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Abstract

Per- and polyfluoroalkyl substances (PFASs) are synthetic chemicals that are ubiquitous in 

environmental and biological systems, including human serum. PFASs are used in many products 

and industrial processes and are tied to numerous health effects. Due to multiple sources 

and exposure pathways, methods are needed to identify PFAS sources in communities to 

develop targeted interventions. We assessed effectiveness of three source apportionment methods 

(UNMIX, positive matrix factorization [PMF], and principal component analysis - multiple 

linear regression [PCA-MLR]) for identifying contributors to human serum PFAS concentrations 

in two highly exposed populations in Colorado and North Carolina where drinking water 

was contaminated via upstream sources, including a Space Force base and a fluorochemical 

manufacturing plant. UNMIX and PMF models extracted three to four potential PFAS exposure 

sources in the Colorado and North Carolina cohorts while PCA-MLR classified two in each 

cohort. No sources were characterized in NHANES (National Health and Nutrition Examination 

Study). Results suggest that these three methods can successfully identify sources in highly 
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exposed populations. Future PFAS exposure research should focus on analyzing serum for 

an expanded PFAS panel, identifying cohorts with other distinct point source exposures, and 

combining biological and environmental data to better understand source apportionment results in 

the context of PFASs toxicokinetic behavior.
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1. Introduction:

Per- and polyfluoroalkyl substances (PFASs) are a class of thousands of chemicals that have 

many uses from stain and water-repellent products to aqueous film forming foams (AFFF)1. 

PFASs have a range of mechanisms of action in the human body and varied behavior in 

the environment.1,2 Though few PFASs have been studied extensively, exposure to these 

substances at occupational and environmental levels has been associated with an array of 

adverse health effects.2,3 Since production began in the 1930s, PFASs have become globally 

pervasive due to their widespread use, persistence and mobility.3–7 Because of this, and 

varied exposure pathways, it is imperative that investigators identify key sources of exposure 

to develop targeted interventions.

Receptor-based methods for source apportionment are often used for identifying 

contamination sources and source contributions in environmental media. Some of these 

models (i.e. chemical mass balance [CMB]) require known source profiles,8,9 which are 

rarely available for PFAS-contaminated communities. Models have been developed to 

resolve sources in mixtures without a priori knowledge of sources.8,10,11 Such models 

include United States Environmental Protection Agency (USEPA)-developed UNMIX, 

positive matrix factorization (PMF), and principal component analysis-multiple linear 

regression (PCA-MLR).8,11–16 These models have been successfully used for source 

apportionment of PFASs in environmental media.17–23 While many source apportionment 

studies have used receptor models to determine source contributions from environmental 

media, the models have rarely been used for biological media.24,25,26 Many studies in 

exposed communities lack a priori knowledge of all exposure sources and/or do not 
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have access to environmental samples from the time of the contamination. This means 

that biological measurements are often the best source for reconstructing prior exposure. 

Therefore, an understanding of model utility for biological matrices is important. This 

work uses multivariate receptor models–UNMIX, PMF and PCA-MLR–to evaluate putative 

sources of PFASs measured in serum samples from cohorts in Colorado (CO) and North 

Carolina (NC), United States (U.S.), along with a population representative of U.S. 

background exposures from 2015–2016. While some sources of contamination are known 

in these communities, many other PFAS concentrations in the blood samples are elevated 

relative to the expected background exposure, indicating multiple unknown sources of 

contamination. Measurements of the water sources for both the NC and CO cohorts also 

indicate exposure sources beyond the known sources of PFAS exposure.27–32 These cohorts 

lacked sufficient environmental samples or information on important exposure metrics like 

diet and, therefore, using source apportionment methods on biological samples may help 

reconstruct prior exposure. The overall objective of this work was to assess the utility of 

multiple source apportionment methods while elucidating source contributions using serum 

samples from populations exposed to varying PFAS sources. We expected to identify at 

least one source that aligns with known sources of PFAS contamination in these populations 

and additional sources that represent currently unidentified sources of exposure. This allows 

us to estimate the exposure contributions, the total contribution to overall exposure, of 

the known sources of PFASs and an indication of the magnitude of the other unidentified 

sources.

2. Methods:

2.1 Colorado and North Carolina Communities and Contamination Sources

Data from two on-going research studies, occurring in PFAS-exposed communities 

in Colorado (CO) and North Carolina (NC), were used to assess the utility of 

these models in determining exposure contributions of serum PFAS. The CO site is 

located in El Paso County, where approximately 80,000 people were exposed to high 

concentrations of perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), 

perfluorohexanesulfonic acid (PFHxS) and other PFASs originating from AFFF use at 

nearby Peterson Space Force Base (formerly Peterson Air Force Base).33 The NC site 

is in New Hanover County, where approximately 200,000 people were exposed to PFAS-

contaminated drinking water sourced from the Cape Fear River.27 This PFAS contamination 

was made up in part by perfluoroalkyl acids (PFAAs; e.g., PFOS, PFOA, and PFHxS) from 

currently unidentified sources upstream of the drinking water intake and in part by PFASs 

known as novel fluoroethers which were released from a fluorochemical manufacturing 

facility;27 fluoroethers are a newer class of PFASs that have the traditional perfluoroalkyl 

carbon chains characteristic of PFAAs, such as PFOA, but interrupted by ether oxygen(s). 

Fluoroethers, including hexafluoropropylene oxide dimer acid (HFPO-DA, a.k.a GenX), 

and perfluoro-3,5,7,9-tetraoxadecanoic acid (PFO4DA), were discharged into the Cape 

Fear River by a fluorochemical facility 80 miles upriver from the public water utility 

intake.28,30,31,34–36
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Select characteristics from each cohort are presented in Supplemental Table 1. In 

Supplemental Figure 1 distributions of select serum PFAS concentrations from both studies 

are displayed along with U.S. national reference range concentrations measured in the 2015–

2016 National Health and Nutrition Examination Survey (NHANES).37 NHANES is an 

annual survey that collects information from a representative sample to assesses the health of 

the U.S population.37

2.2 CO Dataset

The CO study population, design, and procedures are described in detail elsewhere.33 

Briefly, in spring 2018, 213 non-smoking adults who resided for at least two years in an 

area with AFFF-contaminated drinking water were recruited for the study. Blood samples 

were collected, and a questionnaire administered. Participants relied on a PFAS-impacted 

private well (N=16 participants) or resided in one of three PFAS-impacted water districts 

(Fountain, Security, or Widefield) (N=197 participants). PFAS water concentrations in the 

water districts displayed a north to south gradient (Security > Widefield > Fountain) moving 

away from the AFFF contamination source, as did certain PFAS (i.e., PFHxS) serum 

concentrations.33 While AFFF in drinking water is a known source of exposure in this 

cohort, the contribution of the AFFF has not been quantified and additional samples to 

characterize other local exposures (e.g., local diet, indoor and outdoor air) have not been 

collected. Blood samples were analyzed for 48 PFASs at the Colorado School of Mines. 

Details of the laboratory methods are described elsewhere.38

Eleven PFASs were detected in the serum of ≥50% of CO study participants (Table 1). 

Four PFASs (PFOA, PFHxS, PFOS, and perfluorononanoic acid (PFNA)) were detected in 

≥98% of participants. Other PFASs detected in ≥50% of participants included: Perfluoro-

n-heptanoic acid (PFHpA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid 

(PFUdA), perfluoropentanesulfonic acid (PFPeS), perfluoroheptanesulfonic acid (PFHpS), 

2-(N-Methylperfluorooctanesulfonamido) acetic acid (MeFOSAA), and the tentatively 

identified unsaturated perfluorooctanesulfonic acid (U-PFOS), which contains two fewer 

fluorines and one double bond within the perfluorinated chain.38

2.3 NC Dataset

The NC study population, design, and procedures are also described in detail elsewhere.27 

Briefly, 344 residents of New Hanover County, ages 6 years and older, living in a home 

served with Cape Fear Public Utility Authority (CFPUA) drinking water for at least 12 

months prior to November 2017, were recruited for the study. Blood samples were collected, 

and a questionnaire administered. Samples were analyzed at U.S. Environmental Protection 

Agency (EPA) in Research Triangle Park, North Carolina. Eight PFASs were detected 

in ≥50% of NC study participants (Table 1). Two fluoroethers (Nafion byproduct 2 and 

PFO4DA) and four PFAAs (PFOS, PFOA, PFHxS, and PFNA) were found in ≥97% 

participants. Other PFASs detected in ≥50% of participants included perfluoro-3,5,7,9,11-

pentaoxadodecanoic acid (PFO5DoA) and PFHpA. Samples representative of exposure to 

fluoroethers via this population’s drinking water were not available because the source of 

contamination was shut off prior to the, and levels of fluoroethers have dropped substantially 
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since then.27,29,30,34 Zhang et al. (2019) provides a snapshot of the presence of novel 

fluoroethers in the Cape Fear River prior to discharge control.34

2.4 Receptor Modeling

The three multivariate receptor models used in this analysis (UNMIX, PMF, and PCA-

MLR) were run for each cohort individually.16,39,40 The CO serum results were also 

stratified by water district of residence (PMF only) to evaluate if exposure contribution 

varied when residential water was sourced further from the primary water contamination 

source (i.e., AFFF released from Peterson Space Force Base). The model objectives are to 

identify the number of sources, composition of each source, and exposure contributions for 

chemical constituents in each sample. For each model, an analyte inclusion requirement 

of ≥50% detection (above the limit of detection or LOD) within each cohort was used 

to ensure accuracy, and ½ the LOD was substituted for PFAS measurements below 

the LOD as established in similar works.17,20,22 Other methods that can be used for 

censored environmental data are maximum likelihood estimation, survival analysis, and non-

parametric approaches. 41 While substitution remains the most common, these approaches 

can be much more robust, especially when data with less than 50% detects is included. 42 

With this requirement, 11 PFASs were included for CO, 8 PFASs were included for NC, 

and 5 PFASs were included for NHANES. PFASs included in the initial models and their 

abbreviations are displayed in Table 1. Unmix and PMF both have built in methods to assess 

the robustness and stability of each model including bootstrapping, rotation, and assessment 

of influential points. Table 2 compares the assumptions across each model and selection 

criteria used for determining the most appropriate solution using each method.15,16,39,40

2.5 UNMIX Model

USEPA’s UNMIX Model software version 6.0 was employed for this analysis.12,39 UNMIX 

assumes all concentrations are positive and species do not degrade or react with one another 

thus conserving mass, an appropriate assumption for many PFAAs, such as those presented 

in Table 143. These assumptions allow for a mass balance calculation using Equation 1.

Cij =
k = 1

n xinfnj + eij, (Equation 1)

Where Cij is the concentration of the ith species in the jth sample, xin is the ith species 

concentration from the nth source, fnj is the contribution from the nth source to the jth 

sample and eij is the error term.8–10,15

Unlike other receptor models (e.g., PMF), UNMIX does not require additional 

inputs beyond chemical species and concentrations. UNMIX employs singular value 

decomposition to reduce dimensionality of the data space, normalizes the data, and uses 

an algorithm to identify “edges” in the data to distinguish sources.12 To determine the best 

convergent model, UNMIX largely relies on the minimum R2 and the minimum signal to 

noise ratio (S/N) to determine results.12
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2.6 PMF Model

An in-depth explanation of the PMF algorithm can be found in the PMF 5.0 handbook and 

Reff et al.15,40 The algorithm underlying PMF differs greatly from UNMIX, and criteria for 

selecting one over the other in the event that the results disagree can be found in a review by 

Henry and Christensen, where they conclude that Unmix is more appropriate when edges in 

the data are distinct and PMF functions better when there are many zeros in the loading and 

score matrices.44.Like UNMIX, the PMF model is based on the CMB equation (Equation 

1).45 Unlike UNMIX, the number of sources in a PMF solution are user defined. Thus, 

the user can test solutions with a varying number of sources to determine an appropriate 

number for optimizing the diagnostic criteria. Another practical difference between PMF 

and UNMIX is that PMF includes uncertainty estimates for each data point. The uncertainty 

estimates are used in an equation to identify the value of the parameter Q, a goodness-of-fit 

parameter:

Q =
i  =  1

n

j  =  1

m eij

σij

2
(Equation 2)

Where, σij is the uncertainty of the jth species concentration in sample i, n is the number 

of samples, and m is the number of species.15 Three different Q values are generated: 

Qexpected is equal to (number of non-weak, a user selected label, data values in the data set 

(X)) -(numbers of elements in the factor contributions (G) and factor profiles (F), taken 

together), Qtrue is the goodness-of-fit parameter calculated including all points, and Qrobust

is the goodness-of-fit parameter calculated excluding points not fit by the model, defined 

as samples for which the uncertainty-scaled residual is greater than four.40 Along with 

other criteria (Table 2) these calculation can, in part, be used to choose the best model. 

Depending on the data available, various equations may be used to estimate uncertainties.15 

Uncertainty=5/6*LOD is commonly applied and was used in this analysis.15,44

2.7 PCA-MLR

A comprehensive explanation of the use of PCA-MLR for source apportionment can be 

found in Thurston and Spengler.16 The PCA-MLR model relies on the same underlying 

principles as the two models described above, however the PCA-MLR model does not 

rely on the CMB equation and therefore does not impose any positive constraints on the 

model. For the PCA, the data were normalized via log-transformation The PCA was run 

with varimax rotation and varimax factors with an eigenvalue >1 were used in the analysis 

as done in previous works on the subject.16,46–48 Following identification of factors, MLR 

was employed where the factors identified in the PCA were modelled as independent 

variables and the sum of the measured pollutant concentrations was the dependent variable. 

The regression coefficients from the MLR were then used to determine the exposure 

contribution, in percent, of each source with the following equation:

i % = 100 ∗ Bi
i
n Bi (Equation 5)
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where Bi is the beta coefficient for a given factor.16

3. Results and Discussion:

The overarching goal of this study was to quantify source contributions of PFAS exposure 

in human serum in two highly exposed communities and assess the utility of three different 

source apportionment methods in human serum across these communities and a broader 

reference population (NHANES). UNMIX, PMF and PCA-MLR were run on CO and NC 

serum datasets with results shown in Figures 1, 2 and 3. For the CO and NC cohorts, 

the UNMIX and PMF models described three to four major sources while the PCA-MLR 

method characterized two sources. Each cohort contained at least one distinct source of 

contamination that was by these models, but none of the sources elucidated were similar 

across the two cohorts. This is expected due to the overall lack of similarity in likely PFAS 

exposure source across these two cohorts. The NHANES analysis did not result in feasible 

solutions or solutions that met diagnostic criteria (Table 2) for any of the three models 

(results not shown).

3.1 CO Cohort: Results

For the CO dataset, UNMIX and PMF resulted in similar 3-source solutions and PCA-MLR 

resulted in a 2-source solution (Figure 1a/b).

PFNA, PFHpA and MeFOSAA were excluded from UNMIX due to high specific variance 

(variance due to error >50%). The final solution had an overall R2 of 0.87, had a minimum 

S/N ratio of 3.24 and met all diagnostic fit criteria as shown in Table 2. Source 1 (CO-

UNMIX-1) accounted for 57% of the total mass and had high loadings of sulfonates 

including PFHxS, PFHpS, and U-PFOS. Source 2 (CO-UNMIX-2) accounted for 10% 

of the total mass and had high percent contributions of PFDA and PFUdA. Source 3 

(CO-UNMIX-3) accounted for 33% of the total mass and had high percent contribution of 

PFPeS.

PMF produced a solution after investigation of 2 through 4-source solutions. PFUdA and 

PFDA were excluded from the final PMF solution due to a low R2 for the observed versus 

predicted estimates. PFNA was flagged as weak due to a low R2. While the 4-source 

solution had lower Q parameters, it displayed a high degree of rotational ambiguity (caused 

by multiple similar solutions being generated when the matrices are rotated) during F-Peak 

rotation and had comparable R2 values across species. Therefore, the 3-source solution was 

used. This solution had a Qtrue/Qexp of 11.7 and a QRobust of 4761. The model was selected using 

the diagnostic criteria and resulted in the following sources: Source 1 (CO-PMF-1) with 

high percent contributions of sulfonates including PFHxS, PFHpS and U-PFOS, made up 

59% of the total; Source 2 (CO-PMF-2), with a high percent contribution of PFNA made 

up 27% of the total; and Source 3 (CO-PMF-3), with a high percent contribution of PFPeS, 

made up 14% of the total.

The PCA model was run with all compounds other than PFHpA and MeFOSAA because 

inclusion resulted in decreased overall R2 and decreased percent variance explained. Two 

eigenvalues ≥1 were found in the PCA, which explained 76% of dataset variation. When 
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absolute principal component scores were fit in the MLR, source 1 (CO-PCAMLR-1) 

contributed 87% and source 2 (CO-PCAMLR-2) contributed 13% to the total solution 

identified by PCA-MLR, with a model R2 of 0.94. CO-PCAMLR-1 had high percent 

contributions from the sulfonates and PFOA while CO-PCAMLR-2 had high percent 

contributions of PFNA, PFDA and PFUdA.

Following evaluation of source apportionment results for the CO cohort, PMF results 

were stratified by participant’s water district of residence due to a clear north to south 

gradient of PFAS concentrations in the affected area.33,38 PMF has the option to include a 

sampling site with data input so that different locations may be compared. Results indicate 

decreasing exposure contribution from CO-PMF-1 by water district with increasing distance 

from the known AFFF release site (Figure 2). On average, CO-PMF-1 (the sulfonate 

dominated source) contributed 66% of the exposure for the serum PFAS in Security 

water district participants, (i.e., participants living closest to drinking water contamination 

source); Widefield water district participants averaged 53% contribution from CO-PMF-1; 

and Fountain water district participants (furthest from the contamination source) averaged 

a 48% contribution from CO-PMF-1. Average exposure contributions from CO-PMF-2, the 

source with high percent contributions from PFNA, ranged from 24% in Security to 30% 

in Widefield and Fountain. Average exposure contributions from CO-PMF-3, the source 

dominated by PFPeS, ranged from 9% in Security to 21% in Fountain (Figure 2).

3.2 CO Cohort: Potential Exposure Sources

The first exposure source characterized with each modeling approach (CO-UNMIX-1, CO-

PMF-1 and CO-PCAMLR-1) had high percent contributions of sulfonates, specifically 

PFHpS, PFHxS, and U-PFOS for CO-UNMIX-1 and CO-PMF-1. The second source 

in all models had high percent contributions of longer chain carboxylates: PFDA and 

PFUdA for CO-UNMIX-1, PFNA in CO-PMF-2, and PFNA, PFDA and PFUdA in CO-

PCAMLR-2. CO-UNMIX-3 and CO-PMF-3 had high percent contributions of PFPeS. PFOS 

and PFOA were not helpful in distinguishing sources despite being elevated in CO serum 

samples. However, PFOS and PFOA did contribute approximately 80% of their mass to 

CO-PCAMLR-1.

Based on what is known about PFAS releases near the CO site, CO-UNMIX-1, CO-PMF-1 

and CO-PCAMLR-1, representing 57%, 59% and 87% relative overall source contribution, 

respectively, suggests that they are theAFFF-contaminated drinking water source.33,38 Three 

important PFASs for this source (AFFF) across models were PFHpS, PFHxS and U-PFOS 

which were detected in raw drinking water samples taken in 2018 as part of the CO 

study.38 Further, PFHpS and PFHxS are likely derived from AFFF, and have been found at 

high concentrations at other AFFF release sites.49,50 PFHxS has been found at elevated 

concentrations in the serum of firefighters exposed to AFFF51 and both PFHxS and 

PFHpS have been found in the serum of residents exposed to AFFF-contaminated drinking 

water, and in the associated raw water samples, in a Swedish community near a military 

installation.52,53 While previous research from the CO site is the first to our knowledge to 

report U-PFOS in human serum, 36 others have detected U-PFOS in AFFF-contaminated 

water and products as well as in the serum of mice dosed with AFFF.38,54,55
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The supposition that CO-PMF-1 may be identifying the AFFF-contaminated drinking 

water is further supported by the results of the stratified PMF analysis (Figure 2). When 

stratifying by water district of residence, the exposure contribution by CO-PMF-1 decreases 

monotonically moving from the northernmost water district closest to the known AFFF 

source (Security) to the water district furthest from the AFFF source (Fountain). This is 

consistent with the Barton et. al 2019 findings that water district of residence was a primary 

predictor of PFAS serum concentrations and McDonough et al. 2021 results showing that 

untreated water concentrations varied by water district in the same pattern.38

The second source described by all three models (i.e., CO-UNMIX-2, CO-PMF-2, and 

CO-PCAMLR-2), with exposure contributions of 10%, 27% and 13%, respectively, had high 

percent contributions of the longer chain carboxylates, including PFNA, PFDA, and PFUdA. 

This source is not likely to be associated with drinking water, as these PFASs were either 

not detected at all or were detected only at very low concentrations in the CO untreated 

water samples and concentrations did not vary significantly by water district.38 Further, 

though only PFNA was included in the Barton et al. analyses, it was not associated with any 

drinking water-related variables, like many of the other PFASs.33 Based on market basket 

studies (i.e., where representative diets are characterized and daily intakes of contaminants 

or nutrients are estimated56) conducted in several countries, it is plausible that this source 

should be attributed to diet.57 Long chain perfluorocarboxylates, such as those identified 

here, are more likely to accumulate in seafood58,59 and dairy products60 compared to shorter 

chain PFASs.

A third source characterized by the UNMIX and PMF models (i.e., CO-UNMIX-3 

and CO-PMF-3) had relative contributions of 33% and 14%, respectively, and high 

percent contributions of PFPeS. Two potential candidates for this source are: 1) an 

AFFF-contaminated drinking water source, or 2) an outside exposure, such as consumer 

product exposure. It is difficult to assign this factor to a specific source as there is very 

limited literature on the use of PFPeS and it is not routinely measured in human serum. 

The Australian Department of Health found that PFPeS has been used in electroplating, 

antireflective coatings, carpet treatments, and is present in AFFF.61 However, none of the 

sources the report cites specifically tested for PFPeS, rather they tested for PFHpS and 

PFHxS that are structurally similar but not identical. It is possible that PFPeS is related to 

the AFFF-contaminated drinking water given PFPeS was found in untreated drinking water 

samples at the CO Site38 as well as in the blood of residents exposed to AFFF-contaminated 

water in Sweden.62 Further, the PCA-MLR analysis only separated out two sources, with 

100% of PFPeS allocated to CO-PCAMLR-1 with the other sulfonates known to be derived 

from AFFF.

One potential issue with this interpretation is the lack of an expected trend for PFPeS (i.e., 

CO-PMF-3) in the stratified analysis (Figure 2). Further, as presented in McDonough et al 

2021, in a second year of sampling at the CO site in a subset of the year one participants 

(N=53 in year 2 [2019]; N=213 in year 1 [2018]) there was no significant decline in PFPeS 

serum concentrations.38 Over this one-year period, which took place after the water systems 

had mitigated the AFFF-contamination, other PFASs present in the contaminated drinking 

water (i.e., PFHxS, PFOS, PFOA, PFHpS and UPFOS) did decline significantly (p<0.05). 
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Given PFPeS is estimated to have a shorter elimination half-life than the other PFASs listed 

above, it follows that if drinking water was the primary source of PFPeS exposure and the 

drinking water exposure was remediated prior to the blood testing in 2018, a significant 

decline in serum concentrations would be expected.62 In fact, of 53 CO study participants, 

16 (30%) saw an increase in PFPeS from 2018 to 2019, with an average percent decline 

of only 11%.34 This, coupled with the fact that both CO-UNMIX-3 and CO-PMF-3 were 

similarly influenced by PFPeS, suggests that an additional source of PFPeS related to 

consumer product use may be present. In 2003, 3M began using perfluorobutane sulfonic 

acid (PFBS) as a substitute for PFOS in their Scotchgard formulation which could result in 

PFPeS impurities in this newer mixture.63 Indeed, in a 2020 exposure assessment conducted 

at a Michigan site contaminated by leachate from a landfill consisting of tannery waste 

contaminated with PFAS-containing Scotchgard, PFPeS was found in the serum of 86% of 

participants.64 This finding is supportive of the hypothesis that the third source produced by 

UNMIX and PMF may be linked to a consumer product exposure source.

3.3 NC Cohort: Results

Results from the NC cohort are presented in Figure 3. UNMIX and PMF both identified 

four-source solutions and PCA-MLR identified a two-source solution.

The UNMIX solution included all compounds. While excluding PFOA created a slightly 

better model solution based on a minimum S/N of 5.03, it was included in the model 

due to its importance as a contaminant in the NC cohort; PFOA serum concentrations 

in Wilmington were significantly higher than the national average.65 This solution had 

a minimum R2 value of 0.92, a minimum S/N of 2.47, and met all diagnostic criteria 

(Table 2). Source 1 (NC-UNMIX-1) accounted for 3% of the total mass and contained a 

majority of PFHpA. Source 2 (NC-UNMIX-2) accounted for 48% of the total mass and 

contained the highest loadings of PFOS and PFNA, as well as high percentages of PFHxS 

and PFOA. Source 3 (NC-UNMIX-3) accounted for 22% of the total mass and contained a 

high percentage of PFO4DA. Source 4 (NC-UNMIX-4) made up 28% of the total mass and 

consisted of the highest levels of Nafion byproduct 2, PFO5DoA, PFHxS, and PFOA.

For the PMF analysis, multiple models with two to six sources were fit. PFHpA was flagged 

as weak due to a low S/N. The model with the highest Qrobust contained all compounds. 

The chosen model had the lowest Qtrue/Qexp (4.24), a relatively low QRobust (3478) and met all 

selection criteria in Table 2. This model included all PFASs that were measured in ≥50% 

of the participants. Source 1 (NC-PMF-1) made up 17% of the mass and contained high 

loadings of PFHpA and PFO4DA. Source 2 (NC-PMF-2) made up 36% of the total mass 

and contained high loading of PFOS and PFNA. Source 3 (NC-PMF-3) was 22% of the total 

mass and contained the highest loadings of Nafion byproduct 2 and PFO5DoA. Source 4 

(NC-PMF-4) was 25% of the total and had high contributions of PFHxS and PFOA.

The PCA-MLR analysis was initially run with all chemicals. Because PCA-MLR does 

not have a way to control for negative concentration estimates, compounds with the most 

negative concentrations in each source were removed, until a solution that did not contain 

negative values was found. There were two eigenvalues greater than one and the final 
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solution explained 86% of the variance. The MLR had an R2 of 0.95. The final solution 

contained two sources and did not include PFO5DoA and Nafion byproduct 2. Source 1 

(NC-PCAMLR-1) comprised 34% of the total mass and had the most PFHpA and PFO4DA. 

Source 2 (NC-PCAMLR-2) contributed 66% of the total mass and had a majority of the 

PFHxS, PFNA, PFOA, and PFOS.

3.4 NC Cohort: Potential Exposure Sources

Several exposure sources (NC-UNMIX-3,4; NC-PMF-1,3; NC-PCAMLR-1) contained high 

percent-contributions of novel fluoroethers, specifically PFO4DA for NC-UNMIX-3 and 

NC-PMF-1, and Nafion byproduct 2 and PFO5DoA for NC-UNMIX-4 and NC-PMF-3. 

The model results also all share sources that contain high percentages of PFAAs (NC-

UNMIX-1,2; NC-PMF-2,4; NC-PCAMLR-2), specifically PFHpA for NC-UNMIX-1; 

PFNA and PFOS for NC-UNMIX-2; and PFOA, and PFHxS for NC-PMF-4.

Based on what is known about the NC cohort, NC-UNMIX-3,4; NC-PMF-1,3; NC-

PCAMLR-1, representing 22% and 28%, 17% and 22%, and 34% exposure contribution, 

respectively, likely represent contributions from the Fayetteville Works Facility.27–29 This 

is consistent with the knowledge that Fayetteville Works is the only known source of the 

novel fluoroethers in the area.27–29 A high percentage of PFHpA–a PFAA –is also present 

in NC-PMF-1 and NC-PCAMLR-1. PFHpA was the dominant legacy PFAA measured in a 

2006 wastewater discharge sample from Fayetteville Works (before methods for fluoroethers 

existed), and it was the second-most prevalent PFAA contributed by Fayetteville Works to 

the Cape Fear River based on samples collected in 2014 upstream and downstream of the 

facility.30–32

NC-UNMIX-1,2; NC-PMF-2,4; and NC-PCAMLR-2, representing 3% and 48%, 36% 

and 25%, and 66% exposure contribution, respectively, all represent contributions from 

PFAAs. These PFAAs have been identified in the Cape Fear River and as contaminants of 

New Hanover County drinking water.27,28,34,35 These model sources represent unidentified 

drinking water sources of PFAAs that may be separated spatially or temporally from the 

exposures stemming from Fayetteville Works. PFAAs have been identified upstream of the 

Fayetteville Works facility, and analyses over time show these shifting from longer to shorter 

chain PFASs.30–32

PFHxS and PFNA were spread evenly across multiple exposure sources–NC-UNMIX-2,4 

and NC-PMF-2,3,4–respectively. PFHxS had the lowest R2 in the UNMIX results (0.72) 

which indicates a larger problem in the model’s ability to characterize PFHxS exposure. 

PFNA, while primarily apportioned into NC-PMF-2,3,4, only contributed a small percentage 

to those sources–6%, 5%, and 6% respectively–and the total contamination. PFNA is known 

to be present in food (such as fish) as discussed earlier,57–61 and these models may have 

trouble disentangling background sources of contamination (i.e sources that are not specific 

to those in highly exposed communities, such as non-local diet, that many people are likely 

exposed to at low levels.), as evidenced by the lack of convergent results from the NHANES 

data. While Colorado has a very distinct and strong contamination source in the drinking 

water (AFFF), North Carolina may have multiple sources of water contamination, including 
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several industrial wastewater discharges, AFFF, and runoff from fields, to which impacted 

biosolids are land-applied. Therefore, it is easier to determine potential additional sources 

beyond drinking water in the Colorado cohort.

3.5 Strengths

The major strength of this analysis is that all three receptor models found feasible 

solutions for PFAS sources in serum from two unique PFAS-exposed populations, the 

CO and NC cohorts, both of which have relatively small sample sizes (n<350). Further, 

UNMIX and PMF produced fairly similar results within each cohort improving confidence 

in conclusions. The sources that were ascertained in each cohort are supported by the 

known contamination in each community and are corroborated by samples taken by other 

researchers of the contaminated water sources.27–32

This analysis allows for a more refined understanding than simple evaluation of inter-PFAS 

correlations. Because these models rely in part on the correlation between the concentrations 

of the chemicals, we explored how the receptor models improved on the interpretation 

of a Spearman’s correlation (Supplemental Figures 2–4). Spearman’s correlations indicate 

general groupings of PFASs, but do not estimate the magnitude of individual or multiple 

PFAS contributions to potential sources. For example, in the CO dataset, it would be difficult 

to discern from Spearman’s correlations anything beyond the already suspected fact that 

many of the sulfonates are associated with a common source. The analysis does not give an 

indication that PFPeS may be behaving differently or the degree to which PFOS and PFOA 

may be contributing to other sources beyond AFFF-contaminated drinking water. These 

results provide confidence that these models could be used in the future to help investigate 

sources of exposure using biological as well as environmental samples.

3.6 Limitations

Along with the strengths defined above these models also have limitations. Though 

successful at determining solutions in the CO and NC cohorts, the models did not result 

in informative or feasible solutions with a larger sample size (n=1,993) in the NHANES 

2015 to 2016 dataset. The CO and NC datasets both included larger arrays of PFASs (11 and 

8, respectively) than the NHANES dataset with only 5 PFASs. In this case, these receptor 

models may be limited by the number of chemicals, and they may only be effective for 

populations in specific regions that are highly exposed to distinct (and common) exposure 

sources, which the NHANES cohort were not (supplementary figure 1). This was tested 

by running these models with the same 5 PFASs using the samples from the CO and 

NC cohorts. These tests did not return feasible or informative results and resembled the 

results from the NHANES data (supplementary data 1). Because these models rely on the 

separation of compounds using different algorithms, a larger number of compounds may 

help in clustering the samples into different sources. This is especially true for unmix, which 

identifies sources by finding “edges” wherein a compound is not present in a specific source. 

Having more compounds increases the opportunities for edges in the model to arise.

In addition, the models had trouble effectively partitioning compounds that result from 

many exposure sources (such as PFOA and PFOS). Although PFOA was found in higher 
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concentrations compared to the general population for both CO and NC (Supplemental 

Figure 1), it likely originates from several sources. PFOA has been used in a variety of 

products for many years, making it difficult to identify its sources, especially in comparison 

to the novel fluoroethers observed in NC and the sulfonates associated with AFFF in CO.

A minor limitation worth noting is that in both cohorts, PCA-MLR found fewer sources 

than the other two models. Other studies that evaluated these three receptor methods have 

found that PCA-MLR is not always able to disentangle as many sources as the other 

two methods and may not be as effective at pulling out correlated sources.20,21,66 This 

may be due to the lack of negative constraints, diagnostic criteria for model improvement, 

and/or bootstrapping. Conversely, UNMIX and PMF appear to be very sensitive to exposure 

contributions and may separate single sources into multiple sources.

It is important to be mindful that these receptor models were designed for use with 

environmental media, not a biological matrix like human serum. A key assumption of 

these models is that the contaminants do not degrade or react with one another. In the 

human body, some PFASs are excreted more quickly than others, may be absorbed at 

different rates or distributed differentially, and these models may not be distinguishing the 

exposure sources if toxicokinetic parameters vary drastically across individuals or different 

groups. These results represent a specific cross-section of time, which makes accounting 

for toxicokinetic differences challenging. To remedy this problem, Hu et al. separated 

participants by covariates that could affect toxicokinetics such as sex and age.48 When the 

participants in our study were separated into three groups–men, women, and children (North 

Carolina only)–the resultant models did not fit the selection criteria, were similar to the 

full models, or did not produce feasible results (Supplemental data 1). These results imply 

that these models, as is, may be unable to account for toxicokinetic differences between 

subpopulations. This could be due to a need for a larger sample size that makes up for the 

diminished power when separating the population into groups to account demographics that 

may affect toxicokinetics such as age and sex. There is also currently no way built into 

the model to account for individual toxicokinetic differences.2,39,40 This problem may be 

ameliorated by modifications to the models that allow for covariates to account for such 

differences. The full models on the other hand produced feasible, interpretable results that 

met all selection criteria. This is probably not as major a limitation to this method as it 

may seem. The way PFASs, like all compounds, behave in the environment, as they do in 

the body, is also governed by a complicated suite of interacting variables.2,67 The fate and 

transport of a compound after leaving a source can be affected by physical and chemical 

properties of the molecule itself, soil types, precipitation, etc.68 These methods are agnostic 

to any variable that might affect the fate of a compound, whether it is in the environment or 

in the human body.

3.7 Implications and Future Research

The source apportionment models evaluated performed better in areas with distinct exposure 

sources and may not be useful in examining broader trends in the U.S. population. This 

is likely due to higher measured concentrations and/or greater relative variation between 

PFASs in highly exposed populations. For the CO and NC cohorts, neither UNMIX nor 
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PMF separated PFOA into separate sources effectively, possibly because PFOA exposure 

originates from multiple relatively small and/or overlapping sources.

This work found that UNMIX and PMF were able to extract three to four potential sources 

of PFAS exposure for both cohorts, while the PCA-MLR method identified two sources 

for each cohort. While PCA-MLR appeared to perform adequately, UNMIX and PMF 

were more successful at characterizing specific source groups in communities exposed to 

high concentrations of PFASs originating from specific contamination events. All three 

methods were unsuccessful in identifying specific exposure sources when the models were 

run with a dataset expected to be representative of background PFAS exposures in the U.S. 

(NHANES).

Though these three models can provide an idea of potential sources of PFAS exposure, 

they are limited in that they require educated judgment based on existing knowledge to 

identify sources. A potential preferred method of PFAS source apportionment would be 

CMB, however, for PFASs, CMB would require regionally specific source profiles for 

drinking water, dust, indoor air, diet, and consumer products. The collection and analysis of 

such samples would be time and resource intensive and is often not feasible, especially in 

situations where investigators arrive after the exposure has taken place and the profiles may 

have changed since the initial exposure.

The results of UNMIX and PMF in both cohorts were similar enough that it was concluded 

that both models worked equally well. While UNMIX and PMF produce similar results, 

another consideration is usability. UNMIX’s reduced requirement for user input leads to 

results that are easier for decision-makers to interpret. While UNMIX requires less user 

input, making it more usable and easier to interpret, it provides less control over the model 

and less methods to validate each iteration of the model than PMF. PMF contains a similar 

but much more robust method to compare different parameters in each models including 

bootstrapping and rotation of these models that isn’t present in UNMIX while letting you 

select the number of sources and select which species are weighted less in the model without 

removing them. This makes PMF more broadly useful and more adjustable to each specific 

situation. Overall, these models are probably most useful if used in tandem, as differences 

that are present in the model may reveal information about the exposure that wouldn’t be 

ascertained when using either separately. A more in depth look at the differences between 

these models can be found in table 2, in their respective manuals, and across several 

publications8,10–12,39,40,45.

Given the long half-life of many PFAAs53,69 and the relative lack of transformation or 

metabolism of PFAAs in the human body, these methods should be considered viable 

options for source apportionment of serum PFASs in populations that are not exposed to 

significant amounts of metabolically labile precursors. For PFASs with longer half-lives, 

serum concentration may be thought of as an integrated measure of exposure that represents 

both historical and current exposure, thus these methods may be able to disentangle past 

sources. It is important to keep in mind that PFASs that are quickly eliminated from the 

body (e.g., a short-chain PFAS like PFBS)70,71 often are not present in serum samples 

and would be excluded from source characterization. For these homologues, it is worth 
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considering using urine and environmental media in parallel to serum for evaluation of other 

potential sources of PFAS exposure.

This work provides insight into the utility of applying models designed for environmental 

media for source apportionment of human serum. The approach could be applied in many 

epidemiological studies where data on environmental sources is lacking but biological 

samples are available. Understanding PFAS exposure contributions and how source 

contributions vary based on the specific exposure scenarios and profiles is essential to 

develop policies that are appropriately protective of public health, inform toxicity testing by 

identifying mixtures to test, and guide mitigation efforts by identifying the largest and most 

common contamination sources.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

PFAS per and polyfluoroalkyl substances

NC North Carolina

CO Colorado

USEPA United States Environmental Protection Agency

PMF positive matrix factorization

PCA-MLR principal component analysis-multiple linear regression

AFFF aqueous film forming foams

PFAA perfluoroalkyl acid

PFHpA Perfluoro-n-heptanoic acid

PFOA Perfluorooctanoic acid

PFNA Perfluorononanoic acid
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PFDA Perfluorodecanoic acid

PFUdA Perfluoroundecanoic acid

PFPeS Perfluoropentanesulfonic acid

PFHxS Perfluorohexanesulfonic acid

PFHpS Perfluoroheptanesulfonic acid

U-PFOS Unsaturated perfluorooctanesulfonic acid

PFOS Perfluorooctanesulfonic acid

MeFOSAA 2-(N-Methylperfluorooctanesulfonamido)acetic acid

Nafionbp2 Perfluoro-2-{[perfluoro-3-(perfluoroethoxy)-2-

propanyl]oxy}ethanesulfonic acid

PFO4DA Perfluoro-3,5,7,9-tetraoxadecanoic acid

PFO5DoA Perfluoro-3,5,7,9,11-pentaoxadodecanoic acid

Nafionbp2 Nafion byproduct 2

S/N signal to noise ratio
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Figure 1. 
A (Left Side) Source compositions for the CO cohort from the three different models. B 
(Right Side) Exposure contributions for the CO from the three different models.
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Figure 2. 
Exposure contributions by water district of residence for CO cohort, results from PMF 

model.
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Figure 3. 
A (Left Side) Source compositions for the NC cohort from the three different models. B 
(Right Side) Exposure contributions for the NC cohort from the three different models.
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Table 1:

PFASs detected in greater than 50% of participants for each cohort used as a starting point for inclusion in the 

three models. Not all PFASs listed below were included in the final selected modelsa.

PFAS Full Name DTXIDb

CO Cohort NC Cohort

% 
Detected

Detection 
Limitc 

(ng/mL)

% 
Detected

Detection 
Limit c 
(ng/mL)

Perfluoroalkyl carboxylic acids (PFCAs)

 PFHpA Perfluoroheptanoic acid 1037303 56 0.01–0.10 63 0.1–0.3

 PFOA Perfluorooctanoic acid 8031865 100 0.01–0.10 100 0.1–0.5

 PFNA Perfluorononanoic acid 8031863 98 0.01–0.20 97 0.1–0.9

 PFDA Perfluorodecanoic acid 3031860 85 0.01–0.20 -- --

 PFUdA Perfluoroundecanoic acid 8047553 66 0.01–0.20 -- --

Perfluorosulfonic acids (PFSAs)

 PFPeS Perfluoropentanesulfonic acid 8062600 81 0.01–0.20 -- --

 PFHxS Perfluorohexanesulfonic acid 7040150 100 0.11–1.0 98 0.1–1.8

 PFHpS Perfluoroheptanesulfonic acid 8059920 99 0.01–0.04 -- --

 U-PFOS Unsaturated perfluorooctanesulfonic acid NA 89 0.01–0.20 -- --

 PFOS Perfluorooctanesulfonic acid 3031864 100 0.10–2.0 99 0.1–0.5

 MeFOSAA 2-(N-
Methylperfluorooctanesulfonamido)acetic acid

10624392 52 0.01–0.20 -- --

Novel fluoroethers

 Nafionbp2 Perfluoro-2-{[perfluoro-3-(perfluoroethoxy)-2-
propanyl]oxy}ethanesulfonic acid

10892352 -- -- 99 0.1–0.12

 PFO4DA Perfluoro-3,5,7,9-tetraoxadecanoic acid 90723993 -- -- 98 0.1–0.11

 PFO5DoA Perfluoro-3,5,7,9,11-pentaoxadodecanoic acid 50723994 -- -- 88 0.1

a
UNMIX and positive matrix factorization (PMF) allow user to add and delete species to evaluate how these changes impact the fit of the resulting 

solution.

b
DTXSID is a unique substance identifier used in the U.S. EPA CompTox Chemistry Dashboard (Williams et al. 2017).

C
Multiple analytical runs were used to analyze sample sets, causing some run-to-run variation in detection limits. The range of detection limits for 

each compound is provided.
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Table 2.

Model assumptions and selection criteria.

Model Assumptions UNMIXa PMFb PCA-MLRc

Chemical Mass Balance x x

Linear Correlation x

Normality x

Source Composition Approximately Constant x x

Positive Contributions x x

Selection Criteria

High Model R2 x x x

High Compound R2 x x

High S/N x x

User Discretion on Set of Included Compounds x x x

Identification and Adjustment of Influential Outliers x x

Runs Fall Within IQR of Bootstraps x x

No Significant Negative Bias x

No Errors, Significant Changes in Q, or Significant Swaps in Sources During Bootstrap-Displacement x

No Source Swaps During Bootstrap-Displacement x

Qtrue/Qexp Close to 1 x

Close to 100 Bootstrap Runs for 100 Feasible Results x

Primary Goodness-of-fit Metric S/N Q R2

Abbreviations: PMF, positive matrix factorization; PCA-MLR, Principal component analysis-multiple linear regression; S/N, Signal to noise ratio; 
IQR, interquartile range;

a
Norris et al. 2007

b
Norris et al. 20014

c
Thurston and Spengler, 1985
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