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Abstract

Motivation: Spatial domain identification is a very important problem in the field of spatial transcriptomics. The state-of-the-art solutions to this
problem focus on unsupervised methods, as there is lack of data for a supervised learning formulation. The results obtained from these methods
highlight significant opportunities for improvement.

Results: In this article, we propose a potential avenue for enhancement through the development of a semi-supervised convolutional neural net-
work based approach. Named “ScribbleDom”, our method leverages human expert’s input as a form of semi-supervision, thereby seamlessly
combines the cognitive abilities of human experts with the computational power of machines. ScribbleDom incorporates a loss function that inte-
grates two crucial components: similarity in gene expression profiles and adherence to the valuable input of a human annotator through scribbles
on histology images, providing prior knowledge about spot labels. The spatial continuity of the tissue domains is taken into account by extracting
information on the spot microenvironment through convolution filters of varying sizes, in the form of “Inception” blocks. By leveraging this semi-
supervised approach, ScribbleDom significantly improves the quality of spatial domains, yielding superior results both quantitatively and qualita-
tively. Our experiments on several benchmark datasets demonstrate the clear edge of ScribbleDom over state-of-the-art methods—between
1.82% to 169.38% improvements in adjusted Rand index for 9 of the 12 human dorsolateral prefrontal cortex samples, and 15.54% improve-
ment in the melanoma cancer dataset. Notably, when the expert input is absent, ScribbleDom can still operate, in a fully unsupervised manner
like the state-of-the-art methods, and produces results that remain competitive.

Availability and implementation: Source code is available at Github (https://github.com/1alnoman/ScribbleDom) and Zenodo (https://zenodo.
org/badge/latestdoi/681572669).

SpaGCN (Hu et al. 2021), BayesSpace (Zhao et al. 2021),
SC-MEB (Yang et al. 2022), etc., of which, SC-MEB,
BayesSpace, and SpaGCN are state-of-the-art methods that
demonstrated quantitatively better performance than others
(Table 1). BayesSpace implements a fully Bayesian statistical
method that uses the information from spatial neighborhoods
for resolution enhancement of spatial transcriptomic data.
SC-MEB, on the other hand, implements an empirical Bayes
approach for spatial clustering analysis using a hidden Markov
random field. SpaGCN applies a graph convolutional network
approach to integrate gene expression profile data, spatial
location as well as histology. These approaches for clustering
analysis have demonstrated concordance with the available

1 Introduction

Spatial transcriptomics (ST), an emerging technology to profile
gene expression at the spatial resolution, can reveal new
insights into molecular aspects of tissue architecture (Longo
et al. 2021, Rao et al. 2021, Moses and Pachter 2022, Palla
et al. 2022). One such aspect is transcriptional homogeneity
in tissue regions. Since ST data captures gene expression at
spatially resolved spots, clustering the spots based on their tran-
scriptomic profiles can demarcate transcriptionally homoge-
neous tissue regions (Maynard et al. 2021). The goal here is to
identify spatial domains in the ST data, similar to how image
segmentation algorithms demarcate objects in images. Notably,

most image segmentation algorithms are “supervised”; i.e.,
they require training examples with segments demarcated a pri-
ori. However, such training examples are scarce in the realm of
ST, requiring the spatial domain identification algorithms to be
unsupervised. Some of the methods that try to solve this prob-
lem are Giotto (Dries et al. 2021), stLearn (Pham et al. 2020),

handful of “gold-standard” datasets.

To enhance the biological relevance of the spatial domains
in ST data, we propose a “scribble-supervised” spatial do-
main identification method, “ScribbleDom”. This semi-
supervised approach shares similarities with semi-supervised
image segmentation methods and is unattainable by
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Table 1. Comparison of ScribbleDom and AutoScribbleDom with state-of-the-art spatial and non-spatial clustering methods based on ARI.?

Sample ScribbleDom AutoScribbleDom SC-MEB BayesSpace SpaGCN Giotto GMM Louvain
151507 0.53 0.34 0.42 0.33 0.49 0.33 0.40 0.32
151508 0.37 0.44 0.44 0.36 0.43 0.34 0.33 0.25
151509 0.65 0.42 0.52 0.44 0.44 0.35 0.29 0.30
151510 0.46 0.55 0.39 0.43 0.45 0.33 0.31 0.28
151669 0.66 0.32 0.32 0.41 0.26 0.25 0.22 0.20
151670 0.70 0.33 0.43 0.43 0.37 0.21 0.19 0.26
151671 0.71 0.60 0.42 0.38 0.52 0.40 0.23 0.36
151672 0.74 0.63 0.44 0.77 0.57 0.38 0.14 0.27
151673 0.50 0.52 0.49 0.55 0.53 0.37 0.29 0.29
151674 0.54 0.25 0.43 0.33 0.39 0.29 0.29 0.33
151675 0.52 0.39 0.31 0.41 0.46 0.32 0.24 0.24
151676 0.51 0.38 0.39 0.32 0.35 0.26 0.26 0.25

? The ARI values of SpaGCN have been collected from the respective paper (Hu ez al. 2021). The ARI values of the remaining state-of-the-art methods
were collected from SC-MEB (Yang et al. 2022) paper. The best ARI value for each sample has been marked in bold-face.

repurposing the existing state-of-the-art methods. An investi-
gation of convolutional neural networks (CNNs) for unsuper-
vised image segmentation was done by Kim et al. (2020).
They proposed a novel unsupervised image segmentation end-
to-end network that includes normalization and an argmax
function for differentiable clustering. They also have the op-
tion to include prior knowledge about a subset of pixels,
obtained through the drawing of scribbles over the input
image, which is widely utilized in academic research and
commercial applications and is widely regarded as one of the
most user-friendly methods of interaction. Using scribbles as
annotations, ScribbleSup (Lin et al. 2016) demonstrated com-
petitive object semantic segmentation results on the PASCAL
VOC dataset. To provide pixel-wise labeling, Xu et al. (2015)
presented a unified strategy that integrates several forms of
weak supervision—image-level tags, bounding boxes, and
partial labels. CNNs are widely used for image classification,
segmentation, and object detection. Xie et al. (2015) proposed
deep embedded clustering (DEC), a method that uses deep
neural networks to simultaneously learn feature representa-
tions and cluster allocations. The use of a CNN-based
approach with three-dimensional filters on hand and brain
MRI is presented by Kayalibay et al. (2017). Wang et al.
(2018) proposed image-specific fine-tuning to adapt a CNN
model to a given test image, which can be either unsupervised
(with no extra user interactions) or supervised (with addi-
tional scribbles).

ScribbleDom takes inspiration from Kim et al.’s (2020)
semi-supervised formulation of the image segmentation prob-
lem. Subsequently, we have significantly customized the
model architecture as well as the loss function to cater to the
problem of identifying spatial domains in ST data. ST data
contains tissue domains with a diverse range of narrowness.
To effectively handle the variability in the narrowness of spa-
tial domains in ST data, ScribbleDom has incorporated
Inception blocks (Szegedy et al. 20135) instead of vanilla con-
volutions. Inception blocks allow the model to process ST
data at various viewpoints by employing convolution filters
of different sizes. Thus the model is able to capture fine-
grained details in narrow spatial domains while also consider-
ing broader spatial contexts. By combining the output from
the different-sized filters, ScribbleDom effectively integrates
information from various levels of granularity, allowing for a
comprehensive understanding of the spatial organization
within the ST data. ScribbleDom is broadly applicable to

technologies that do not generate matching pairs of histology
image and RNA data (see Section 4).

ScribbleDom makes use of the scribble information pro-
vided by a human expert. However, in the absence of scrib-
bles from a human annotator, ScribbleDom can still work to
produce competitive results by obtaining initial labeling from
another clustering algorithm to run in a completely unsuper-
vised fashion. An overview of the workflow in both modes is
shown in Fig. 1. Many of the state-of-the-art methods (e.g.
BayesSpace, SC-MEB, SpaGCN, etc.) also incorporate this ap-
proach of initializing cluster labels by another clustering algo-
rithm. BayesSpace and SC-MEB use mclust (Scrucca et al.
2016) and SpaGCN uses Louvain’s method (De Meo et al.
2011) for initialization. Using the samples from the dataset of
the human brain’s dorsolateral prefrontal cortex (DLPFC) re-
gion (Visium), melanoma (ST), and human breast cancer
(Visium), we have demonstrated that ScribbleDom outper-
forms state-of-the-art models like BayesSpace, SpaGCN, and
SC-MEB in the presence of expert’s scribble annotations. In
case the scribble annotations are unavailable, ScribbleDom
can still operate in fully unsupervised manner and its perfor-
mance remains competitive with the state-of-the-art methods.

The key contributions of the paper can be summarized as
follows.

* We have proposed ScribbleDom, a semi-supervised deep-
learning-based approach to identify spatial domains in ST
data. ScribbleDom allows for seamless combination of hu-
man cognitive ability with machines’ computational
power for spatial domain identification in ST data using
scribble-annotated histology images. This approach makes
it possible to change the course of the spatial domain iden-
tification procedure through different types of scribbles.

* We have devised a scoring function (goodness score) to
rank the clustering outcomes from different algorithms, or
the same algorithm for different hyperparameter settings.
The scoring function takes into consideration gene expres-
sion similarity and spatial continuity, and does not require
manual annotation for its calculation, unlike metrics such
as adjusted Rand index (ARI), Dice score, etc. We have
applied this goodness measure in ScribbleDom to choose
the optimal hyperparameter settings in a sample-specific
manner.

* We have analyzed several samples using ScribbleDom and
have successfully identified the spatial domains therein.
These samples span from tissues that mostly have layers as
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Figure 1. ScribbleDom overview. ScribbleDom can work through two different pipelines, when the human annotator scribbles over the histology image
(upper part) and when the output of a non-spatial clustering algorithm (e.g. mclust) is used as prior knowledge (lower part). ScribbleDom receives the prior
knowledge about the spots, the preprocessed transcriptomics data, and the spatial information about each spot as its input. Data are preprocessed by
taking highly variable genes (HVG) and then performing principal component analysis (PCA) on these HVGs. ScribbleDom identifies domains in the ST
data using Inception by minimizing a loss function having two components—feature similarity loss and scribble loss. The results produced by
ScribbleDom show significant improvement compared to state-of-the-art models.

their spatial domains (DLPFC samples) to tissues with di-
versity of different spatial structures, such as tumorous
cell clusters embedded in healthy tissues (melanoma and
human breast cancer datasets). The output of
ScribbleDom is generally superior to that of state-of-the-
art methods, both qualitatively and quantitatively

2 Materials and methods
2.1 Dataset

In this study, we analyzed three different datasets. Firstly, we
utilized a dataset consisting of 12 human brain samples
extracted from the DLPFC region. These samples were mea-
sured using the 10x Genomics (https://www.10xgenomics.
com/) Visium platform. Each sample, when observed in a per-
pendicular tissue segment, encompasses all six layers of the
cortex as well as the adjacent white matter. Maynard et al.
(2021) annotated the DLPFC layers by considering cytoarchi-
tecture and selected gene markers. The full dataset is publicly
available through the spatialLIBD (Maynard et al. 2021)
Bioconductor package. This is a gold-standard dataset in the
literature as it contains manual annotation for each of the
samples. Each of the samples has approximately 4000 spots
on average and spots that were manually annotated belong to
one of six DLPFC layers or white matter. As the samples were
obtained via Visium technology, each of the spots has six
neighboring spots, and these six spots correspond to six verti-
ces of a hexagon. Gene expression profile was also available.
Each of the spots approximately has 33 000 gene expression
values. The spatial information is available in the form of

coordinates of each of the spots. One of the challenges of this
dataset is to recapitulate the number of layers and the narrow-
ness of each of the layers. While we have analyzed all the sam-
ples, we have described our results only for sample 151673 in
the main text of the paper. This is because state-of-the-art
methods like BayesSpace and SpaGCN showcase their result
using this sample. Also, the output for this sample provides
better visual quality than the other ones with respect to the
narrowness of layers.

In the second dataset, we focus on analyzing the melanoma
cancer samples that were processed using the ST platform
(Thrane et al. 2018). Specifically, we analyzed the second rep-
licate from biopsy 1, because it contains manual annotation
where the tissue regions are dispersed across spatially diverse
areas. Biopsy 1 consisted of a total of 293 spots covered by
tissue.

For the third dataset, we utilized publicly available data
from the 10x Genomics (Zheng et al. 2017) website. This
dataset included spatial transcriptomics data of human breast
cancer obtained using the Visium platform. This is ductal car-
cinoma tissue where the tumors are spread over various
regions. It comprises a total of 2518 spots. We obtained the
manual annotation from Ni ez al. (2022) where they classify
each spot as tumor or non-tumor.

2.2 Data preprocessing

In spatial transcriptomics, a transcript count matrix
(X = [x;] € N"*¢) and spatial coordinates (Z = [z;] € R"*?)
are generated for 7 different locations (spots) on a tissue slice,
where g represents the number of genes. To preprocess the
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count matrix, we utilized the spatialPreprocess method from
the BayesSpace R package. The data underwent log normali-
zation, and the function was able to select /» highly variable
genes and extract p principal components (PCs). The proc-
essed count matrix (X' = [x}] € R"?) is used for the spatial
domain identification.

In our experiment, we chose 2000 highly variable genes for
all datasets. The number of principal components was deter-
mined based on the BayesSpace approach, with the top 15
and 7 principal components selected for the human DLPFC
and melanoma datasets, respectively. For the human breast
cancer dataset, we analyzed the scree plot of the top 50 princi-
pal components and chose 15 principal components for
analysis (see Supplementay data for the scree plot).

We analyzed datasets that were generated using different
spatial transcriptomic technologies, namely ST and Visium.
While these technologies have distinct spot distribution pat-
terns, we need to map each spot to a cell of a data matrix so
that conventional convolution filters can be applied. This
mapping is trivial for ST data, as the spots are organized in
square lattice. However, the Visium spots are arranged in a
hexagonal lattice structure, with each spot having six neigh-
boring spots. Therefore, we preprocessed the Visium data
such that the six neighbors of a spot located at grid location
(i, j) are spots positioned at (i+1,7), (i —1,j), (i,j + 1),
(17] - 1)7 (1_ la/ - 1)3 and (l+ 17/+ 1)

2.3 Scribble generation

To facilitate the semi-supervised approach in ScribbleDom,
scribbles were generated for the Visium and ST data. For
Visium data, this process utilized the CLOUPE file provided
by 10x Genomics, which contains essential information re-
garding histology and spot mapping for the tissue samples.
Using Loupe browser 6.3.0, a tool developed by 10x
Genomics, we annotated various Visium spots within the tis-
sue. In the case of ST data, specifically for melanoma sample,
we scribbled over the pixels of the corresponding histology
image. The pixels that were scribbled were then mapped to
the corresponding ST spot array. This process allowed us to
associate the scribbles with specific spots in the ST data.

When human annotations (scribbles) are not available,
scribbles are generated automatically based on an initial clus-
tering generated by mclust, a non-spatial clustering algorithm.
We call this pipeline AutoScribbleDom. As mclust is a non-
spatial clustering algorithm, the initial clustering thus pro-
duced is expected to have inaccuracies in the spatial domains
identified. Therefore, only the spots with labels identical to
those of all its neighboring spots (six neighbors for Visium,
four neighbors for ST) are considered as scribbles, while the
labels from the remaining spots are cleared out. The rest of
the pipeline is identical to ScribbleDom.

2.4 Model architecture

A high-level model architecture of ScribbleDom is shown in
Fig. 2. First, the input tensor containing the principal compo-
nents of each spot is fed into a 1 x 1 convolution layer with p
channels. Then there are two inception blocks, which enable
the model to extract features at multiple resolutions. After
each of these layers, ReLU is used for non-linear activation,
which is followed by batch normalization. Subsequently, the
features undergo another 1 x 1 convolution layer and batch
normalization, resulting in an s-dimensional normalized re-
sponse map for each spot, where s is the number of spatial
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domains to be identified. Finally, each spot’s spatial domain
label is obtained by taking the argmax on the response map.
The loss function is calculated based on the response map,
spot labels, and scribble labels (more details follow).

An inception block consists of parallel information paths
consisting of 1x 1, 3x3, 5% 35 convolution filters, and a
3 x 3 pooling layer. Features extracted alongside these paths
are finally concatenated (Fig. 2, blowout). The first inception
block in our model extracts 256 features where, 160, 64, 16,
and 16 features are extracted from the aforementioned paths,
respectively. The next inception block extracts 96, 16, 8, and
8 features, respectively, resulting in a concatenation of 128
features. The filters of varied sizes enable the extraction of
features at multiple resolutions, aligning with the notion that
information should be processed and aggregated across
scales. The smaller filters contribute to capturing fine-grained
features, while the larger filters facilitate the inclusion of fea-
tures from the neighboring spots. This amalgamation of fea-
tures has proven to be advantageous in our experimental
evaluations.

2.5 Loss function

As inputs to our model, we utilized the low-dimensional
representation of the transcript count matrix (X’ € R"*?), the
spatial location of the tissue slice spots (Z € R"*?), and
the number of spatial domains to be identified (s). If an expert
provided scribbles, then s was equal to the number of
differently colored scribbles. In the case of AutoScribbleDom,
we provided the value of s as an input to the non-spatial
clustering algorithm, mclust. For each spot, we determine the
optimal label from {1,...,s} by minimizing the following
two-component loss function:

N

o Lem({ri, cirui}iqy) + (1 — o) - ZLSCT({rbwi,ui}?:])
=1

where o is a hyperparameter. Here 7; € R® is the output of a
deep neural network that maps the gene expression data of
the i-th spot to an s-dimensional vector. The loss function’s
first component is:

n S

Lam({ri, cisi}i—y) = —(1 —u;)o(j, ci)In(ri)
=1 =1

where ¢ is the Kronecker delta function and ¢; = argmaxr;, is
k

the predicted label for this spot. #;=1 if the i-th spot overlaps
a scribble, #;=0 otherwise. Intuitively, minimizing Lg;,
minimizes variance in the predicted values of ¢;. The second
component is:

Lscr({”hwiﬂfii}:l:l) = 714,‘5(]., w,')ln(r,;,')

i—1 j—1

where w; € {1,...,s} is the scribble label of spot i. Thus,
minimizing L., imposes the constraint that ¢; matches
scribble label of spot i.

2.6 Scribble dropout

In case of AutoScribbleDom, the initial spot labels from
mclust that conforms with neighboring spot labels are



ScribbleDom 5
12ee5S
rl
® ruw ;
2
r
Batch normalization o
—> e
@  ArgmaxCassification .
rﬂ
Normalized
response map
B Y Ly
1x1 conv 1x1 conv " sim
Xp XS
y 4 Inception N \mlgleptlion
L Y block \bloci as
Principal components Y N g
of the gene expression / N\ — ::i‘:iiﬁmx ;,.a‘**’"‘
features . / N N st ‘;k_ § @_
AN agait.
/ N B
( N Spot
EOEI label
Basic Features at
Features multiple
3x3 resolution L
| - -
=
conv

.

Scribble

J

Figure 2. Schematic diagram of the model architecture of ScribbleDom, which consists of two 1 x 1 convolutions and two inception blocks. The inception
blocks facilitate capturing features at different resolutions. Loss is calculated using cross entropy between the predicted cluster label and the scribble (for

the scribbled spots) or the response map (for the spots without scribbles).

considered as scribbles. Nevertheless there can still be some
noise in the scribbles. To address this issue, during training,
we randomly remove scribble annotations from some spots in
each iteration, much like the concept of dropout in deep learn-
ing networks. This approach allows the model to learn
similarity with other spots, even if some of the spots are incor-
rectly labeled by the automated scribbles. The dropout rate is
controlled by a second hyperparameter called f.

2.7 Hyperparameter selection

ScribbleDom has only one hyperparameter, o, which can tune
the relative contribution of similarity loss and the scribble loss
to the overall loss function. AutoScribbleDom has a second
hyperparameter, 8, that controls the rate of scribble dropout.
We performed a grid search in the hyperparameter space to
find the optimal values. We searched a over 0.05 to 0.95 and
B over 0.25 to 0.4, each with an interval of 0.05. The best val-
ues were determined by comparing the clustering outputs
based on a goodness measure that is described below.

Let the cluster assignment for 7 spots generated by our
model for a particular value of o be C* =[C{,C5,..., CII.
Here, C* € {1,...,s} is the cluster label for the i- th spot and s
is the number of clusters. For different values «, this clustering
output would naturally be different. To select the optimal «,
we developed a scoring function to measure the goodness of
each clustering output. This goodness measure consists of
three components. The first component is the likelihood of

the gene expression PCs of the spots given their cluster assign-
ments, p(y|C*) = [, p(y:/C¥). Here y; is the gene expression
PC vector at spot i. We assume that the PCs are Gaussian dis-
tributed within each cluster j € {1,...,s} with mean u; =
Average({yi|]l < i < mn, C! =j}) and covariance matrix
%, = Covariance({yi|l < i < n, C*=j}). The intuition for
this component is that if a spot is assigned to its correct clus-
ter, it will have a higher likelihood compared to had it been
assigned to a wrong cluster.

The second component is the likelihood of the cluster as-
signment itself, p(C*) =[], p(C?), where p(C?) is given by
the Potts model (Wu 1982).

p(CH) = exp( |Za (CC )

Here, y is a smoothing parameter, (ij) is the set of all the
spots j that are neighbors of 7, and Z; is the normalization fac-
tor. As suggested by (Zhao et al. (2021), we used y =2 for ST
data, and y =3 for Visium data. The normalization factor Z;
is calculated by aggregating the values of p(C?) for all possi-
ble cluster labels of the i-th spot. The Potts model encourages
nearby spots to belong to the same cluster, thus assigning a
higher likelihood to cluster assignments with better spatial
continuity.

Lastly, we expect the spots belonging to the same cluster to
have similar gene expressions (and thus similar PCs).



Therefore, the correct cluster assignment should have a lower
sum of variances of PCs within each cluster. Hence, we define
the third quasi-likelihood component g(y, C*) as:

q(y,C") = exp ( - XZS;W(E;')),

where #r() denotes the trace of a matrix, and 4 is a scaling fac-
tor that is set to 100 in this study. Therefore, the final good-
ness measure of the clustering output v(y, C*) is the product
of the three components,

n

v(y,C*) = q(y, CIp(ICHP(CY) = a(y, ) [ [ p (il CHp(C})

i=1

For AutoScribbleDom, we follow the exact same process,
but in this case, we search the (o, ) hyperparameter space in-
stead of just o.

2.8 Ground truth annotation procedure

In the case of the human DLPFC data, the ground truth anno-
tations are done by Maynard et al. (2021) based on cytoarchi-
tecture and selected gene markers. For the melanoma sample,
the contour annotations over the histology image were done
by Thrane et al. (2018); spot-level annotations did not exist.
To generate spot-level annotations, we utilized the ST Spot
Detector tool. Due to printing artifacts, the array used to cre-
ate ST datasets may have positional variations. To address
this issue, the tool provides corrected spot coordinates in both
adjusted array coordinates and pixel coordinates on a high-
resolution image. We then generated a mapping of array an-
notation based on the annotations made by Thrane et al.
(2018) over the histology image.

In the process of manually annotating melanoma spots, we
encountered two types of unannotated spots (Fig. 4c). Firstly,
there were spots in the region that were not originally anno-
tated by Thrane et al. (2018), the publishers of the dataset.
Secondly, there were spots located at the borders of two
regions, making it challenging to assign them to a specific re-
gion accurately. We treated both kinds of spots as unanno-
tated while measuring clustering performances.

2.9 Performance measure

To objectively assess the similarity between cluster labels and
manual annotation, which is regarded as the ground truth, we
employed the ARI. Given a set S of # elements, and two
groupings or partitions (e.g. clusterings) of these elements,
namely X = {X1,Xs,...,X;} and Y ={Y1,Y>,...,Y}, the
overlap between X and Y can be summarized in a contingency
table [#;] where each entry #; denotes the number of objects
in common between X; and Y; : n; = |X; N Y]]

= (%) -1=(5)=(9)]/(5)

ARI =

@)= OO0

where a; = Z/ Mij, b,‘ = Zi njj
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3 Results
3.1 ScribbleDom outperforms state-of-the-art

methods in 9 out of the 12 samples of the human
DLPFC dataset

Table 1 shows the comparison of ScribbleDom with several
state-of-the-art algorithms in terms of ARL. We chose to com-
pare with BayesSpace, SC-MEB, SpaGCN, and Giotto as these
are four very recently published spatial clustering algorithms.
Additionally, SpaGCN integrates information from gene expres-
sion, spatial location, and histology for spatial domain identifi-
cation. Since ScribbleDom also extracts some information from
histology (through the form of expert scribbles), it made perfect
sense to benchmark against SpaGCN. From the performance of
the state-of-the-art spatial clustering methods, it is clear that spa-
tial clustering algorithms perform much better than the non-
spatial ones in spatial domain identification. Nevertheless, to be
comprehensive, we wanted to benchmark ScribbleDom against
a few non-spatial clustering algorithms. For this, we chose
Gaussian mixture model (GMM) (Bishop 2006) and Louvain
(De Meo et al. 2011). We have compared with BayesSpace,
SpaGCN, and SC-MEB which are state-of-the-art methods. We
have also compared with Giotto (Dries et al. 2021) and two
non-spatial clustering algorithms, namely, GMM (Bishop 2006)
and Louvain (De Meo et al. 2011). ScribbleDom equals or out-
performs all the aforementioned state-of-the-art methods in 9
out of the 12 samples, improving the ARI by 51.90%, 47.40%,
and 49.84% on average compared to BayesSpace, SC-MEB,
and SpaGCN, respectively. Additionally, ScribbleDom equals or
outperforms BayesSpace in 10, and SC-MEB in 11 samples. On
the other hand, AutoScribbleDom equals or outperforms
BayesSpace in § samples, and SC-MEB in 7 samples.

These results imply significant quantitative superiority of
ScribbleDom over state-of-the-art methods. Moreover, one of
the main drawbacks of BayesSpace is the greater thickness of
some layers compared to the manual annotation, e.g. layer 4
(colored magenta) of Fig. 3a. BayesSpace (Fig. 3f) predicted
layer 4 to be much thicker than what the manual annotation
suggests. ScribbleDom can identify layer 4 as a comparatively
narrower layer (Fig. 3d) which better resembles the manual
annotation.

3.2 ScribbleDom identifies narrow lymphoid tissue
regions around the tumor in melanoma cancer
sample

We evaluated the performance of ScribbleDom on a mela-
noma sample from Thrane et al. (2018), and it outperforms
BayesSpace by 15.54% in terms of ARI calculated on the
manually annotated regions. The manual annotation (Fig. 4c)
of the tissue revealed three distinct regions: melanoma,
stroma, and lymphoid tissue, with an additional unannotated
area. So, we conducted experiments with ScribbleDom as well
as AutoScribbleDom using four clusters.

ScribbleDom captured the melanoma tumor region as a whole
(Fig. 4g), in contrast to other methods such as BayesSpace
(Fig. 4e), Giotto (Dries et al. 2021), and Louvain (De Meo et al.
2011), which tended to split the tumor into peripheral and cen-
tral regions. Notably, our method also successfully identified the
lymphoid tissues surrounding the tumor region, a feature shared
only by Giotto, SC3 (Kiselev et al. 2017), and BayesSpace in
subspot resolution. BayesSpace does not capture the lymphoid
tissue bordering the tumor in its original resolution (Fig. 4e). On
the other hand, AutoScribbleDom identified a periphery around
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Figure 4. Analysis on melanoma ST sample. (a) Histology image. (b) Manual annotation. (c) Scribbles by a human annotator. (d) Spatial domains detected
by BayesSpace. (e) Spatial domains detected by AutoScribbleDom. (f) Spatial domains detected by ScribbleDom.



the center of the tumor region, along with the surrounding lym-
phoid tissue (Fig. 4f).

We calculated the ARI (excluding the unannotated spots)
to measure the agreement between spatial domains detected
by ScribbleDom and the manual annotation. ScribbleDom
achieved an ARI of 0.87 outperforming BayesSpace (0.75).
On the other hand, AutoScribbleDom achieved an ARI of
0.74. Although slightly lower than the ARI achieved by
BayesSpace, our method exhibited superior accuracy in cap-
turing the presence of lymphoid tissues surrounding the
tumor.

These findings highlight the efficacy of ScribbleDom in identi-
fying narrow regions, such as lymphoid cells around the mela-
noma tumor in cancer tissue, demonstrating its superior
performance compared to BayesSpace. Also, AutoScribbleDom
autonomously identified most of the annotated lymphoid
regions. These results underscore the potential of ScribbleDom
and AutoScribbleDom in facilitating a better understanding of
the tumor microenvironment.

3.3 ScribbleDom can differentiate tumor and
non-tumor regions in human breast cancer tissue

We applied ScribbleDom to analyze a human breast cancer
Visium sample, and it performed at par with the results
obtained using BayesSpace in both semi-supervised and unsu-
pervised settings. The manual annotation of the sample con-
sists of two distinct regions: tumor and non-tumor (Fig. 5c¢).
With a limited amount of scribbles (Fig. 5d), ScribbleDom

(a) (b)
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was able to successfully detect the tumors (Fig. S5g).
ScribbleDom achieved an ARI of 0.82 (Fig. Sg). Even
AutoScribbleDom obtained a competitive ARI of 0.83
(Fig. 5f). While this ARI is slightly lower than that of
BayesSpace (0.84) (Fig. Se), it is worth noting that
ScribbleDom or AutoScribbleDom still effectively captured all
the tumor regions in the human breast cancer sample.

4 Discussion

ScribbleDom detects spatial domains in ST tissue samples by
leveraging gene expression, spatial neighborhood, and some
prior knowledge about the sample. The prior information can
either be from a human annotator for some of the spots in the
form of scribbles on histology image, or generated from an
unsupervised non-spatial clustering algorithm (e.g. mclust).
We named the later approach AutoScribbleDom. The output
generated by ScribbleDom provides valuable insights into the
transcriptionally homogeneous tissue regions within the spa-
tial transcriptomics data. In comparison to existing state-of-
the-art methods, ScribbleDom demonstrates superior accu-
racy in detecting spatial domains whereas AutoScribbleDom
too shows competitive results.

Many recent methods incorporate histology information
for spatial domain identification. However, not all spatial
transcriptomics technology can generate RNA data and his-
tology in a matching way. This may decrease the quality of
histology to spot mapping. ScribbleDom can overcome this
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Figure 5. Analysis on human breast cancer dataset. (a) Histology image. (b) Manual annotation. (c) Scribbles by a human annotator. (d) Spatial domains
detected by BayesSpace. (e) Spatial domains detected by AutoScribbleDom. (f) Spatial domains detected by ScribbleDom.
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limitation as it does not require a one-to-one mapping from
histology to spots. In the case where one-to-one histology to
spot mapping is not present, the scribbled spots can poten-
tially be derived from scribbles over the histology by an esti-
mation method. So, scribbling over the spots of ST data is a
potential future work.

Table 1 shows the superiority of ScribbleDom quantitatively,
and Fig. 3g shows the qualitative superiority of ScribbleDom
for sample 151673 of the human DLPFC dataset, where the
thickness of the layers is better predicted by ScribbleDom (see
for example, the thickness of layer 4, colored magenta in man-
ual annotation). Figures for other samples can be found in the
Supplementary data. Moreover, in the analysis of the mela-
noma and human breast cancer datasets, ScribbleDom success-
fully detected the tumor regions. Specifically, in the case of
melanoma, we were able to capture the lymphoid tissues that
border the melanoma region using both the semi-supervised
(Fig. 4g) and unsupervised (Fig. 4f) approaches. Furthermore,
ScribbleDom outperformed BayesSpace in terms of ARI, dem-
onstrating a more accurate identification of the melanoma and
lymphoid tissue regions. ScribbleDom’s capability to identify
different regions of the tumor neighborhood suggests its poten-
tial use in detecting narrow regions such as lymphoid tissues.
The ability to segment and identify specific regions within a tu-
mor can aid in understanding the composition and characteris-
tics of the tumor neighborhood.

Our experiments have demonstrated that ScribbleDom
achieves high accuracy in detecting spatial domains within tis-
sue regions when expert scribbles are available. This highlights
ScribbleDom’s ability to leverage domain knowledge provided
by expert annotators to identify different tissue domains. We
have introduced a hyperparameter, o, to control the relative
importance of scribbles and gene expression similarity across
spots. Additionally, ScribbleDom incorporates inception blocks
to capture multi-scale features within the tissue region, en-
abling accurate detection of various tissue domains, such as
smooth layers in human DLPFC samples, narrow bordering
regions of lymphoid tissues around tumor regions in mela-
noma, and scattered tumors across different regions in human
breast cancer dataset. AutoScribbleDom also shows competi-
tive results compared to state-of-the-art methods. It utilizes a
non-spatial clustering algorithm (mclust) to generate auto-
mated scribbles and uses them for the identification of spatial
domains. However, the automated scribbles generated by
mclust may not accurately represent the spatial domain, due to
its (mclust) inability to incorporate spatial information. To mit-
igate potential inaccuracies, we randomly drop some scribbled
spots in each iteration, controlling the dropout rate with an-
other parameter f. This approach helps AutoScribbleDom gen-
eralize the information from similar spots and reduces the
impact of inaccurate automated scribbles.

Additionally, instead of fixing the hyperparameters at spe-
cific values, we performed a grid search across a range of
hyperparameter values. We selected the hyperparameter values
that maximize an ARI independent goodness score. The good-
ness is determined from the clustering likelihood, the condi-
tional likelihood of the gene expression of spots given the
clustering and a penalty term that tends to reduce variance of
the PCs within the same cluster. Our proposed goodness score
can potentially be used to compare clustering output of various
algorithms and can help practitioners pick the best one.

Although there has not been a thorough benchmarking on
the existing ST domain detection methods, the publications

suggest that no method is an indisputable winner in every
dataset. This leaves practitioners like clinicians and experi-
mental biologists a bit helpless—on one hand, it is difficult to
fine-tune the model parameters to obtain the domains that
conform to known biology; on the other hand, the existing
methods cannot directly incorporate any form of human su-
pervision. Thus, ScribbleDom fills in a unique niche: (i) it is a
versatile method that works satisfactorily both with and with-
out human supervision and (ii) it can work with minimal hu-
man supervision, in the form of scribbles. ScribbleDom thus
broadens the options for practitioners, especially for domain
detection in complex tissues, e.g. from advanced disease
states. Another important application of ScribbleDom can be
in helping practitioners and method developers efficiently cre-
ate ground truth annotations without inducing bias, e.g. in
demarcating the precise domain boundaries.

ScribbleDom is generalizable to other sequencing-based
technologies as well [e.g. Stereo-seq (Wei et al. 2022)]. These
technologies capture cells in spots (beads) arranged in grids,
and ScribbleDom’s convolutions (its basic blocks) work seam-
lessly on any grid-structured data. With minor preprocessing,
ScribbleDom is also applicable to fluorescent in situ hybridi-
zation (FISH) based techniques. In these cases, ScribbleDom
will need a preprocessed input where one has overlaid a grid
structure on the spatial transcriptomic measurements.
Alternately, graph convolutions can be implemented for
FISH-based data, which is left as a future work.

ScribbleDom is extensible and can be pretrained if more
datasets are available in the future. It enables the human-in-
the-loop paradigm in the process of machine learning for the
identification of spatial domains in the realm of spatial tran-
scriptomics by incorporating prior annotations obtained from
human experts. This means that a clinician is not limited to a
fixed output provided by an unsupervised method. Instead,
by inputting different scribbles, they can obtain diverse out-
puts, making the spatial domain identification process more
robust and adaptable.

5 Conclusion

One of the “eleven grand challenges in single-cell data
science” (Lahnemann et al. 2020) is to find patterns in spa-
tially resolved measurements. We have incorporated a semi-
supervised deep learning pipeline in this work to address that
challenge. Inspired by similarities in the problem in hand to
the image segmentation problem in the computer vision com-
munity, we started our endeavors from a state-of-the-art pipe-
line to solve the later problem. We then made considerable
changes to the model to adapt it to spatial transcriptomics
data. Furthermore, we made important changes in the model
architecture to capture spatial domain features at different
resolutions. Our method, ScribbleDom, allows for the incor-
poration of expert knowledge in the form of scribbles. The
method can also function in a fully unsupervised manner
when input from an expert is not available. Through a bench-
mark study with state-of-the-art methods on the human
DLPFC, melanoma, and human breast cancer datasets, we
have demonstrated the superiority of our semi-supervised ap-
proach. In the future, we can pretrain our model as more
manually annotated data become available. The ScribbleDom
package is well documented and easy to use. We hope that
biologists will use ScribbleDom to identify spatial domains in
ST samples that would benefit them for downstream analyses
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which will lead to potential discoveries in the field of
bioinformatics.
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