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Abstract

In this paper, radiomic features are used to validate the textural realism of two anthropomorphic 

phantoms for digital mammography. One phantom was based off a computational breast model; 

it was 3D printed by CIRS (Computerized Imaging Reference Systems, Inc., Norfolk, VA) 

under license from the University of Pennsylvania. We investigate how the textural realism 

of this phantom compares against a phantom derived from an actual patient’s mammogram 

(“Rachel”, Gammex 169, Madison, WI). Images of each phantom were acquired at three kV 

in 1 kV increments using auto-time technique settings. Acquisitions at each technique setting 

were repeated twice, resulting in six images per phantom. In the raw (“FOR PROCESSING”) 

images, 341 features were calculated; i.e., gray-level histogram, co-occurrence, run length, fractal 

dimension, Gabor Wavelet, local binary pattern, Laws, and co-occurrence Laws features. Features 

were also calculated in a negative screening population. For each feature, the middle 95% of the 

clinical distribution was used to evaluate the textural realism of each phantom. A feature was 

considered realistic if all six measurements in the phantom were within the middle 95% of the 

clinical distribution. Otherwise, a feature was considered unrealistic. More features were actually 

found to be realistic by this definition in the CIRS phantom (305 out of 341 features or 89.44%) 

than in the phantom derived from a specific patient’s mammogram (261 out of 341 features or 

76.54%). We conclude that the texture is realistic overall in both phantoms.
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1. INTRODUCTION

Breast density has consistently been shown to be an independent predictor of breast cancer 

risk.1,2 Recent studies have demonstrated that combining radiomic texture features with 

mammographic density results in an even better assessment of breast cancer risk.3,4 This 

paper explores a different application for radiomic texture feature calculations; namely, 

evaluating how closely the breast parenchymal patterns in an anthropomorphic phantom 

match a clinical population.

In our previous work, we developed a computational model of the breast in which multiple 

compartments of dense tissue are grown from seed points in voxel phantoms.5,6 The user can 

vary parameters controlling the size and shape of the phantom, as well as the percent density 

and spatial arrangement of dense tissue.7 A key advantage of this model is that a population 

of virtual phantoms8 can be simulated quickly on a graphics processing unit (GPU).

A physical phantom based off this model was 3D printed by CIRS (Computerized Imaging 

Reference Systems, Inc., Norfolk, VA) under license from the University of Pennsylvania. 

The CIRS phantom models a 50 mm thick breast under compression (450 mL by 

volume) with a volumetric density of 17%.9 The phantom can be used in both 2D digital 

mammography (DM) and 3D digital breast tomosynthesis (DBT). The phantom was 3D 

printed in sections (slabs), allowing clusters of calcium oxalate to be inserted within the 

thickness of the phantom; these are surrogates for calcification clusters.10

In a previous study, Cockmartin et al. calculated power spectra in 2D and 3D images of 

the CIRS phantom, and showed that the power-law coefficients were in agreement with the 

values derived from a clinical population.9 In radiomics, there are a multitude of additional 

features that can be used to validate the texture of a phantom. In this paper, 341 radiomic 

features are calculated in the CIRS phantom and compared against a clinical population. We 

also investigate how the texture of the CIRS phantom compares against a phantom derived 

from an actual patient’s mammogram11 (“Rachel, Gammex 169, Madison, WI), which 

by nature is expected to be highly realistic. For the purpose of this paper, all radiomics 

calculations are done exclusively for DM, since the Gammex 169 phantom was developed 

specifically for DM and not DBT.

2. METHODS

2.1 X-Ray Acquisitions of Phantoms

DM images of the two phantoms (CIRS and Gammex 169) were acquired with a Selenia 

Dimensions system (Hologic Inc., Bedford, MA) with a W/Rh target-filter combination 

(Figure 1). Images were acquired over a number of different kV and mAs combinations; 

the auto-timing curves illustrating the effect of kV are shown in Figure 2. A subset of these 

technique settings was chosen for the purpose of validating the texture of the phantoms. We 

based the choice of acquisition settings off of data tables for the automatic exposure control 

settings for a breast with comparable thickness (50 mm) to the phantoms; the appropriate kV 

is 29 kV for a W/Rh target-filter combination. Additional kV settings in ± 1 kV increments 

relative to 29 kV were also analyzed. These images were acquired in “Manual” mode at 
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mAs settings designed to match the auto-timing curves. Since the system supports a discrete 

set of mAs values in “Manual” mode, the closest mAs settings were chosen (Table 1). Two 

cranial-caudal (CC) images were acquired at each technique setting; these were used for 

reproducibility analysis. Hence there were six acquisitions per phantom.

2.2 Overview of Clinical Data Set

DM images (CC views) were also analyzed from 1,000 women with negative screening 

exams at the University of Pennsylvania (Table 2). The images were acquired with Selenia 

Dimensions systems between 9/1/2014 and 12/31/2014. This research was approved by the 

Institutional Review Board at the University of Pennsylvania and was compliant with the 

Health Insurance Portability and Accountability Act. Since previous work demonstrated that 

radiomic features are dependent on breast thickness under compression12, we compared the 

phantom data against the subset of clinical data with comparable thickness (±10 mm relative 

to a 50 mm thick phantom).

2.3 Calculation of Radiomic Texture Features

Radiomic features were calculated in raw (“FOR PROCESSING”) DM images. As the 

first step in these calculations, the breast outline was segmented with LIBRA (Laboratory 

for Individualized Breast Radiodensity Assessment), a software tool.13 Next, the breast 

area was partitioned into a regular lattice of square windows [Figure 1(c)]. Each feature 

was calculated separately in each window. These values were in turn averaged across all 

windows, resulting in a single image-wise value for each feature. A total of 341 features 

were calculated; i.e., 12 gray-level histogram, 7 co-occurrence, 7 run length, 2 fractal 

dimension, 32 Gabor Wavelet, 36 local binary pattern, 125 Laws, and 120 co-occurrence 

Laws features.14-18

The window size used in the lattice for these feature calculations was 6.3 mm. A previous 

work by Zheng et al. considered the effect of varying the window size between 6.3 mm and 

25.5 mm.3 They found that the smallest window size (6.3 mm) yields the highest area under 

the receiver-operating-characteristic curve in case-control classification calculations.

2.4 Analysis of Textural Realism of Phantoms

For the two phantoms, the textural realism of each feature was defined based on the 

middle 95% of the clinical distribution; this was considered to be a realistic range of 

values for a feature. More specifically, a feature was considered realistic if all six data 

points derived from phantom images were between the 2.5th and 97.5th percentiles of the 

clinical distribution. By contrast, a feature was considered unrealistic if the percentile ranks 

of at least one of the six phantom data points was below 2.5% or above 97.5% (dashed 

vertical lines in Figures 3-5). Note that other definitions of realism exist, and that different 

conclusions may result from the use of alternate definitions of realism. For example, in 

Figure 3, both phantoms are deemed realistic by our metric, but if we defined textural 

realism in terms of closeness to the 50th percentile of the clinical distribution, then the CIRS 

phantom is more realistic in terms of the gray-level standard deviation and the Gammex 169 

phantom is more realistic in terms of high gray-level run emphasis.
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3. RESULTS

3.1 Calculations of Textural Realism

For each feature, the distribution of values in the clinical data set was Z-score normalized 

and plotted as a histogram (Figures 3-5). This normalization was also applied to the six 

phantom data points. To illustrate examples of realistic texture in both phantoms, standard 

deviation (a gray-level feature) and high gray-level run emphasis (a run length feature) 

are shown in Figure 3. In these examples, the six data points derived from the phantom 

acquisitions are clustered over a narrow range of values within the middle 95% of the 

clinical distribution.

To illustrate the opposite result (unrealistic texture in both phantoms), two additional 

examples are shown in Figure 4. In some features, all six phantom data points were outside 

the middle 95% of the clinical distribution, as can be seen in one of the co-occurrence Laws 

features [Figure 4(a)]. The texture was also considered unrealistic if any subset of phantom 

data points was outside the middle 95% of the clinical distribution [Figure 4(b)].

3.2 Summary Statistics

The CIRS phantom was found to have realistic texture in terms of 305 features out of 341 

(89.44%). By contrast, the Gammex 169 phantom was found to have realistic texture in 

terms of 261 features out of 341 (76.54%). These results can be analyzed in more detail on 

the basis of individual feature families (Table 3). The phantoms showed realistic texture in 

terms of all the gray-level and Gabor Wavelet features. The phantoms showed unrealistic 

texture in terms of some measures of fine structural detail.

It is also useful to create a confusion matrix (a 2 × 2 table) summarizing the results for 

each phantom (Table 4). Both phantoms were shown to have realistic texture in terms of 239 

features (70.09%) and unrealistic texture in terms of 14 features (4.11%). In addition, there 

are 88 features (25.81%) for which the texture is realistic in one phantom but not the other; 

Figure 5 shows examples of these features.

4. DISCUSSION AND CONCLUSION

This paper evaluates the textural realism of two phantoms for DM. One would expect the 

Gammex 169 phantom to have realistic texture by its very nature, since it was created from 

an actual patient’s mammogram. In this paper, we offer a validation of the textural realism of 

this phantom, and show that the CIRS phantom also has realistic texture. We conclude that 

phantoms based off a computational model can indeed have realistic texture.

In the years since the CIRS phantom was 3D printed, there have been advancements in 

the voxel phantom. The phantom now includes a model of tissue microstructure, which 

is simulated with the use of subcompartments of breast tissue designed to match the 

appearance of histological images.19 Future work should investigate how the texture of the 

phantom changes based on the addition of these finer details.
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Figure 1. 
(a) The CIRS phantom was 3D printed from a computational breast model. (b) The Gammex 

169 phantom was derived from an actual patient’s mammogram. There are test patterns 

adjacent to the phantom; these were not analyzed for the purpose of this study. (c) The breast 

area was partitioned into a lattice of square windows (6.3 mm × 6.3 mm) for calculation of 

radiomic features. Although these calculations were done in raw DM images, processed DM 

images are shown.
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Figure 2. 
DM images of the two phantoms were acquired at auto-timed technique settings. As the kV 

increases, there is greater x-ray penetration and hence the mAs (relative number of x-ray 

photons) is reduced.
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Figure 3. 
Each phantom was found to have realistic texture in terms of these two features. The 

phantom data points derived from six images are all within the middle 95% of the clinical 

distribution. Dashed lines denote the 2.5th and 97.5th percentiles of the clinical distribution.
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Figure 4. 
The phantoms were found to have unrealistic texture in terms of these two features. At least 

one of the six phantom data points is outside the middle 95% of the clinical distribution.
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Figure 5. 
In some features, only one of the two phantoms was shown to have realistic texture; 

for example, the CIRS phantom in terms of co-occurrence entropy and the Gammex 169 

phantom in terms of a Co-Occurrence Laws features.
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Table 1.

DM technique settings for each phantom are summarized below. The target-filter combination was W/Rh.

mAs Setting (28 kV) mAs Setting (29 kV) mAs Setting (30 kV)

CIRS Phantom 120 mAs 100 mAs 95 mAs

Gammex 169 Phantom 160 mAs 140 mAs 120 mAs
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Table 2.

Demographic information derived from the data set of 1,000 women with negative screening exams is 

summarized below.

Age < 40 y 29 (2.9 %)

40-49 y 255 (25.5%)

50-59 y 292 (29.2%)

60-69 y 279 (27.9 %)

≥ 70 y 145 (14.5%)

BI-RADS®Density Type a 114 (11.4%)

Type b 553 (55.3%)

Type c 311 (31.1%)

Type d 22 (2.2%)

Ethnicity African American 463 (46.3%)

Caucasian 441 (44.1%)

Other/Unknown 96 (9.6%)
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Table 3.

Summary statistics for each phantom were calculated separately by feature family.

Feature Family
(Number of Features)

Realistic Features in
CIRS Phantom

Realistic Features in
Gammex 169 Phantom

Co-occurrence (7) 7 (100%) 3 (42.86%)

Co-occurrence Laws (120) 106 (88.33%) 87 (72.50%)

Fractal Dimension (2) 1 (50%) 0 (0%)

Gabor Wavelet (32) 32 (100%) 32 (100%)

Gray Level (12) 12 (100%) 12 (100%)

Laws (125) 111 (88.80%) 93 (74.40%)

LBP (36) 29 (80.56%) 29 (80.56%)

Run Length (7) 7 (100%) 5 (71.43%)
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Table 4.

Summary statistics for each phantom can be analyzed with a confusion matrix.

Gammex 169 Phantom

Realistic Unrealistic

CIRS Phantom Realistic 239
(70.09%)

66
(19.35%)

305
(89.44%)

Unrealistic 22
(6.45%)

14
(4.11%)

36
(10.56%)

261
(76.54%)

80
(23.46%)

341
(100%)
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