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A B S T R A C T   

Fear and anxiety are adaptive emotions that serve important defensive functions, yet in excess, they can be 
debilitating and lead to poor mental health. Computational modelling of behaviour provides a mechanistic 
framework for understanding the cognitive and neurobiological bases of fear and anxiety, and has seen 
increasing interest in the field. In this brief review, we discuss recent developments in the computational 
modelling of human fear and anxiety. Firstly, we describe various reinforcement learning strategies that humans 
employ when learning to predict or avoid threat, and how these relate to symptoms of fear and anxiety. Secondly, 
we discuss initial efforts to explore, through a computational lens, approach-avoidance conflict paradigms that 
are popular in animal research to measure fear- and anxiety-relevant behaviours. Finally, we discuss negative 
biases in decision-making in the face of uncertainty in anxiety.   

1. Introduction 

Fear and anxiety are adaptive states which elicit defensive behav
iours that help organisms avoid harm and ultimately survive (LeDoux 
and Pine, 2016). They are commonly distinguished in the literature on 
the basis of the immediacy, proximity and/or certainty of the threat, 
with fear and fear-related responses evoked by proximal threats and 
anxiety/anxiety responses evoked by distal and uncertain threats 
(Grillon, 2008; Perusini and Fanselow, 2015; Mobbs et al., 2020) 
(although this may be an oversimplification at the neurobiological level 
(Fox and Shackman, 2019; Perusini and Fanselow, 2015; 
Daniel-Watanabe and Fletcher, 2021). Critically, while fear, anxiety and 
the responses they elicit (such as avoidance) can be adaptive, their 
excessive and/or inappropriate expression can have severe negative 
impacts on daily functioning. This, in conjunction with an individual’s 
set of beliefs and attitudes (Beck and Clark, 1988), may lead to fear- and 
anxiety-related disorders such as phobias or generalised anxiety disor
der, respectively (Kessler et al., 2005) which collectively constitute 
leading causes of disability (Vos et al., 2017). 

The computational approach, which we define here as inference of 
the unobserved causes of behaviour through generative models (Ste
phan and Mathys, 2014) (see Box 1 for the Glossary of bolded terms), has 
seen a surge in interest in the study of fear and anxiety (Bach and Dayan, 
2017). This approach aims to derive the computations underlying 
defensive behaviours, as well as how these computations may be 

implemented at the neural level. This focus on computation aims to 
move the field beyond simply describing symptoms and towards un
derstanding the cognitive and neurobiological mechanisms underlying 
fear and anxiety behaviours. Moreover, computational modelling of 
behaviour may offer superior measurement properties compared to 
more traditional summary-statistic-based methods (Price et al., 2019; 
Tipples, 2015). In this mini-review, we discuss recent themes emerging 
from this field, namely the roles of a) learning; b) approach-avoidance 
conflict; and c) uncertainty in human fear and anxiety. 

2. Aversive learning 

Learning to predict threat from the environment and act accordingly 
to avoid it is of fundamental importance for the survival of organisms. 
Building on the seminal work of Rescorla-Wagner (Rescorla and Wag
ner, 1971) and Pearce-Hall (Pearce and Hall, 1980), reinforcement 
learning (Sutton and Barto, 2018) (see Box 1) represents one of the most 
popular frameworks for quantitatively modelling learning about threats 
and punishments. It can be broadly divided into Pavlovian fear condi
tioning and instrumental learning (for a comprehensive classification of 
threat learning/behaviour, we direct the reader to this recent review 
(LeDoux and Pine, 2016)). In this section, we describe various rein
forcement learning strategies that humans employ when learning to 
predict or avoid threat, and how these relate to symptoms of fear and 
anxiety. 
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Box 1 
Glossary. 

Computational concepts. 

Active inference (Friston et al., 2017). Active inference is a Bayesian framework which assumes perception and action as problems of inference 
(Friston et al., 2013). Here, perception is defined as inferring the latent states of the world that cause observable outcomes. Action is defined as 
inferring policies (sequences of actions) that must be adopted to obtain certain outcomes. These problems are separated by assuming that actions 
are consequent on the predictions formed by perception. Like model-based reinforcement learning, the generative model includes information 
about future states and policies, which can be used to discern the optimal actions to obtain favourable outcomes. Optimising behaviour is 
achieved by maximising the observable evidence for this generative model (via the minimisation of variational free energy). 

The drift-diffusion model (Ratcliff, 1978). The drift-diffusion model is a generative model which integrates choice and response time data. In 
the simplest form, it describes the accumulation of evidence (perceptual or value-based) for two competing responses (for example, whether a 
stimulus is large or small, or whether one stimulus is more valuable than the other). Evidence is accumulated until a threshold is reached, 
indicating more evidence for one response over the other. The form of evidence accumulated dictates choice, while the rate of evidence 
accumulation affects response times (faster evidence accumulation leads to shorter response times, and vice versa). The basic model has four 
parameters: a drift rate (controlling evidence accumulation); a threshold boundary (controlling how much evidence is required for a decision); 
initial evidence (for a priori biases in evidence); and a non-decision time (for decision-irrelevant factors preceding decisions). 

Generative models. Mathematical models which describe how certain data (for example behaviour, response times, neural responses, or a 
combination of these data) are ‘generated’. With respect to generative modelling of behaviour, this consists of building models which represent a 
researcher’s hypotheses about the unobserved causes (e.g. computations that the brain performed) of the observed behavioural data. These 
models typically include free parameters which can reflect individual differences in cognitive processes (for example, a learning rate). The term 
‘generative’ also implies that one can generate trial-by-trial artificial data from the model, with which to compare to the original data (often 
referred to as ‘posterior predictive checking’ (Gelman and Hill, 2007)) to determine how well the model captures the data. Examples include 
reinforcement learning models, logistic choice models, and drift-diffusion models. 

Prospect theory (Kahneman and Tversky, 1979). Prospect theory is a generative model of risky economical decision-making. The model de
scribes how to translate some monetary value (say the potential to earn £100) and its associated probability of occurrence (say 50% likelihood of 
earning the £100) into individual-specific subjective values. Biases in decision-making such as loss aversion can be modelled by transformations 
(e.g. scaling) of the value, which can also account for individual differences in sensitivity to value. Similar transformations can be performed for 
probabilities to model risk aversion. 

Reinforcement learning. Reinforcement learning provides a framework for modelling reward-driven (or indeed punishment-driven) behav
iour. In the context of modelling human or animal behaviour, a generative model takes the form of an ‘agent’ that performs certain actions 
within a certain environment, where the agent attempts to accrue as much reward as possible whilst minimising losses/punishment. Different 
agents can be specified to rely on different behavioural strategies (or ‘policies’). In the field of artificial intelligence, these strategies are 
commonly categorised into model-free and model-based (see below). 

Reinforcement learning; model-free reinforcement learning. Model-free learning entails learning, from experience and trial-and-error, 
what actions are favourable (i.e. produce reward/avoid punishment, or otherwise lead to other favourable states) given the current state of 
the environment. This is a computationally efficient form of behavioural control since a model-free agent only needs to rely on state-action 
values to perform favourable actions. Put another way, a model-free agent does not require an explicit causal understanding of which ac
tions lead to certain outcomes/other states (unlike model-based agents, see below). 

Reinforcement learning; model-based reinforcement learning. Model-based strategies rely on an understanding of the causal structure of 
the environment, or more specifically an understanding of the most likely outcome given the current state and candidate action. Therefore, this 
causal structure can be used to plan future actions and consequent outcomes. Compared to model-free learning (see above), model-based 
planning is potentially computationally costly (scaling with the complexity of the environment) but confers greater behavioural flexibility, 
especially in dynamic environments. 

State values. Information about an agent’s predictions about what positive or negative outcomes might occur in a certain ‘state’ of the envi
ronment is encoded in the state value. For example, this could be the agent’s prediction of an electric shock occurring when the agent observes a 
certain stimulus. In single-step reinforcement learning, this represents the predicted likelihood or magnitude of reward or threat associated with 
the state, whereas in multi-step reinforcement learning, it also includes future rewards/threats that might occur given the occurrence of the 
state. Typically, positively valenced outcomes (i.e. things one wants to obtain/approach such as food) lead to positive state values, whilst 
negatively valenced outcomes (i.e. things to be avoided such as pain) lead to negative values. 

State-action values. In a similar fashion to state values, state-action values encode an agent’s predictions about what outcome might occur, 
given the state of the environment and the agent’s action. For example, this could be the agent’s prediction of an electric shock occurring if the 
agent presses a button (say rather than not pressing the button) in response to a certain stimulus. 

Forms of anxiety - across this mini-review, we have used a number of terms that refer to different forms of anxiety. For clarity, we provide a brief 
description of the general terms used. 

Pathologically anxious individuals. We use this phrase to denote individuals who report clinically relevant symptoms of anxiety, for example 
as assessed by clinical interviews. 

Somatic vs cognitive anxiety. Previous research has proposed a distinction between these two dimensions of anxiety (Koksal and Power, 1990; 
Ree et al., 2008). Somatic anxiety involves physical symptoms of anxiety, such as hyperventilation, sweating and muscle tension. On the other 
hand, cognitive anxiety involves symptoms relating to thoughts, such as worry and difficulty concentrating. 

State anxiety. The transient experience of anxiety, which may be induced by experimental procedures (e.g. anxiogenic tasks/manipulations) or 
experienced naturally. 

Trait anxiety. Anxiety symptoms and related thoughts which are experienced over a relatively long period by an individual, which can 
sometimes be considered as part of their stable characteristics or personality.  
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2.1. Fear conditioning 

Pavlovian fear conditioning was one of the earliest experimental 
models of fear and anxiety (Watson and Rayner, 1920), and is thought to 
describe the acquisition of fear in psychopathology. Briefly, Pavlovian 
conditioning involves the development of a learned reflexive response to 
a neutral cue, when paired with a biologically significant (e.g. threat
ening) stimulus/event. The Rescorla-Wagner learning model provides 
an elegant explanation of fear conditioning, by ascribing values (state 
values; see Box 1), V(s), to certain states of the environment, s, such as 
the presence of a cue predicting danger, at time, t (Fig. 1). Agents learn 
from discrepancies between their expected outcome and the actual 
outcome, ot (e.g. an electric shock which can be represented as a value of 
− 1 [or sometimes 1 if there are no rewards present in the task, see Box 
1]), which results in a prediction error, PEt = ot − Vt(st). This prediction 
error is used to update the state value via Vt+1(st) = Vt(st)+ α⋅PEt, 
where learning is scaled by the learning rate, α ∈ [0,1]. Negative V(s)
values signal that the agent expects an aversive outcome to occur given 
s, modelling fear. The neurobiological validity of the Rescorla-Wagner 
learning model is supported by neural correlates of prediction errors 
during fear conditioning tasks in the human striatum (Delgado et al., 
2008; Robinson et al., 2013; Seymour et al., 2007), with similar models 
(McNally et al., 2011) and neural correlates (McNally and Westbrook, 
2006; Stanley et al., 2021) observed in the non-human animal literature. 
Further, autonomic measures (e.g. skin conductance) track 
model-predicted changes in V(s) (Li, 2011; Zhang, 2016) supporting the 
notion of state-values as signalling fear. 

The classical Rescorla-Wagner model assumes a static learning rate, 
but models that allow for dynamic learning rates commonly provide 
more parsimonious accounts of fear conditioning (Li et al., 2011; Homan 

et al., 2019; Tzovara et al., 2018; Piray et al., 2019) (Fig. 1 C-D). Inspired 
by the Pearce-Hall learning model (Pearce and Hall, 1980), these models 
(which are referred to as ‘hybrid’ models as they combine 
Rescorla-Wagner and Pearce-Hall mechanisms) incorporate the notion 
of ‘predictability’ into the learning process, by scaling the rate of 
learning in proportion to the magnitude of recent prediction errors: 
αt+1(st) = η⋅|PEt | + (1 − η)⋅αt(st), where the rate of scaling is para
meterised by η ∈ [0, 1]. This means that greater error magnitudes (i.e. 
low predictability) call for rapid learning, whereas learning is slower for 
low error magnitudes (i.e. high predictability). Neural correlates of 
model-predicted changes in learning rate in the amygdala (Li et al., 
2011; Zhang et al., 2016) and dorsal anterior cingulate cortex (Piray 
et al., 2019) provide support for the potential neural implementation of 
this computational mechanism. These effects parallel findings from the 
animal literature, where for example amygdala inactivation leads to 
behaviour consistent with learning rate impairments (Roesch et al., 
2010). With respect to pathological fear, PTSD symptoms in 
combat-exposed veterans were positively associated with learning rate 
variability (Homan et al., 2019) (i.e. greater values of η), meaning that 
those with more severe symptoms were more sensitive to changes in the 
predictability of outcomes. The opposite effect was reported, however, 
for trait social anxiety (Piray et al., 2019), perhaps indicating unique 
learning mechanisms across these disorders (see below for a further 
discussion of anxiety, learning rate and uncertainty). Finally, recent 
work has also shown that visual attention modulates the rate of learning, 
by selectively strengthening V(s) for attended cues (Wise et al., 2019). 

Fear conditioning can also describe how fear is overcome – a process 
referred to as fear extinction. During extinction, a cue previously asso
ciated with threat is repeatedly presented in its absence, which leads to 
decreases in cue-induced fear responses (Bouton, 1993). This is utilised 

Fig. 1. Pavlovian fear conditioning and instrumental avoidance learning. A) In generative models of Pavlovian fear conditioning, agents update an expectation of the 
value, V(s), of a certain state of the environment, s. In a simple fear conditioning experiment, this could be the expectation of a shock given the presentation of a 
certain cue. B) In instrumental learning, agents instead learn the expected value, Q(s, a), of an action, a, given state, s. This could be where a participant learns to 
press a button after seeing a certain cue to avoid shock. C) Conceptual data in a common reversal learning paradigm (which involves elements of both value 
acquisition and extinction), where participants learn to associate a cue (Pavlovian conditioning) or a button-press after observing a cue (instrumental learning) with 
shock or no shock. The lines represent how the expected values, V(s) and Q(s, a), change after each observed outcome (red and grey dots represent shock and no shock 
outcomes on each trial, respectively). Initially in the task, the cue/cue and button-press leads to shock with 80% probability, but in the second half of the task, they 
only lead to shock on 20% of trials. For demonstration, we force the agent to button-press on each trial, but in practice, participants can choose between multiple 
actions. The dynamics of V(s) and Q(s, a) can be modelled through similar mechanisms such as the Rescorla-Wagner learning rule. We demonstrate two models: a 
simple Rescorla-Wager model which involves a fixed learning rate (in solid lines), and a ‘hybrid Rescorla-Wagner Pearce-Hall’ model which allows for a dynamic 
learning rate (In dashed lines). In both models, the agents learn that the cue/cue and button-press is initially associated with the shock (as the expected values 
become negative). When the contingencies change midway through the task, the agents learn that they are no longer associated (i.e. the expected values become 
more positive). D) Trial-level learning rates in each model. The fixed learning rate stays constant. The hybrid model relies on a high learning rate at the start of the 
task and midway though (when the contingencies change), which decreases after these moments. The high learning rate captures the ‘unpredictability’ of recent 
outcomes, as the agent has not yet learned the current contingency. The learning rate decreases as the outcomes become more predictable. The hybrid model is 
typically a better explanation of human behavioural data (Li et al., 2011; Homan et al., 2019; Tzovara et al., 2018; Piray et al., 2019). For this simulation, we used an 
initial learning rate of 0.3 for both models, and a second-order learning rate (see η in the main text) of 0.3 in the hybrid model. 
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clinically in exposure therapy (Craske et al., 2006; Hofmann, 2008), 
which aims to reduce pathological fear via extinction. Unfortunately, 
fear sometimes spontaneously re-emerges even after extinction learning, 
which is difficult to reconcile with Rescorla-Wagner accounts of learning 
and presents a hurdle for therapy. The current theoretical understanding 
of this effect is that extinction leads to a new ‘safety’ association which 
competes with the original association, potentially causing recovery of 
fear (Bouton et al., 2021). However, recent studies suggest that this 
might be subject to individual differences in learning about latent causes 
of the environment. Indeed, a greater tendency to form new safety as
sociations predicted later recovery of fear in humans, whereas those who 
were more likely to modify original fear associations were less likely to 
re-experience fear (Gershman and Hartley, 2015). Convergent evidence 
from a rodent study also indicates that gradual extinction learning, 
compared to abrupt changes in outcome contingencies, promoted 
modification of the previous association over the formation of a new 
association, and reduced the likelihood of later fear (Gershman et al., 
2013). Perhaps counterintuitively, re-experiencing symptoms in PTSD 
(which can be considered a clinical presentation of recovery of fear) 
were associated with a reduced tendency to form new safety associations 
(Norbury et al., 2021). This implies that although individual differences 
in latent cause learning are relevant to pathological fear, it is not a 
simple unidirectional relationship and other factors are likely involved 
(such as biases for which associations are evoked if multiple associations 
are stored). 

2.2. Instrumental/avoidance learning 

Instrumental learning tasks, in which an agent’s actions determine 
outcomes, can be used to model avoidance behaviours. These tasks can 
encompass both active avoidance, in other words situations where 
certain actions can avert aversive outcomes, and passive avoidance, 
where inaction avoids aversive outcomes (or conversely where actions 
may lead to aversive outcomes). In both cases, learning state-action 
values (see Box 1), Q(s, a), under certain states, s, and following certain 
actions, a, can be modelled through model-free reinforcement 
learning (see Box 1), which relies on an error-dependent learning 
mechanism similar to that in fear conditioning: Qt+1(st , at) = Qt(st , at) +

α⋅(ot − Qt(st , at)) (Fig. 1; note close variants of model-free RL to that 
presented here which tie actions to cumulative expected reward can 
solve ’multistep’ problems). This provides an account of how humans 
learn to act to avoid outcomes such as pain (Jepma et al., 2022; Eldar 
et al., 2016), with corresponding neural correlates of instrumental 
prediction errors in the striatum (Eldar et al., 2016) and periaqueductal 
gray (Roy et al., 2014). Further, when these models are extended to 
account for asymmetries in learning from safety and threat (the omission 
or occurrence of an aversive outcome, respectively), by implementing 
separate learning rate parameters for safety and danger, αsafety and αthreat, 
subtle differences can be found across different forms of anxiety on 
aversive learning performance. In one study (Wise and Dolan, 2020), a 
double dissociation emerged across trait cognitive vs somatic anxiety 
(see Box 1), where cognitive anxiety was associated with a bias for 
learning from threat, whilst the opposite was true for somatic anxiety 
and also trait compulsivity. 

State values can provide a computationally efficient mechanism of 
instrumental responding, by biasing approach-relevant responses under 
positive V(s) (i.e. when states predict positive outcomes) and avoidance- 
relevant responses under negative V(s) in a Pavlovian manner (an effect 
referred to as Pavlovian-instrumental transfer (Dickinson and Balleine, 
1994)). This is implemented by adding an action-weight to 
action-outcome associations, such that the overall value for the action is 
given by Qt(st , at)+ π⋅Vt(st). Here, π parameterises an agent’s tendency 
to behave according to Pavlovian mechanisms (Fig. 2). This can 
constitute an efficient mechanism of evading threats as a state value, 
which comprises two components (the state and its expected value), is 
sufficient to produce defensive behaviour. In contrast, instrumental 
learning requires a further ‘action’ component to build the 
state-action-value association. Humans readily learn state-action-value 
associations, in other words to emit or omit certain actions to avoid 
punishment (Guitart-Masip et al., 2012; Millner et al., 2018). At the 
same time, this learning is also biased by state values, which inhibit 
motor responses when learning to avoid future punishment in a manner 
consistent with disengagement/freezing (Guitart-Masip et al., 2012; 
Roelofs, 2017), but promote active escape behaviour when a threat is 
already present (Millner et al., 2018) (Fig. 2). These effects parallel 
classical learning accounts which posit that threat makes some actions 

Fig. 2. The reinforcement learning task of Millner et al. (2018). A) Task structure. Participants learnt to press a button (active response) or not (passive response) in 
order to avoid already-present or future threat. For the present threat condition, a continuous aversive sound was played until the correct action was made, which 
probabilistically terminated the sound. For the future threat condition, the trial began in silence and the correct action could probabilistically prevent the sound from 
being played (incorrect actions would instead result in the sound being played). Threat distance (present/future) was crossed with correct action (button-press/no 
button-press) to produce four conditions in the task. B) Illustration of data from Millner et al. (2018). Mean condition accuracy and standard errors extracted from the 
original paper. Participants were better at learning to make passive rather than active responses for future threat, but the opposite was true for already-present threat. 
C) A conceptual demonstration of the effect of Pavlovian response biases during instrumental avoidance learning. The curves reflect improved accuracy over trials as 
individuals learn the correct actions in each condition. If the correct (instrumental) action is congruent with Pavlovian responses, namely to emit active responses to 
avoid present threat and passive responses to avoid future threat, learning performance is augmented in healthy controls (orange line) and even further in path
ological anxiety (red line). However, if the correct action conflicts with these Pavlovian response biases, learning performance is hindered and this effect is again 
greater in pathological anxiety. This can be captured by a Pavlovian action weight parameter, π - learning in individuals with pathological anxiety (and depression) is 
characterised by greater values of π (Mkrtchian et al., 2017). 
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more likely to be emitted (e.g. freezing) than others (Bolles, 1970; 
Hershberger, 1986). Finally, the disadvantage of Pavlovian mechanisms 
is that response biases can be challenging to overcome when Pavlovian 
and instrumental mechanisms conflict – for example, when one must 
make an active response in the face of potential threats (rather than 
freezing) leading to suboptimal behaviour in such situations (Gui
tart-Masip et al., 2012; Millner et al., 2018) (Fig. 2). This effect is 
exacerbated in pathologically anxious individuals (see Box 1), espe
cially under acute anxiety induced by threat-of-shock (Mkrtchian et al., 
2017), and this is thought to underlie the excessive avoidance behav
iours observed in pathological anxiety. 

The behaviours discussed so far are typically considered ‘single-step’ 
problems, where an agent is only required to learn the appropriate 
response to perform in a single state of the environment (e.g. how to 
respond to one particular cue). However, most real-world scenarios are 
more likely to be multi-step, where an agent must perform a sequence of 
actions across multiple states of the environment to obtain a particular 
outcome. In keeping with a distinction of fear and anxiety as relating to 
proximal/distal threats, single-step problems might provide better 
models of fear as the threat is potentially associated with the present 
state of the environment, whereas anxiety might be more associated 
with multi-step learning, where the potential threat is diffused across the 
multiple states and actions in the environment. How humans solve 
multi-step aversive learning is described through model-based rein
forcement learning (see Box 1), which relies on a ‘model of the world’, 
in other words an understanding of the different states of the environ
ment and the transitions across states, to infer optimal behaviour. 

The dominant paradigm for measuring model-free and model-based 
learning strategies to date has been the two-step task (Daw et al., 2011) 
(Fig. 3), which involves a series of two actions to obtain a certain 
outcome. Model-free and model-based strategies imply separate pre
dictions for the first action in the sequence, and thus individual choices 
here indicate a reliance on one strategy over the other. Humans tend to 

use both model-free and model-based learning strategies for threat 
avoidance (Sebold et al., 2019; Wang et al., 2018) (Fig. 3), as is the case 
with reward learning (Daw et al., 2011). The evidence relating 
model-based planning to anxiety is mixed: on one hand, some studies 
have reported that individuals favour model-free strategies over 
model-based in aversive environments (when viewing aversive images) 
(Sebold et al., 2019) and under social stress (Park et al., 2017). Yet, 
experimentally-induced (hypercapnic gas) and naturalistic anxiety 
(panic attacks/life stress) do not appear to impact model-based learning 
(Gillan et al., 2021) . Further research is needed to determine whether 
these discrepancies in findings are due to methodological differences or 
false positives. Instead, the evidence suggests that trait compulsivity, 
rather than trait anxiety (see Box 1), is associated with decreased 
reliance on model-based learning (Gillan et al., 2021, 2016) – an effect 
which has been proposed to be driven by impairments in state-transition 
learning, in other words that compulsive individuals have difficulty 
learning the relationships between states of the environment (Sharp 
et al., 2021), which leads to reduced confidence in one’s ability to 
navigate these states. 

Arguably, the two-step task may not be sufficiently complex to reveal 
impairments of planning in anxiety. Findings from a recent study (Sharp 
et al., 2022) implementing a multigoal pursuit task suggest that more 
naturalistic planning problems (balancing multiple goals) may be more 
sensitive to anxiety-related effects. In the task, healthy individuals 
learned the likelihoods of observing two tokens for each of two possible 
actions: one token was associated with monetary reward, and the other 
with monetary punishment. However, individuals were instructed on 
each trial that only one token would be relevant on each trial (i.e. on 
reward trials, obtaining the reward token could lead to a reward, while 
obtaining the punishment token had no consequence, and vice versa for 
punishment trials). Thus, the task required individuals to use only 
goal-relevant information in their choices. In the task, individuals 
struggled to disengage from punishment-relevant information on reward 

Fig. 3. The two-step task of Sebold et al. (2019). A) Task structure. On each trial, participants made a series of binary choices. The first-step choice (grey cues) 
probabilistically leads to distinct second-stage states (orange or purple cues), with one choice leading to one second-stage state, for example the orange set, on 70% of 
trials (referred to as ‘common’ transitions; light grey arrows), and the other second-stage state, for example the purple set, on the remaining 30% of trials (‘rare’ 
transitions; black arrows). The opposite was true for the other first-stage choice. At the second stage, the second-step choice produced an outcome that depended on 
choice-specific outcome probabilities that varied over time. The outcome is depicted here as ‘Win’ for reward, but it is possible to also have punishments as the 
outcomes. B-C) Model-free and model-based reinforcement learning strategies entail different probabilities of repeating the first-stage choice of the previous trial, 
given the outcome on the previous trial. B) The model-free strategy does not take into account the transition structure of the task and tends to simply repeat first-stage 
choices if on the previous trial, that choice produced a reward or avoided a punishment. This manifests as a main effect of previous reward/punishment on first-stage 
choice repetition. C) The model-based strategy utilises the structure of the task and accounts for whether the previous trial involved a common or rare transition, 
leading to an interaction effect of previous reward/punishment and transition (common/rare) on first-stage choice repetition. D) Illustration of data from Sebold et al. 
(2019). Mean and error bars for repetition probabilities by condition. Dots represent individual participant data. When learning to avoid punishments in this task, 
participants typically show a mixture of model-free and model-based influences on choice (i.e. both a main effect of previous outcome and an interaction effect of 
transition type and previous outcome on choice repetition probability). The figures are reproduced from Sebold et al. (2019), which were published under CC BY 4.0. 
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trials, and this effect was positively correlated with chronic worry, a 
central feature of pathological anxiety (American Psychiatric Associa
tion, 2013). This effect suggests an impairment in model-based plan
ning, where individuals with more severe worry appear to plan for 
threat avoidance even in explicitly safe environments – a finding which 
parallels ideas from clinical theories of worry which posit that worry 
constitutes maladaptive planning to avoid imagined/distal threat 
(Mathews, 1990). Future work will be required to determine the gen
erality of planning impairments to trait anxiety, or whether the effect is 
specific to forms of anxiety that involve higher cognitive functions (such 
as worry), compared to those that do not (such as somatic anxiety) 
(Sharp et al., 2015). 

In brief, humans rely on multiple computational strategies to predict 
and avoid threat. There is strong evidence that fear is acquired and 
extinguished based on error-driven learning, and individual differences 

in beliefs about the latent state of the environment might predict failure 
to extinguish fear. Pavlovian and instrumental processes can also 
interact in driving behaviour, and this appears to be exacerbated by 
pathological anxiety. Anxiety, specifically, may be associated with dif
ferences in model-based planning, especially in worry. Similarly, 
different psychiatric symptoms (e.g. social anxiety vs PTSD, cognitive vs 
somatic anxiety) show subtly different learning characteristics, such as 
biases in learning selectively from safety or threat. 

3. Approach-avoidance conflict 

Real-world decisions are rarely reducible to evasion of a single 
threat; instead, the consequences of a single action often simultaneously 
involve positive and negative outcomes. This means that one needs to 
decide to pursue reward at risk of incurring a punishment, or avoid that 
punishment and forsake the potential reward. Such situations, which are 
referred to as involving approach-avoidance conflict, are exploited in 
animal models of anxiety such as the Vogel conflict test (Vogel et al., 
1971), where the drive to approach reward (e.g. to obtain water) is 
pitted against the drive to avoid threat (e.g. to avoid an electrical shock). 
Excessive or consistent avoidance in situations of approach-avoidance 
conflict entails giving up reward in order to avoid potential threat, 
which reflects maladaptive avoidance in pathological fear/anxiety 
(Aupperle and Paulus, 2010; Loijen et al., 2020) where important things 
in life may be sacrificed in order to avoid stressors/threat. Here, we 
discuss some initial efforts to explore approach-avoidance conflict par
adigms through a computational lens. 

Recent studies have attempted to adapt rodent conflict tests for 
humans, typically in tasks where individuals decide on whether to 
accept or reject an offer of some aversive outcome (e.g. an electric 
shock) alongside some monetary reward (Aupperle et al., 2011; Ironside 
et al., 2020) (Fig. 4 A). Using an active inference model (Friston et al., 
2013, 2017) (see Box 1), a Bayesian generative model of 
decision-making, one study compared the roles of ‘emotional conflict’,1 

defined as the relative value of the aversive outcome compared to the 
reward, and ‘decision uncertainty’, defined as the difficulty in making 
the decision (Smith et al., 2021) (Fig. 4B). In keeping with the notion of 
the task as measuring anxiety-related behaviour, state anxiety during 
the task was correlated with greater emotional conflict, meaning that 
those who found the aversive outcomes more unpleasant were more 
anxious during the task. However, this effect did not extend to group 
differences between pathologically anxious and depressed individuals 
and non-symptomatic controls. Interestingly, the symptomatic group 
did show greater decision uncertainty, relative to controls, perhaps 
reflecting findings from clinical psychology that anxiety symptoms, 
specifically chronic worry, are associated with indecision (Snyder et al., 
2014). 

Approach-avoidance conflict has also been modelled in tasks simu
lating foraging under predation, where individuals collect rewards at 
risk of being caught by a predator (Bach, 2021). Avoidance behaviour in 
these tasks scales with threat probability (Bach, 2015; Loh et al., 2017; 
Qi et al., 2018), with greater threat probability leading to greater 
avoidance. Even when individuals make approach responses, response 
latencies are greater under high vs. low threat probabilities, demon
strating that behavioural inhibition occurs even during approach 
behaviour, and this effect positively correlates with trait anxiety (Bach, 
2015). Neuroimaging studies using these tasks have repeatedly impli
cated the ventral hippocampus (Ito and Lee, 2016; O’Neil et al., 2015; 

Fig. 4. The approach-avoidance conflict task of Smith et al. (2021). A) Task 
structure. Participants decided on their preference for viewing an aversive 
image and hearing an aversive sound (represented by the raincloud) in return 
for varying levels of monetary reward (represented by the proportion of a bar 
filled in red), OR viewing a pleasant image and hearing a pleasant sound 
(represented by the sun) but with no monetary reward (see the empty bar). 
Responses were made by moving an avatar left or right on a runway which 
corresponds to probabilities that participants will see either the left or right 
outcomes, reflecting their relative preference. B) A conceptual demonstration of 
the effect of the key parameters of the generative model. The aversive stimuli 
and reward outcome is referred to as the ‘Approach’ outcome, and the pleasant 
stimuli with no reward outcome is referred to as the ‘Avoid’ outcome. The 
subjective value of each position of the runway is represented in greyscale, with 
darker tones representing greater value. Subjective value depends on two pa
rameters. Firstly, the emotional conflict parameter captures the expected 
aversiveness of the aversive stimuli relative to the monetary reward, with 
higher emotional conflict indicating greater aversiveness. Low emotional con
flict (top-left, bottom-left) means that individuals value the ‘Approach’ outcome 
more than the ‘Avoid’ outcome because the expected aversiveness of the 
aversive stimuli is low – this reverses as emotional conflict increases (top-right, 
bottom-right). Secondly, the decision uncertainty parameter reflects how 
confident participants are in their choices. High decision uncertainty (bot
tom-left, bottom-right) indicates lower confidence in discerning the value of 
each runway position, leading to a broader distribution of value across the 
runway. Conversely, low decision uncertainty (top-left, top-right), or greater 
confidence, leads to a narrower distribution of value. Fig. A is reproduced from 
McDermott et al. (2021), which was published under CC BY 4.0. 

1 Although the term, emotional conflict, has been previously used to describe 
the interference effect of emotionally salient stimuli on cognitive processing (e. 
g. Bush et al., 2000; Etkins et al., 2006), the use of the term here reflects the 
degree to which individuals may be conflicted in approaching reward and 
avoiding affective (i.e. emotional) punishment. We use the exact name of the 
model parameter from the original study by Smith and colleagues. 
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Bach et al., 2014), consistent with previous reports of its involvement in 
anxiety/fear and reward circuitry (Shin and Liberzon, 2010; Russo and 
Nestler, 2013), but its precise computational role has yet to be 
established. 

Lastly, asymmetries in reward and aversive learning have been 
studied in instrumental learning paradigms where individuals learn to 
simultaneously pursue reward and avoid punishment, specifically where 
on each trial, an action could potentially lead to the delivery of both the 
reward and the punishment. Compared to healthy controls, the learning 
performance of pathologically anxious and depressed individuals was 
characterised by higher punishment learning rates (Aylward et al., 
2019), meaning that they relied on fewer observations to estimate the 
aversive value of a certain action, but there was no group difference for 
the reward value of actions. The group difference in punishment 
learning rates was corroborated by a recent meta-analysis of 27 rein
forcement learning studies across more than 3000 participants (Pike and 
Robinson, 2022). This study used a novel simulation-based approach 
that allowed for pathologically anxious/depressed individuals to be 
compared with controls across a range of different learning tasks, and by 
using simulations of their behaviour, the study found that the symp
tomatic group showed not only higher punishment learning rates, but 
also lower reward learning rates, compared to controls. This implies that 
anxious/depressed individuals show negative biases when learning 
about rewards and punishments, learning slower about the former and 
faster about the latter. Of note, however, this analysis pooled across 
anxiety and depression studies, leaving open the question of the effect’s 
specificity to anxiety. 

In sum, despite the reliance of many animal models of fear and 
anxiety on approach-avoidance conflict (Campos et al., 2013), there is 
surprisingly limited work applying computational approaches to its 
understanding. Initial findings indicate roles of uncertainty in making 
decisions under conflict and asymmetries in learning about rewards and 
punishments in pathological anxiety (and depression), but more work 
will be required to better understand how individuals trade off rewards 
and punishments, perhaps by better use of translational paradigms 
(Kirlic et al., 2017). 

4. Decision-making under uncertainty 

Central to the definition of anxiety is the notion of uncertainty of 
threat. Pathologically anxious individuals often report negative beliefs 
about uncertainty and its implications, a concept referred to as 

intolerance of uncertainty (Dugas et al., 1997) and this is considered by 
some to be a core component of certain anxiety disorders (Dugas et al., 
1998; Carleton et al., 2012). Indeed, multiple cognitive mechanisms 
may contribute to maladaptive responses to uncertainty in pathological 
anxiety (Grupe and Nitschke, 2013). In the next section, we discuss 
negative biases in decision-making in the face of uncertainty in anxiety. 

4.1. Negative biases for uncertain outcomes 

A key finding from early cognitive research was that anxious in
dividuals demonstrate a negative interpretational bias (Beck and Clark, 
1988, 1997; Hirsch et al., 2016), that is, a tendency to interpret 
ambiguous information in a negative light. A computational basis for 
this has been proposed in a perceptual task (Aylward et al., 2020) 
translated from an animal model of negative bias (Harding et al., 2004; 
Hales et al., 2016). Pathologically anxious and depressed individuals 
were more likely to interpret ambiguous stimuli as if they would lead to 
the worst of two possible outcomes (Fig. 5), relative to healthy controls. 
Drift-diffusion modelling (see Box 1) revealed that this bias was driven 
by group differences in drift rates; in other words, the symptomatic 
group was more likely to accumulate negative evidence about the 
ambiguous stimulus during deliberation. This effect parallels findings 
from lexical decision-making (White et al., 2010) and facial discrimi
nation tasks (Glasgow et al., 2022), which together suggest that patho
logically anxious individuals tend to build more negative 
representations of the environment, which may lead to maladaptive 
behaviour especially under uncertainty. 

What might drive negative biases under uncertainty? A plausible 
explanation is that anxiety is associated with a prior belief that negative 
events occur more frequently than positive events (Butler and Mathews, 
1983). A signal detection theory analysis of the perceptual task 
described above (Aylward et al., 2020) is consistent with negatively 
biased prior beliefs about outcome probabilities (Locke and Robinson, 
2021). Further, modelling individual risk sensitivity using prospect 
theory (Kahneman and Tversky, 1979) (see Box 1) showed that anxious 
individuals are more sensitive to risk in economical decision-making 
compared to healthy controls, leading to preferences for smaller yet 
guaranteed (i.e. more certain) rewards over gambles for greater rewards 
(Charpentier et al., 2017), which can be interpreted as over-weighting of 
the probability of disadvantageous outcomes. Relatedly, recently pro
posed computational models of anxiety (Zorowitz et al., 2020) and 
obsessive-compulsive disorder (Fradkin et al., 2020) show through 

Fig. 5. The perceptual decision-making task of 
Aylward et al. (2020). A) Task structure. Par
ticipants were first trained to discriminate be
tween two stimuli (here, a small and large 
circle) using two response keys. Pressing the 
correct response key for one of the stimuli 
deterministically leads to a high reward, 
whereas the correct response key for the other 
stimulus leads to a smaller reward (respon
se-reward associations were counter-balanced 
across participants). In the test phase, an 
intermediate-sized stimulus was presented, for 
which both response keys lead to their respec
tive rewards (high reward for the high reward 
response, low reward for the low reward 
response) with equal probability. B) Illustration 
of data from Aylward et al. (2020). Mean pro
portion of high-reward responses to the inter
mediate stimulus by group (pathologically 
anxious vs healthy controls) and standard er

rors extracted from the original paper. Pathologically anxious individuals were less likely to respond to the ambiguous stimulus with the high-reward response, and 
healthy controls showed the opposite effect. C) This effect was computationally captured in a drift-diffusion model, specifically through the drift rate parameter 
which controls the rate and direction by which evidence is accumulated (i.e. for the high-reward vs the low-reward response). In the study, pathologically anxious 
individuals (red line) showed more negative drift rates, compared to the controls (orange line).   
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simulations that maladaptive avoidance behaviour can stem from 
pessimistic beliefs about personal ability to avoid threat in the future 
(which is intrinsically uncertain), leading individuals to make inappro
priate/excessive avoidance responses in the present. 

4.2. Stochasticity vs volatility 

Another line of research has focused on dissecting uncertainty into 
two components: stochasticity and volatility (Piray and Daw, 2021). 
Stochasticity arises when learning the value of a state or state-action pair 
if an agent observes variance in the outcomes (i.e. if the relationships are 
non-deterministic, as much the work in the previous section involved), 
leading to uncertainty in the precision of the value estimate. On the 
other hand, volatility involves changes in the state or state-action values 
themselves, which leads to uncertainty in the estimate of the value. 
Stochasticity and volatility have diverging consequences for efficient 
learning: high volatility, in other words when there is a lot of change in 
the values of states/state-action pairs, requires agents to update their 
values estimates more frequently, which can be achieved by increasing 
one’s learning rate, α. High stochasticity, or where there is high variance 
in the observed outcomes (assuming the value is stable) calls for slower 
learning and lower α, as each individual outcome is less informative 
about the true value. Humans can adaptively adjust their learning rates 
to variable stochasticity (Lee et al., 2020) and volatility (Behrens et al., 
2007). 

The previous section of this review showed that anxiety is associated 
with negative biases when outcomes are stochastic. There is also evi
dence associating anxiety with impaired learning in volatile environ
ments. Specifically, when learning to avoid threat under conditions of 
low and high volatility (with stable stochasticity across conditions), 
individuals with low trait anxiety adjusted their learning rates across 

conditions according to the optimal strategy, but high trait anxiety was 
associated with less flexibility in learning rates, leading to sub-optimal 
performance (Browning et al., 2015). Similar effects have also been 
found during reward learning (Huang et al., 2017; Gagne et al., 2020) 
and social decision-making (Lamba et al., 2020), indicating a 
domain-general impairment in adapting to volatility. 
Obsessive-compulsive and fear symptoms have also been associated 
with impairments in state-transition learning under low and high vola
tility, specifically with sub-optimally fast learning in stable conditions 
and slow learning in volatile conditions (Sharp et al., 2021), indicating a 
transdiagnostic role of learning under volatility in threat-related psy
chopathology. Towards a neural mechanism of learning rate inflexi
bility, one study found that the dorsal anterior cingulate cortex in 
healthy controls tracks changes in learning rate over trials, but this was 
not the case for anxious individuals (Piray et al., 2019). Finally, a recent 
simulation-based approach suggests that learning rate inflexibility can 
be explained if an agent is biased to perceived stochasticity as low and 
constant but volatility is estimated inappropriately highly (Piray and 
Daw, 2021). This implies that anxious individuals are insensitive to 
changes in true volatility and have impaired learning in environments 
involving low volatility - indeed, both of these effects have empirical 
support (Piray et al., 2019; Browning et al., 2015). 

These two streams of findings, specifically that anxiety is associated 
with negatively-biased expectations of potential outcomes, and with 
impairments in adapting to environmental volatility, have begun to 
identify the computational mechanisms that might underlie pathologi
cally anxious individuals’ altered reactivity to uncertain outcomes. The 
causal role of the anxious state (i.e. the anticipation for distal and un
certain threat) in the misestimation of uncertainty is unclear, but spec
ulatively, these ‘impairments’ might have some adaptive value if an 
agent believes there may be incoming threat. Firstly, overestimating 

Box 2 
Challenges and opportunities. 

The factors driving pessimism under uncertainty. There are multiple potential reasons why anxious individuals might be pessimistic during 
decision-making under uncertainty, or more specifically, accumulate negative evidence from the environment. This effect may be driven by 
individual differences in the representations of outcomes, for example by overweighting negative outcomes over positive ones (i.e. loss aversion) 
especially in fearful/anxious states, although this does not appear to fully explain the data (Charpentier et al., 2017). Alternatively, pessimism 
may be learned from one’s environment if negative outcomes historically occurred more frequently than positive outcomes. This leads to the 
question of whether pessimism can be unlearned, for example by exposure to an environment in which positive outcomes occur more frequently. 
Signal detection theory and Bayes’ theorem have been proposed as suitable frameworks to address these questions (Locke and Robinson, 2021; 
Huys et al., 2021). 

Translational approaches. Some of the studies reviewed above have implemented translational behavioural paradigms to bridge the gap 
between the animal and human literature (Smith et al., 2021; Aylward et al., 2020). Computational approaches may be especially well-suited for 
translational studies of behaviour (Redish, 2022). The computations necessary to solve certain tasks (e.g. to avoid threat via reinforcement 
learning), even if these tasks are outwardly very different, may serve as a better criterion for translational validity as opposed to other criteria 
such as face or predictive validity, when the aim is to better understand the cognitive and neurobiological mechanisms underlying behaviour. 
This approach will be especially important for approach-avoidance conflict tasks, which are some of the most commonly employed rodent 
anxiety models (Campos et al., 2013). Future work should develop fear/anxiety tasks that are explicitly designed to engage similar computa
tional processes in both animals and humans, which have been referred to as ‘common currency’ tasks (Pike et al., 2021). These tasks can also act 
as preclinical tests that will help to spur drug discovery for fear/anxiety disorders, which is especially important given that psychiatric drug 
development has slowed over the last decade (Hyman, 2012; Kesselheim et al., 2015). 

Computational mechanisms of anxiolytic/anxiogenic interventions. Computational approaches are also well-suited for elucidating the 
cognitive and physiological mechanisms of anxiolytic and anxiogenic interventions. For example, traditional analyses based on summary- 
statistics of behaviour may demonstrate that drug X increased approach responses in an approach-avoidance conflict task, but this effect 
could be driven by changes in reward sensitivity or punishment sensitivity (or indeed both). Understanding pharmacological and psychological 
interventions at the level of cognitive/computational mechanisms will help to make treatments more targeted and therefore effective. A large- 
sample meta-analysis comparing pathologically anxious and depressed individuals to controls has already identified one potential computa
tional target for therapy in punishment learning rates, where the learning behaviour of the symptomatic group was characterised by faster 
learning from punishment compared to the controls, but not sensitivity to punishment (Pike and Robinson, 2022). This suggests that treatment 
approaches in these patients could specifically target how they learn and adapt to negative events in the world, for example through 
cognitive-behavioural therapy (CBT) and this may improve treatment efficacy. Such approaches will be an important avenue for future research 
to potentially drive innovation in psychiatric treatment.  
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threat likelihood is adaptive as it is safer to overestimate than under
estimate threat. Secondly, a bias to attribute environmental uncertainty 
to volatility rather than stochasticity allows an agent to respond more 
readily to changes in the environment – for example, an action which 
successfully avoided threat in the past may not be so effective in the 
present, which would be important to adjust for. Future work using 
induced- fear/anxiety designs will be important to understand if indi
vidual differences in threat estimation and dealing with uncertainty 
drive anxious states, or if indeed they are goal-directed changes in 
perception in line with threat avoidance. 

5. Summary 

We have presented an overview of the key themes of the computa
tional literature on human fear and anxiety. Specifically, we discussed 
multiple computational processes involved in learning to predict and 
avoid threat, namely error-driven learning, the interactions of Pavlovian 
and instrumental learning and model-based planning. Given the di
versity and complexity of these processes, the evidence suggests that 
there are multiple ways that learning can go awry with respect to 
pathological fear and anxiety, and different symptoms are associated 
with divergent computational mechanisms. We also introduced the few 
studies to date to study approach-avoidance conflict behaviour from a 
computational perspective, which have begun to suggest roles of deci
sion uncertainty and asymmetries in learning about rewards and pun
ishment, but there is not yet a clear computational account of approach- 
avoidance conflict. We also argued that uncertainty is a key motif 
implicated in anxiety, where converging evidence from different para
digms suggest that anxious individuals overestimate the likelihood of 
disadvantageous outcomes and struggle to learn in volatile environ
ments. However, there are a number of challenges and opportunities for 
the future. Whilst computational approaches have been useful in deep
ening our understanding of the specific neurocognitive processes un
derlying defensive behaviour and how disruptions in these processes can 
lead to psychopathology, little progress has been made in informing 
treatment. Looking forward, computational approaches could be 
extended to better understand basic mechanisms and treatments for 
fear-and anxiety-related disorders. Further, better cross-species para
digms of defensive behaviour, especially those amenable to computa
tional analysis (Redish, 2022), will be important in integrating findings 
across the human and animal literature and potentially spurring the 
development of psychiatric interventions (Pike et al., 2021) (Box 2). 
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