Skip to main content
. 2023 Sep 26;39(10):btad594. doi: 10.1093/bioinformatics/btad594

Table 1.

Comparison of ScribbleDom and AutoScribbleDom with state-of-the-art spatial and non-spatial clustering methods based on ARI.a

Sample ScribbleDom AutoScribbleDom SC-MEB BayesSpace SpaGCN Giotto GMM Louvain
151507 0.53 0.34 0.42 0.33 0.49 0.33 0.40 0.32
151508 0.37 0.44 0.44 0.36 0.43 0.34 0.33 0.25
151509 0.65 0.42 0.52 0.44 0.44 0.35 0.29 0.30
151510 0.46 0.55 0.39 0.43 0.45 0.33 0.31 0.28
151669 0.66 0.32 0.32 0.41 0.26 0.25 0.22 0.20
151670 0.70 0.33 0.43 0.43 0.37 0.21 0.19 0.26
151671 0.71 0.60 0.42 0.38 0.52 0.40 0.23 0.36
151672 0.74 0.63 0.44 0.77 0.57 0.38 0.14 0.27
151673 0.50 0.52 0.49 0.55 0.53 0.37 0.29 0.29
151674 0.54 0.25 0.43 0.33 0.39 0.29 0.29 0.33
151675 0.52 0.39 0.31 0.41 0.46 0.32 0.24 0.24
151676 0.51 0.38 0.39 0.32 0.35 0.26 0.26 0.25
a

The ARI values of SpaGCN have been collected from the respective paper (Hu et al. 2021). The ARI values of the remaining state-of-the-art methods were collected from SC-MEB (Yang et al. 2022) paper. The best ARI value for each sample has been marked in bold-face.