across different participating clients [6, 10, 11, 12, 13]. The data 

heterogeneity reflects that the data collected by different clients is not identically distributed 

(non-IID), which often appears in medical datasets from different sites, because of various 

reasons including different data acquisition protocols and different local demographics. Data 

heterogeneity may lead to significant increase in communication rounds of the federated 

training, and inferior performance of the distributed optimization of federated models in 

certain clients (e.g. medical institutes) [10], which can further cost their incentives to 

participate in the federation.

In this work, we propose a federated learning algorithm for classification tasks, Federated 
Learning with Shared Label Distribution (FedSLD), which aims to utilize information 

regarding the clients’ label distribution, to estimate a general prior label distribution for 

the entire federation. We claim that FedSLD can mitigate instability of training caused by the 

statistical heterogeneity of cross-silo FL, such as for medical research. While the algorithm 

does not access the clients’ data, we assume legitimate for the clients to share the number 

of samples in each class, which are often the case for cross-silo FL such as in medical 

applications. More specifically, our contribution in this work is two-fold:

i. We propose a new FL algorithm for medical image classification: Federated 

Learning with Shared Label Distribution (FedSLD), for robust training with 

non-IID data.

ii. We demonstrate that the proposed FedSLD achieves better performance than the 

leading FL algorithms by conducting extensive experiments on four publicly 

available datasets (including two benchmark datasets) under pathological non-

IID and practical non-IID data partitions.

2. METHOD

Laws and restrictions in terms of the data privacy constrain the direct access to the raw data. 

Yet, there are other information regarding the dataset that can be shared in terms of the 

federated learning. For instance, FedAvg assumes knowledge of the number of samples in 

each client: after the aggregation step in FedAvg, the algorithm conducts a weighted average 

of the updated copies for the next round, and the weights used for the averaging, by default, 

are the normalized number of samples in each client.

In this work, we focus on the classification tasks and assume legitimate to gain knowledge 

of the label distribution of each client, namely the number of samples from every class. 

We compute an estimate of the prior label distribution for the entire federation using 

the gain knowledge on the label distributions. For FL in medical applications, the label 

distributions from different medical silos can often be drastically different due to the 

regional demographics. Knowledge of the clients’ label distributions will help us better 

understand the non-IID data in the federation.
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To formulate the process, let us consider a federation with non-IID data. For a given 

data sample (x, y), where x stand for the data and y represents the label, the probability 

that it appears in the dataset of client i’s, Pi x, y , does not necessarily equal to the 

probability of it to appear in the dataset of client j’s, Pj x, y . By Bayes’ theorem, we 

have Pi x y Pi y ≠ Pj x y Pj y . More often than not, especially in medical imaging domain, 

non-IID data implicitly implies that both the label-conditioned probabilities, P x|y , and the 

marginal label distributions, P y , are different for different clients. In this work, we focus 

on acquiring the information reflecting the marginal label distribution Pi y  for each client (i 

= 1, 2, …, N), to compute the estimate of the prior label distribution for the entire federation.

We define the estimate for the prior of class c for the federation, as the sum of the numbers 

of samples for class c in each client divided by the sum of the total number of samples in 

each client. This is shown in equation (1), where P y = c  is the estimate prior of class c, ni,c 

is the number of samples from class c on client i, ni is the total number of samples on client 

i, and N is the number of clients.

P(y = c) = ∑i = 1
N ni, c

∑i = 1
N ni

(1)

During local update of the current model on a client, given a batch of data xk, yk k = 1
B , where 

B is the batch size, we first compute the label distribution in this batch as in equation (2), 

where the pb represents the label distribution, [[ ⋅ ]] means the indicator faction, with its value 

equal to 1 if the inner part is true, and 0 otherwise. In essence, Equation (2) computes the 

proportion of class c samples in the batch by normalizing the number of class c samples in 

this batch.

pb y = c = ∑k = 1
B 〚 yk = c 〛

B (2)

ℒb xk, yk k = 1
B = − ∑

k = 1

B pb y = yk

P y = yk

⋅ ∑
c = 1

C
yk, c log fi xk c (3)

Algorithm 1

FedSLD.

Input: Initialized model parameter weights w0, number of clients N, number of local epochs E, batch size B, is the 
batch size, learning rate η, number of rounds R.

 1: ∀i ∈ [N], c ∈ [C] acquire ni,c client i’s numbers of samples of each class c.

 2: ∀c ∈ [C], P(y = c) = ∑i = 1
N ni, c

∑i = 1
N ni

// compute estimated prior label distribution.

 3: forr ← 1, 2, …, Rdo
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 4:  ∀i ∈ [N]wi
r = wr − 1 // broadcast model parameters.

 5:  fori ← 1, 2, …, Nin parallel do

 6:   for xk, yk k = 1
B

in all minibatches do

 7:    ∀c, pb(y = c) ∑k = 1
B 〚 yk = c 〛 /B

 8:    Compute loss ℒb by Equation 3.

 9:    wi
r wi

r − η∇wℒb

 10:   end for

 11:  end for

 12:  wr = ∑i = 1
N ni

n wI
r
 // aggregate model updates

 13: end for

 14: returnwR

Then, we define the batch loss as a weighted cross-entropy loss, shown in Equation (3), 

where ℒb means the batch loss, and fi represents the copy of the model on client i. By 

doing this, we can enforce proportional contribution (to the local objective) of each class of 

the data, with respect to its share of the true underlying distribution across the federation. 

We follow the aggregation step in a typical FL algorithm, where we compute the weighted 

average of the updated models from all clients, with the weights being the number of 

samples in each client. A detailed algorithm is shown in Algorithm 1.

3. EXPERIMENTS AND RESULTS

In this section, we evaluate the performance of the proposed FedSLD through experiments 

on four publicly available datasets (including two benchmark datasets), and compare it 

with two leading FL algorithms, FedAvg [4], an algorithm that average the local updates 

of the global model, and FedProx [11], an algorithm that adds a proximal term on 

the local objective to enhance performance robustness on non-IID data. To evaluate the 

general performance of the algorithms, we compute the test accuracies and demonstrate the 

empirical convergence performance by plotting the training loss and test accuracy curves. In 

addition, we examine the fairness of the method following recent work [14]. More details on 

the metrics are in Section 3.1.

3.1. Experiments setup

Datasets.—We conduct experiments on two benchmark image datasets: MNIST and 

CIFAR10. We further evaluate the methods on two medical image datasets from the 

MedMNIST dataset collection [15], namely the OrganMNIST(axial) dataset (11-class 

dataset of liver tumor images) and the PathMNIST dataset (a 9-class dataset of colorectal 

cancer images). We partition each dataset into a training set and a test set and ensure that 

they share the same label distribution.

Two non-IID settings.—We set the number of clients to be 12 to mimic a cross-silo 

FL setting and partition each dataset according to two different non-IID settings: 1) a 
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pathological non-IID setting, where we follow [4] and assign each client with two random 

classes; 2) a practical non-IID setting, where we randomly partition each class into 12 shards 

(corresponding to a total of 12 clients): 10 shards of 1%, one shard of 10% and one shard of 

80% images in this class. We randomly assign one shard from each class to each client, so 

that each client will possess images from all classes, with more images from some classes 

while less images from others. This non-IID setting is more similar to the real-world medical 

applications, since datasets held at medical centers often contain a variety of classes, and are 

usually imbalanced with different majority class due to the regional demographics.

Implementation details.—We use the classic four-layer CNN model with two 5×5 

convolutional layers and two fully connected layers (hidden layer has 500 units). We use 

a batch size of 256, 5 local epochs, 0.01 as the learning rate. For the practical non-IID 

partition, we train the model for 80 rounds, and for the pathological non-IID setting, we train 

the model for 160 rounds. All experiments are run on an NVIDIA Tesla V100 GPU and 

implemented in PyTorch and PySyft.

Metrics.—We compute two types of test accuracies for each setting: 1) the Best Mean 
Client Test Accuracy (BMCTA), computed as the highest mean client test accuracy over all 

training rounds; 2) the Best Test Accuracy (BTA), computed as the highest test accuracy 

for the combined test set from each client over all training rounds. We also investigate the 

methods’ convergence performance by plotting the training loss and test accuracy curves. 

In addition, we follow [14] and examine the fairness of the methods by using the Gaussian 

kernel density estimation on the client test accuracies. Higher density at higher accuracy 

reflects a better result.

3.2. Results

We summarize the numerical results in Table 1. Under the pathological non-IID setting, for 

MNIST and the two medical datasets, the proposed FedSLD has a better performance with 

the improvement on the test accuracy of up to 1.57%, and the kernel density estimations 

in Figure 2 show that FedSLD has slightly higher density which is more concentrated at a 

higher test accuracy. On CIFAR10, FedSLD reaches competitive performance with FedAvg 

and FedProx.

Under the practical non-IID setting, we can see that the proposed FedSLD outperforms 

the compared FedAvg and FedProx on every dataset, with the improvement of BMCTA 

ranging from 1.10% to 5.50%, and the improvement of BTA ranging from 0.18% to 2.41%. 

In addition, Figure 1 shows that FedSLD achieves better convergence behavior on MNIST 

and OrganMNIST (axial) datasets. The fairness plots reveal that FedSLD not only increases 

the overall performance with respect to the entire federation, but the variances of the client 

test accuracies are also reduced on MNIST and PathMNIST datasets, which implies a more 

fair training. On CIFAR10 and OrganMNIST (axial) datasets, we can see a clear decrease of 

the density at low accuracy and an increase on the density at high accuracy, which explains 

the improvement of the BMCTA.
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4. CONCLUSION

In this work, we proposed a new FL algorithm for medical image classification: Federated 

Learning with Shared Label Distribution (FedSLD). FedSLD aims to mitigate the effect 

caused by non-IID data by leveraging the clients’ label distribution. We conducted 

extensive experiments on four publicly available datasets with two types of non-IID setting, 

and demonstrated that FedSLD outperforms the compared leading FL algorithms, and 

encourages a more fair performance across all the participating clients.
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Fig. 1. 
The convergence and fairness performance under the pathological non-IID setting. We 

measure the fairness using Gaussian kernel density estimation. Higher density concentrated 

at a higher accuracy reflects a better result.
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Fig. 2. 
The convergence and fairness performance under the practical non-IID setting. We measure 

the fairness using Gaussian kernel density estimation. Higher density concentrated at a 

higher accuracy reflects a better result.
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