Communication

Frankia Vesicles Provide Inducible and Absolute Oxygen Protection for Nitrogenase'

Received for publication November 24, 1986

RICHARD PARSONS2, WARWICK B. SILVESTER*, SHARON HARRIS, W. T. M. GRUIJTERS, AND S. BULLIVANT

Department of Biological Sciences, University of Waikato, Hamilton, New Zealand (R.P., W.B.S., S.H.), and Department of Cell Biology, University of Auckland, Auckland, New Zealand (W.T.M.G., S.B.)

ABSTRACT

When Frankia HFPCcI3 was grown in culture at oxygen $O₂$ levels ranging from 2 to 70 kilopascals $O₂$, under nitrogen fixing conditions, nitrogenase activity adapted to ambient $pO₂$ and showed a marked optimum close to growth pO_2 . Vesicles were thin walled at low pO_2 and very thick walled at high $pO₂$. Freeze fracture transmission electron microscopy confirmed that Frankia produces vesicles with outer walls thickened by multiple lipid-like monolayers, in proportion to ambient $pO₂$.

Nitrogenase is extremely O_2 sensitive and the majority of nitrogen fixing organisms exist in ecological or symbiotic situations of reduced ambient pO_2 (5, 16). Frankia occurs as the nodule symbiont of actinorhizal plants, such as Alnus, Myrica, and Casuarina, and the response of nitrogenase to $O₂$ in these nodules contrasts strongly with that of legume nodules which contain Rhizobium (18). In general, Frankia nodules show a nitrogenase optimum at pO_2 levels close to atmospheric pO_2 and the nodules are well ventilated into the infected cell area (18). Legume nodules, on the other hand, often display increased nitrogenase activity at elevated $pO₂$ and the nodule structure provides a significant barrier to $O₂$ diffusion (1, 18, 21).

A further contrast between Rhizobium and Frankia is found in their response to O_2 in pure culture. Rhizobium is able to fix nitrogen *in vitro* only under conditions of very low O_2 (1, 16, 17), while Frankia in culture appears to be relatively insensitive to O_2 and optima for nitrogenase have been recorded at near atmospheric levels (I 1, 20).

The apparent key to the difference between Frankia and Rhizobium is the presence of thick walled vesicles in the former, both in culture and in symbiosis (20, 22). The vesicle is the presumptive site of nitrogenase activity and by analogy with the heterocyst of the cyanobacteria (6, 7, 13) the thick walled vesicle is considered to be the $O₂$ diffusion barrier.

Torrey and Callaham (22) showed that the outer wall of vesicles is a multilaminated structure with properties similar to many lipid monolayers. More recently Murry et al. (14) have demonstrated that nitrogenese activity in Frankia can adapt to a range of subatmospheric O_2 levels but the site of O_2 protection in Frankia, while assumed to reside in the thickened wall, has not been closely investigated. We therefore investigated the ability of Frankia to adapt to a much wider range of $O₂$ tensions and studied more closely the site of $O₂$ protection.

MATERIALS AND METHODS

Culture Conditions. Frankia strain HFPCcI3, isolated from root nodules of Casuarina cunninghamiana (23) was incubated in various $pO₂$ atmospheres in 1.1 L serum capped bottles containing ¹⁰⁰ ml of nitrogenfree BAP medium (12) (10 mm Na propionate as carbon source). Frankia stock culture was added to the bottles aseptically, bottles capped with a rubber septum and flushed with appropriate sterile gas mixtures for 6 min at 2 L/min. Bottles were continuously shaken at 90 rpm on an orbital shaker at 30°C.

Gas Mixtures. Gas mixtures were made up by way of Tylan mass flow controllers in which O_2 , N_2 and CO_2 were combined to give mixtures containing 2, 16, and 70 kPa O_2 , with CO_2 at 0.2 kPa to facilitate propionate utilization, and the balance of N_2 . These were distributed via a sterilized 0.22 μ m filter membrane to the various bottles. O_2 electrode analysis of sample bottles confirmed that at the stirring rate provided the dissolved $O₂$ tension was about 10, 80, and 330% of air saturation, respectively.

Nitrogenase Assay. Nitrogenase activity was measured by acetylene reduction using 10 kPa acetylene in the gas phase and assaying for ethylene. Ethylene was detected using a Carle 9500 gas chromatograph fitted with ^a 1.2 m Poropak T, 60/80 mesh, column, run at 75C. Assays were conducted in a continuous flow cuvette based on the open flow system described by Minchin et al. (9). The cuvette consisted of a 7 ml glass vial fitted with a rubber septum stopper, such that the stopper could freely slide up and down the tube to make a variable volume. In normal operation the cuvette volume was set at 5 ml with a 4 ml suspension of bacteria and a ¹ ml gas phase above. Input gas was introduced to the bottom of the vial via a 25 gauge hypodermic needle and exited via a similar needle in the gas space and thence into a fine rubber tube, from which gas samples could be removed. The starting assay gas mixture for all assays contained 0.4 kPa O_2 , 0.1 kPa CO_2 , and 10 kPa acetylene, the balance of $N₂$. This mixture was pumped continuously by peristaltic pump, through the thermostated cuvette at $7 \text{ ml } \text{min}^{-1}$, such that the gas bubbled through the culture and exited via a tube where 0.1 ml samples were collected for analysis of $O₂$ and ethylene. In

^{&#}x27;Supported by grants from New Zealand Universities Grants Committee and National Water and Soil Conservation Authority of New Zealand.

² Present address: Department of Botany, Australian National University, Canberra 2601, Australia.

normal operation, a 4 ml aliquot of concentrated Frankia culture was transferred in a N_2 flushed syringe into the cuvette and analyses of exit gas started immediately. $O₂$ concentration was then increased stepwise by addition of an O_2 /acetylene mixture into the input gas reservoir. O_2 concentration was measured on 0.1 ml samples injected into a Carle 8500 gas chromatograph fitted with ^a 1.2 m column of molecular sieve 5A.

Microscopy. Vesicles were viewed under dark field microscopy using a Reichert-Jung Polyvar photomicroscope. Vesicle brightness and apparent wall thickness was estimated on an arbitrary 0 to ⁵ scale in which 0 was a vesicle with wall brightness (thickness) equal to hyphae, and 5 was a vesicle in which wall brightness (thickness) is equivalent to 0.3 diameters (Fig. 2). Up to 100 vesicles were compared to a prepared visual scale and scored for apparent thickness.

Freeze fracture specimens were frozen in suspension and fractured under liquid N_2 in a pre-nicked plastic tube (2) and subsequently replicated in a cold block freeze fracture apparatus (3). Replicas were cleaned in chromic acid and photographed in a Philips EM301 transmission electron microscope.

RESULTS

Nitrogenase Activity. When Frankia CcI3 is grown at the wide range of pO_2 chosen (2, 16, and 70 kPa O_2) in the absence of combined N_2 , significant growth occurs on all levels although growth was significantly better at the intermediate O_2 level. Aliquots of the main culture were tested for nitrogenase activity over a range of $O₂$ tensions and confirm that nitrogenase is present at all $pO₂$ levels and show the adaptation of nitrogenase activity to the ambient O_2 of the culture (Fig. 1). When grown at 2 kPa O_2 nitrogenase is active over a very narrow range of O_2 tensions being completely and irreversibly inactivated by levels above 3.5 kPa O_2 in the assay mixture. When grown at 70 kPa 02 (3.5 times atmospheric) the culture shows a broad tolerance to O_2 in the range 2 to 85 kPa O_2 . It is notable that maximum specific activity of nitrogenase (based on total cell protein) is similar across this wide range of $O₂$ levels.

Vesicle Structure. From analogy with the heterocyst, O_2 protection in Frankia has been described as a passive barrier localized in the vesicle wall (11). If such a barrier exists, the marked change in resistance that is implied by the changing $pO₂$ optimum ofnitrogenase activity as shown in Figure ¹ must be accompanied by vast changes in vesicle wall properties.

three O_2 levels. Frankia was grown at 2, 16, and 70 kPa O_2 (d O_2 10, 80, fringence produced by the structured walls in polarized light has and 330% of air saturation) and samples assayed for nitrogenase at been noted by Torrey and Callaham (22). This light effect is various pO_2 levels starting from 0.4 kPa O_2 . O_2 response curves of attributed to the structural layering of the vesicle envelope which nitrogenase for cultures grown at 2 kPa (\blacktriangle), 16 kPa (\blacktriangle), and 70 kPa (\blacktriangle) was confirmed by freeze fracture EM (22). We observed a similar

 \overline{C} $\overline{$ grown at various O_2 levels. Differences are clear in vesicle brightness due contract 20 and 20 to increase in wall thickness in cultures grown at 2 kPa O_2 (top), 16 kPa
Oxygen (kPa) O_2 (middle), and 70 kPa O_2 (bottom). Vesicles are about 3 μ m diameter. O_2 (middle), and 70 kPa O_2 (bottom). Vesicles are about 3 μ m diameter.

FIG. 1. Effect of pO₂ on nitrogenase activity in Frankia grown at Frankia vesicles are 2.5 to 3.5 μ m in diameter and the bireare presented. The arrows marked a, b, and c indicate the pO_2 level at effect but found the vesicles appeared particularly bright under which the culture was grown.
dark field microscopy. Vesicles from cultures grown a dark field microscopy. Vesicles from cultures grown at low $O₂$

Table I. Apparent Wall Thickness of Frankia Vesicles when Grown at V arious p Ω . Levels

r urious poz Leveis				
	pO ₂	Apparent Thickness	SE	
	kPa	arbitrary units		
	2.0	1.38	0.06	
16		1.75	0.09	
70		3.17	0.11	

are marginally brighter than associated filaments while at high $O₂$ the vesicles are dramatically bright with the effect extending back down the vesicle stalk to the cross wall (Fig. 2). The optical effects produced in dark field microscopy result from reflection of light from a lateral source and while the bright image produced may not accurately define the wall thickness, there is good reason to believe that it is at least proportional to wall thickness. A relative scale of apparent thickness was prepared and measurements of 80 or more vesicles in each $O₂$ treatment were tabulated to give the results in Table ^I which quantifies the result shown in Figure 2. Similar results were observed under both Nomarski interference and phase contrast optics but were most clear under dark field.

The vesicle wall of *Frankia* has been previously studied by freeze fracture (22) and freeze substitution TEM (8) and shown to include an outer multilayered wall which extends down the stalk of the vesicle. The layers appear as lipid monolayers, and on fracture face views up to 15 layers have been recorded (22) each with an estimated thickness of 3.5 to 4.0 nm or ^a total thickness of 60 nm. Freeze fracture images of our cultures were obtained and, while only a small number of fractures exposed the full thickness of the wall, they did confirm the result shown by dark field microscopy (Fig. 3). Cultures at 4 kPa $O₂$ had an average of 17 layers in the outer wall and in no case were more than 20 layers seen. Cultures grown at 40 kPa O_2 showed the very dramatic layering first observed by Torrey and Callaham (22) in cultures grown in air. Five fractures of vesicles at high $O₂$ had an average of 40 lipid layers and maximum of 50. The multilayered wall extended down the vesicle stalk to the cross wall and while no particular study was made of the cross wall it appeared to be unthickened. The freeze fracture results are based on a small number of measurements which completely exposed the wall, but despite this they confirm the increasing thickness of the wall as seen in dark field and identifies this change as an increase in outer envelope layers.

DISCUSSION

It has been stated (6) that "heterocystous cyanobacteria thus seem to be the only diazotrophs capable of genuinely aerobic growth in the dark under nitrogen fixing conditions." The term 'aerobic' in this context presumably means air saturated and in the light of both previous reports $(11, 20)$ and the results presented here it is evident that Frankia must be added to this group of uniquely $O₂$ adaptive diazotrophs.

The adaptation of nitrogenase activity to various levels of $O₂$ below atmospheric has been noted before (14) and a number of workers have assumed that O_2 protection is a property of the thick vesicle wall. A remarkable feature of the system is the enormous range of $pO₂$ over which it operates and the inducible nature of the wall thickening solely in response to $O₂$ tension and provides more direct evidence that the vesicle wall is indeed the $O₂$ diffusion barrier in *Frankia*. Work in progress indicates that Frankia adapts rapidly to elevated $O₂$ shock by thickening the walls of both new and existing vesicles. The process takes 16 to 20 h during which synthesis of new nitrogenase enzyme and wall thickening occur.

The results presented here provide a clear note of warning to those working with nitrogenase in Frankia: In static cultures

FIG. 3. Freeze fracture TEM micrographs of Frankia vesicles grown at 4 kPa O_2 (top) and 40 kPa O_2 (bottom). Vesicles are about 3 μ m diameter.

Frankia rapidly and progressively adapts to the lowered $pO₂$ produced by respiration coupled with the high diffusion resistance of the unstirred water. We have found that disturbance of such cultures results in significant loss of nitrogenase as a result of higher $pO₂$ affecting the unadapted culture. Even with stirred cultures, and more so with static cultures, assays of nitrogenase need to be conducted at several O_2 tensions to establish maximum activity. This is especially true at low $pO₂$ where the $O₂$ profile of nitrogenase is particularly narrow (Fig. 1).

The comparison between cyanobacterial heterocysts and Frankia vesicles is striking. The work reported here combined with the earlier report (14) show a marked similarity to inducible O_2 adaptation in heterocystous cyanobacteria (4, 13, 15). Both cells have a multilayered wall which in the cyanobacteria is poorly developed at low $O₂$ tension (7).

 $O₂$ protection provided by the multilayered wall of the *Frankia* vesicle provides a uniquely adaptable mechanism which allows the organism to function over the widest possible range of $pO₂$ levels, and up to at least three times atmospheric. Whereas in legume nodules it appears that the nodule structure (21) and presence of hemoglobin (1) are absolute requirements for the $O₂$ environment of Rhizobium bacteroids, the actinorhizal nodule is relatively aerated (18) and hemoglobin, while present in some cases, is not essential for nitrogenase activity (19). These results confirm that Frankia is unique among heterotrophic diazotrophs in possessing an intrinsic O_2 protection mechanism, able to adapt to an enormous range of $O₂$ tension and yet maintain a high specific activity of nitrogenase. Minchin (10) has recently reaffirmed the importance of this property of independence from external $O₂$ in considering the possibility of generating unique symbiotic systems and points to the cyanobacteria as amenable subjects for a leaf based system. Among root nodule systems Frankia appears to have properties that make it similarly suitable for consideration in unique symbioses. In comparison with Rhizobium, which is restricted essentially to one group of angiosperms and is totally dependent on nodule structure for $O₂$ protection, Frankia forms effective symbioses with a taxonomically diverse range of angiosperms and is able to control its own internal $O₂$ supply. We believe that these two properties make Frankia a prime subject for unique symbiotic systems.

Acknowledgments-We thank Dr. J. G. Torrey, Harvard Forest, for supply of Frankia culture HFPCcI3 and D. J. P. Ward for assistance in microscope techniques.

LITERATURE CITED

- 1. BERGERSEN FJ 1982 Root Nodules of Legumes: Structure and Functions. Research Studies Press, Chichester
- 2. BULLIVANT S, P METCALF, KP WARNE 1979 Fine structure of yeast plasma membrane after freeze-fracturing in a simple shielded device. In JE Rash, CS Hudson, eds, Freeze-Fracture: Methods, Artifacts and Interpretations.

Raven Press, New York, pp 141-147

- 3. BULLIVANT S 1973 Freeze-etching and free fracturing. In JK Koehler, ed, Advanced Techniques in Biological Electron Microscopy. Springer-Verlag, Berlin, pp 67-112
- 4. DROMGOOLE Fl, WB SILVESTER, BJ HicKs ¹⁹⁷⁸ Nitrogenase activity associated with Codium species from New Zealand marine habitats. NZ J Mar Freshw Res 12: 17-22
- 5. GALLON JR 1981 The oxygen sensitivity of nitrogenase: a problem for biochemists and micro-organisms. Trends Biochem Sci 6: 19-23
- 6. JENSEN BB, RP Cox 1983 Effect of oxygen concentration on dark nitrogen fixation and respiration in cyanobacteria. Arch Microbiol 135: 287-292
- 7. KULASOORIYA SA, NJ LANG, P FAY 1972 The heterocysts of blue-green algae. III. Differentiation and nitrogenase activity. Proc Roy Soc Lond Ser B 181: 199-209
- 8. LANCELLE SA, JG TORREY, PK HEPLER, DA CALLAHAM ¹⁹⁸⁵ Ultrastructure of freeze-substituted Frankia strain HFPCc13, the actinomycete isolated from root nodules of Casuarina cunninghamiana. Protoplasma 127: 64-72
- 9. MINCHIN FR, JF WITrY, JE SHEEHY, M MULLER ¹⁹⁸³ A major error in the acetylene induction assay: decreases in nodular activity under assay conditions. J Exp Bot 34: 64-69
- 10. MINCHIN F 1986 Gaseous diffusion in cyanobacterial heterocysts. Nature 320: 483-484
- 11. MURRY MA, MS FONTAINE, JD TJEPKEMA ¹⁹⁸⁴ Oxygen protection of nitrogenase in Frankia sp. HFPArI3. Arch Microbiol 139: 162-166
- 12. MURRY MA, MS FONTAINE, JG TORREY ¹⁹⁸⁴ Growth kinetics and nitrogenase induction in Frankia sp. HFPArI3 grown in batch culture. Plant Soil 78: 61-78
- 13. MURRY MA, AJ HORNE, JR BENEMANN 1984 Physiological studies of oxygen protection mechanisms in the heterocysts of Anabaena cylindrica. Appl Environ Microbiol 47: 449-454
- 14. MURRY MA, Z ZHANG, JG TORREY 1985 Effect of O_2 on vesicle formation, acetylene reduction, and O₂-uptake kinetics in Frankia sp. HFPCc13 isolated from Casuarina cunninghamiana. Can J Microbiol 31: 804-809
- 15. PIENKOS PT, S BODMER, FR TABITA 1983 Oxygen inactivation and recovery of nitrogenase activity in Cyanobacteria. J Bacteriol 153: 182-190.
- 16. ROBSON RL, JR POSTGATE 1980 Oxygen and hydrogen in biological nitrogen fixation. Annu Rev Microbiol 34: 183-207
- 17. SHAW BD ¹⁹⁸⁴ Oxygen control mechanisms in nitrogen-fixing systems. In NS Subba Rao, ed, Current Developments in Biological Nitrogen Fixation. Edward Arnold, London, pp 11 1-134
- 18. TJEPKEMA JD 1979 Oxygen relations in leguminous and actinorhizal nodules. In JC Gordon, CT Wheeler, DA Perry, eds, Symbiotic Nitrogen Fixation in the Management of Temperate Forests. Oregon State University, Corvallis, OR, pp 175-186
- 19. TJEPKEMA JD 1982 Hemoglobins in the nitrogen-fixing root nodules of actinorhizal plants. Can ^J Bot 61: 2924-2929
- 20. TJEPKEMA JD, WORMEROD, JG TORREY ¹⁹⁸⁰ Vesicle formation and acetylene reduction activity in Frankia sp. CPI1 cultured in defined media. Nature 287: 633-635
- 21. TJEPKEMA JD, CS YOCUM 1974 Measurement of oxygen partial pressure within soybean nodules by oxygen microelectrodes. Planta 119: 351-360
- 22. TORREY JG, D CALLAHAM 1982 Structural features of the vesicle of Frankia sp. CplI in culture. Can J Microbiol 28: 749-757
- 23. ZHANG Z, MF LOPEZ, JG TORREY ¹⁹⁸⁴ A comparison of cultural characteristics and infectivity of Frankia isolates from root nodules of Casuarina species. Plant Soil 78: 79-90