Skip to main content
. Author manuscript; available in PMC: 2023 Oct 10.
Published in final edited form as: Proc IEEE Int Symp Biomed Imaging. 2022 Apr 26;2022:10.1109/isbi52829.2022.9761404. doi: 10.1109/isbi52829.2022.9761404

Algorithm 1.

FedSLD.

Input: Initialized model parameter weights w0, number of clients N, number of local epochs E, batch size B, is the batch size, learning rate η, number of rounds R.
 1: ∀i ∈ [N], c ∈ [C] acquire ni,c client i’s numbers of samples of each class c.
 2: ∀c ∈ [C], 𝒫˜(y=c)=i=1Nni,ci=1Nni// compute estimated prior label distribution.
 3: for r ← 1, 2, …, R do
 4:  i[N]wir=wr1 // broadcast model parameters.
 5:  for i ← 1, 2, …, N in parallel do
 6:   for {xk,yk}k=1B in all minibatches do
 7:    ∀c, pb(y=c)k=1Byk=c/B
 8:    Compute loss b by Equation 3.
 9:    wirwirηwb
 10:   end for
 11:  end for
 12:  wr=i=1NninwIr // aggregate model updates
 13: end for
 14: return wR