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Abstract

Secondary metabolites from plants are ubiquitous and have applications in medicines, food additives, scents, colorants,
and natural pesticides. Biotechnological production of secondary metabolites that have economic benefits is an attractive
alternative to conventional methods. Cell, adventitious, and hairy root suspension cultures are typically used to produce
secondary metabolites. According to recent studies, somatic embryos in suspension culture are useful tools for the generation
of secondary metabolites. Somatic embryogenesis is a mode of regeneration in several plant species. This review provides
an update on the use of somatic embryogenesis in the production of valuable secondary metabolites. The factors influencing
the generation of secondary metabolites using somatic embryos in suspension cultures, elicitation methods, and prospective
applications are also discussed in this review.
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been found to have about 200,000 secondary compounds
(Fang et al. 2019; Wang et al. 2019). Secondary metabolites
are altered after production through a variety of processes,
including methylation, glycosylation, and hydroxylation.
Phenolics, terpenes, nitrogen-containing compounds, and
sulfur compounds are the four major classes of plant second-
ary metabolites, which have been categorized based on their
biosynthetic pathways (Erb and Kliebenstein 2020; Gara-
gounis et al. 2021; Jan et al. 2021; Twaij and Hasan 2022;
Wang et al. 2019) (Fig. 1). The shikimate pathway produces
phenolics, which are divided into different classes based on
the number of aromatic rings, carbon atoms, and hydroxyl
groups. These classes include simple phenolics, coumarins,
lignans, flavonoids, isoflavonoids, and tannins. The meva-
lonic acid pathway is used to synthesize terpenoids from
isoprenoid units. According to the number of isoprene units
present, they are divided into monoterpenes, sesquiterpenes,
diterpenes, sesterterpenes, and triterpenes, among others.
Alkaloids are classified into three groups: phenylethylamine
alkaloids, pyrrolizidine alkaloids, and terpenoid indole alka-
loids. Most alkaloids are formed from amino acids. Glucosi-
nolates and phytoalexins contain sulfur and are generated
from amino acids and glucose (Venditti and Bianco 2020).
Secondary metabolites are used in medications, food addi-
tives, flavoring agents, scents, colors, and natural pesticides
because of their valuable biological properties.

Gluthatione, Glucosiolates
Phytoalexins, Thionins
Defensins, Allinin

Coumarins, Furano-coumarins
Lignins, Flavonoids
Isoflavonoids, Tannins

Fig. 1 Classification and types of plant secondary metabolites
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Naturally growing plants contain extremely low concen-
trations of secondary metabolites (less than 1%). Moreover,
age, seasonality, environmental factors, and genotype-spe-
cific factors affect the accumulation of secondary metabo-
lites in plants (Li et al. 2020; Sun et al. 2022). In addition,
owing to the overharvesting of plants for their secondary
metabolites in the wild, certain plant species have become
rare and endangered (Nosov 2012). Therefore, it is desir-
able to apply biotechnology to produce useful secondary
metabolites from adventitious roots, hairy roots, and cells
(Chandran et al. 2020; Gutierrez-Valdes et al. 2020; Kreis
2019; Marcheyv et al. 2020; Mohaddab et al. 2022; Murthy
etal. 2014, 2016, 2022, 2023a, b, ¢c; Wawrosch and Zotchev
2021). Somatic embryogenesis is the mode of regeneration
in several aromatic and therapeutic plants. Somatic embryos
are organized bipolar structures that develop from a single
or group of somatic cells in vitro and eventually develop
into plantlets upon germination. In contrast, hairy roots are
genetically transformed roots derived from the infection of
Rhizobacterium rhizogenes and are thin hairy structures.
Adventitious roots are unipolar structures that grow from
any location other than the embryonic root (radicle) in vitro
or in vivo. In contrast, calli are growing masses of unor-
ganized plant parenchyma cells that can regenerate into
organs or somatic embryos under the influence of plant
growth regulators in vitro. Protocorm-like bodies (PLBs) are
developed from the seeds or other organ cultures of orchids
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Non-protein amino acids
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in vitro. The early stages of protocorm-like bodies in orchids
have morphological and histological characteristics similar
to those of the zygotic embryos (Lee et al. 2013). Hence,
the protocorm-like bodies are regarded as orchid somatic
embryos (Lee et al. 2013). Somatic embryos can be induced
in a variety of plants and cultured in suspension cultures, and
important secondary metabolites can be extracted from the
embryogenic biomass. The use of somatic embryogenesis
for the production of highly valuable secondary metabolites
is summarized in this article. In addition, several variables
affecting the accumulation of biomass and secondary chemi-
cals as well as somatic embryo growth in bioreactors are
explored.

Production of secondary metabolites
from somatic embryogenic cultures

Somatic embryogenesis is the process by which somatic
cells undergo reorganization to produce embryogenic cells.
The formation of a somatic embryo capable of regenerating
plants follows a sequence of morphological and biochemi-
cal changes in these cells (Yang and Zhang 2010). Somatic
embryos can form naturally in numerous plant species or
during in vitro cell and tissue culture. The developmental
stages of somatic embryogenesis are comparable to those
of zygotic embryos, which normally go through the globu-
lar, torpedo, and cotyledonary stages in dicots or the globu-
lar, scutellar, and coleoptile stages in monocots. Conifers
undergo globular, early cotyledonary, and late cotyledon-
ary stages (Yang and Zhang 2010). Furthermore, in vitro
somatic embryogenesis can involve either callus-mediated
or direct embryo regeneration. Specific plant growth regu-
lators regulate the induction, differentiation, maturation,
and germination of somatic embryos (Sugimoto et al. 2019;
Tang et al. 2020; Wojcik et al. 2020). Somatic embryogen-
esis is frequently used for plant genetic improvement, mass
propagation, and genetic transformation (Corredoira et al.
2019; Murthy et al. 2023b; Tian et al. 2020). Several plant
species produce and store secondary metabolites in their
zygotic seeds. According to a literature review by De-la-
Cruz Chacén et al. (2012), most secondary metabolites are
biosynthesized in developing embryos, whereas the remain-
der are partially or entirely acquired from the mother plant.
Moreover, they showed that several phenolics, alkaloids,
and terpenoids are synthesized in the early stages of plant
development. Several studies have reported that the quan-
tity and diversity of secondary metabolites increase and/or
decrease throughout embryo development and germination.
For example, the seeds of Coffea arabica contain 2% and 1%
phenolic acids (chlorogenic acid) and alkaloids (caffeine and
trigonelline), respectively. However, caffeine content report-
edly surges by a factor of 2.5 during germination compared

to earlier stages (Aerts and Baumann 1994). In contrast,
phenolics are significantly decreased in Lens culinaris (len-
til) (Bartolomé et al. 1997). Early embryo development is
characterized by secondary metabolite variation, which is
related to the interactions between developing plants and
phytopathogens, insects, and allelopathic agents (Yamaji and
Ichihara 2012). These examples indicate that the embryo-
genic system is highly active in secondary metabolism and
can be used to produce secondary metabolites in vitro.

Suspension culture of embryos:
optimization of parameters

Plant tissue culture depends on various factors, including the
nutrients supplied for plant growth, to produce secondary
metabolites. The explant response in terms of morphoge-
netic events, such as organogenesis or somatic embryogen-
esis, depends critically on the optimal nutritional content
(Murthy et al. 2023b). The key elements that must be estab-
lished in every culture include the type of culture medium
used, the salt content of the medium used (including nitro-
gen and phosphorus), the type and quantity of growth regu-
lators utilized, and the type and quantity of sugars (Murthy
et al. 2014, 2022, 2023c). The physical factors that affect
the growth of cultured cells and organs in vitro and that aid
in the formation of secondary metabolites include tempera-
ture, lighting, light quality, medium pH, agitation, and aera-
tion (Murthy et al. 2014, 2023a, b). Somatic embryogenesis
has been used to produce biomass and various secondary
metabolites in several medicinal plants. The data are shown
in Tables 1 and 2, and the components affecting the produc-
tion of biomass and secondary compounds are described in
detail.

Impact of the medium parameters

An appropriate medium must be selected to establish cell
and organ cultures (Espinosa-Leal et al. 2018; Murthy et al.
2021, 2022, 2023a, b, c). The MS (Murashige and Skoog
1962), BS (Gamborg et al. 1968), and woody plant media
(Lloyd and McCown 1981) are three of the most commonly
used culture media for the induction and proliferation of
somatic embryos and their suspension cultures (Tables 1 and
2). The highest levels of total salts and nitrogen are found
in the MS basal medium, and it has been demonstrated that
the MS medium has an impact on the growth of several spe-
cies (Espinosa-Leal et al. 2018). Several plant species were
found to induce and develop embryogenesis in MS media
(Tables 1 and 2). For instance, an MS medium has been used
in Eleutherococcus sessiliflorus (Shohael et al. 2005), E.
chiisanensis (Jeong et al. 2005), E. senticosus (Shohael et al.
2014b), Plumbago rosea (Komaraiah et al. 2004), and Rosa
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rugosa (Jang et al. 2016) for induction, differentiation, and
maturation of somatic embryos. The MS medium is also fre-
quently used to establish embryogenic suspension cultures
and produce embryogenic biomass and secondary metabo-
lites (Tables 1 and 2). However, in Citrus paradisi (Gavish
et al. 1989) the MT medium (Murashige and Tucker 1969)
was found to be suitable for the induction of embryogenesis
and establishment of embryogenic callus cultures. In Santa-
lum album (Misra and Dey 2013), the woody plant medium
was identified as being effective for somatic embryogenesis
and the production of sesquiterpenes. In contrast, the MS
medium has been used to induce somatic embryos in Vitis
amurensis (Sun et al. 2016). However, the BS medium has
been found to be excellent for the establishment of embryo-
genic suspension cultures and the accumulation of stilbenes
in embryogenic cultures. The induction, maturation, and cul-
tivation of somatic embryos in suspension media all depend
on the salt content of the medium. For instance, Park et al.
(2005) investigated the effect of the MS medium at 1/3, 1/2,
full, and double strengths on the regeneration of somatic
embryos from Eleutherococcus koreanum root cultures.
According to their findings, 1/3 strength MS medium was
effective in inducing the highest number of somatic embryos
per explant, making it appropriate for embryogenesis. These
results support earlier findings that embryo development
from the root segment of Spinach oleracea is facilitated by
MS media with lower concentrations of mineral ions (Komai
et al. 1996).

To produce biomass and secondary metabolites, PLB cul-
tures have been established in several orchid species, and
choosing the correct media was crucial. To produce PLB
biomass in Dendrobium candidum, Cui et al. (2015) tested
the effects of MS, B5, Knudson C (KC, Knudson 1951),
Vacin and Went (VC, Vacin and Went 1949), White (White
1963), Schenk and Hildebrandt (SH, Schenk and Hilde-
brandt 1972), and Chu (N6, Chu 1978) media. They found
that the N6 medium was superior for biomass accumula-
tion, but secondary compound accumulation was low in this
medium. In contrast, the MS medium was more effective for
accumulating biomass and producing phenolic and flavonoid
compounds. According to Wang et al. (2021), D. officinale
accumulates PLB biomass on a half-strength MS medium.
According to these studies, different plant species have dis-
tinct nutritional requirements. Therefore, in plant cell and
organ cultures, one approach to produce biomass and sec-
ondary metabolites is to select an appropriate medium com-
position and salt strength (Murthy et al. 2014).

Impact of growth regulators
Growth regulators are typically added exogenously to cell

and organ cultures to promote growth and accumulation of
biomass and secondary metabolites (Murthy et al. 2014,

@ Springer

2023a, b). Auxins, 2,4-dichloro-phenoxy acetic acid (2,4-D),
and naphthalene acetic acid (NAA) have been used to induce
somatic embryogenesis; however, cytokinins, particularly
benzyl adenine (BA) and kinetin, are responsible for reg-
ulating the growth and proliferation of somatic embryos.
However, in some plant species, somatic embryonic devel-
opment occurs in hormone-free environments (Sugimoto
et al. 2019). Abscisic acid supplementation is occasionally
necessary for embryo maturation, whereas gibberellic acid
(GA) promotes embryo germination (Sugimoto et al. 2019).
Consequently, by adjusting the type and concentration of
growth regulators, the proliferation and accumulation of
somatic embryo biomass in suspension cultures can be man-
aged. For example, in an MS medium supplemented with 1
mg L™! 2,4-D, E. sessiliflorus leaf segments exhibit embryo-
genic callus formation (Fig. 2A) and embryo differentiation
(Shohael et al. 2005; Fig. 2B). Shohael et al. (2005) devel-
oped embryogenic cell suspension cultures in an MS liquid
medium and reported that an increase in 2,4-D concentration
(>2 mg L) in the culture medium resulted in the devel-
opment of non-embryogenic calli, whereas further somatic
embryo development was reported in the MS medium
without growth regulators (globular, heart, and cotyledon-
ary; Fig. 2C, D). Somatic embryos germinate in a medium
enriched with 4 mg L™' GA; (Fig. 2E) and converted into
plantlets (Fig. 2F), according to Shohael et al. (2005). In
contrast, after the development of somatic embryos from
cotyledon explants on an MS medium supplemented with
6 mM NAA and 30 mM glutamine, Psoralea corylifolia
requires abscisic acid treatment for embryo maturation and
GA; treatment for embryo germination in subsequent estab-
lishing suspension cultures (Baskaran and Jayabalan 2009).
Eleutherosides (B, E, and E1), chlorogenic acid, phenolics,
and flavonoids accumulate in E. sessiliflorus during embry-
onic development (globular > heart > torpedo > cotyledon-
ary), with the highest concentrations observed in germinated
embryos (Shohael et al. 2005). Eleutherococcus chiisanensis
(Jeong et al. 2005), E. koreanum (Park et al. 2005), E. sen-
ticosus (Shohael et al. 2014a, b), and Catharanthus roseus
(Aslam et al. 2010) have demonstrated identical incidences
of secondary metabolite accumulation.

Protocorms have been induced from the nodal segment in
D. candidum on an MS medium supplemented with 0.1 mg
L ' NAA,?2 mg L~ !'BA, and 0.1 mg L~! kinetin in research
by Cui et al. (2015). The proliferation of protocorms, accu-
mulation of biomass, and production of bioactive com-
pounds was subsequently tested in MS media containing
0.05, 0.1, 0.5, 1.0, and 2.0 mg L' NAA or indole butyric
acid. According to Cui et al. (2015), a medium supplemented
with 0.5 mg L™! NAA promotes protocorm proliferation, the
largest biomass accumulation, and accumulation of pheno-
lics (4.26 mg g~! dry weight (DW) and flavonoids (1.23 mg
g~! DW). Therefore, when controlling the embryogenic
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Plantlets

/=2

MS medium +
4 mg |_1 GA3 + @
30 g ['sucrose

Germinated
somatic embryos

MS medium +
30 g 'sucrose @

Torpedo

Fig.2 Somatic embryogenesis of Eleutherococcus sessiliflorus:
A Embryogenic callus developed from leaf explants on MS medium
with 1 mg L' 2,4-D and 30 g L~! sucrose after 6 weeks of culture;
B globular embryos developed from an embryogenic callus on MS
medium with 1 mg L™' 2,4-D and 30 g L™! sucrose after 8 weeks
of culture; C heart-staged and D torpedo-staged embryos devel-
oped from an embryogenic callus upon transfer to an MS medium

phases in suspension cultures, the use of particular types
and combinations of growth regulators is greatly beneficial.

Impact of sugars in the medium

Plant cell and organ cultures are usually grown using a sin-
gle simple sugar or a combination of simple sugars such
as glucose, fructose, maltose, and sucrose. The sugars in
the medium act as energy sources and supply inorganic
nutrients. The supplemental concentration of carbohydrates
in the medium greatly affects biomass and metabolite pro-
duction. For example, Nagella et al. (2011) verified the
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30 g L"sucrose

Heart

with 30 g L™! sucrose after 10 and 12 weeks of culture, respectively;
E germinated embryos upon transfer to an MS medium supplemented
with 30 g L™! sucrose and 4 mg L™ GAg;; and F plantlets growing in
the greenhouse 2 months after transfer to garden soil (Cocopeat 51%,
Peat moss 10%, Vermiculite 13%, Humic acid 0.1%, Perlite 15%,
Zeolite 10%, Fertilizer 0.4%; Shinsung Mineral Co., Ltd., Dunchon-
aero, Republic of Korea)

effects of 10, 20, 30, 40, 50, 60, 70, and 80 g L~! sucrose
on cell cultures of Gymnema sylvestre; 30 g L™! sucrose
favored increased accumulation of biomass, whereas 40 g
L~! sucrose was responsible for the highest accumulation
of gymnemic acid. They also examined several sugars, such
as glucose, fructose, maltose, and sucrose, in cell suspen-
sion cultures of G. sylvestre and found that sucrose was an
ideal carbohydrate source for both biomass and gymnemic
acid production. Therefore, suitable carbohydrate sources
and concentrations should be identified for the production of
secondary metabolites in cell and organ cultures. To verify
the role of sucrose concentration in embryogenesis, Park
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et al. (2005) cultured the root segments of E. koreanum in
an MS liquid medium supplemented with 15, 30, 60, and
90 g L~! sucrose. Higher sucrose concentrations were found
to be beneficial for promoting embryogenesis, and in the
medium supplemented with 60 g L™! sucrose, they reported
optimum embryo regeneration, which was responsible for
the increase in embryo biomass when compared with the
medium supplemented with 30 g L™! sucrose (Table 1). Sun
et al. (2016) examined the effects of sugars, such as glucose,
fructose, lactose, sucrose, and sorbitol, at a concentration
of 30 g L™! on somatic embryo cultures of V. amurensis to
produce biomass and resveratrol. They found that the maxi-
mum biomass produced was 329.45 g L~! and the maximum
amount of resveratrol produced was 42.88 mg L™!. Sucrose
supplementation had a stronger effect on biomass accumula-
tion and metabolite production than did glucose, fructose,
lactose, or sorbitol supplementation.

Cui et al. (2015) cultured D. candidum PLBs in an MS
medium supplemented with 10, 15, 20, 25, 30, or 50 g Lt
sucrose concentrations to increase protocorm proliferation
and metabolite production. They found that 50 g L™" sucrose
was more suitable for biomass accumulation, whereas the
highest production of phenolics and flavonoids was recorded
in a medium supplemented with 25 g L™! sucrose. Zhi-wei
et al. (2012) found that Anoectochilus formosanus accumu-
lated maximum PLB biomass and phenolic compounds in an
MS medium supplemented with 30 g L™! sucrose. Osmotic
pressure and nutrient uptake are significantly affected by
sucrose concentration; for PLB proliferation and growth in
a variety of orchid species, 30 g L™! sucrose is typically used
(Yang et al. 2015).

Impact of nitrogen concentration

The amount of nitrogen in the nutritional medium has a sig-
nificant effect on the amount of biomass and metabolites
accumulated in plant cells and organ cultures (Murthy et al.
2014, 2022, 2023a, b, ¢). An MS medium without ammo-
nium ions shows the lowest biomass production, whereas the
highest somatic embryo production occurs at 15 mM NH,™,
according to Komaraiah et al. (2004), who verified the effect
of ammonium (0, 5, 10, 15, and 20 mM NH4+) concentra-
tions on the somatic embryogenesis of P. rosea.

Yang et al. (2015) tested how the NH,*:NO;~ ratio
affected the accumulation of bioactive and PLB biomass
in D. candidum PLBs. They used half-strength MS media
at 30 mmol levels with various NH,*:NO; ratios (0:30,
10:20, 15:15, 20:10, and 30:0) and discovered that NO;™ in
the culture medium caused increased amounts of PLB bio-
mass (190.1 g fresh and 21.1 g dry biomass). According
to Zhi-wei et al. (2012), when the concentration of the
NH,*:NO; ratio is at 60:0 mmol in the MS medium, A.

formosanus PLB cultures accumulate flavonoids, phenolics,
and polysaccharides at the highest levels (5.43 mg g~! DW,
2.87 mg g~! DW, and 243.23 mg g~! DW, respectively).
Correspondingly, they discovered that when NO;™ is utilized
as the only nitrogen source, PLBs accumulate the most poly-
saccharides (545.36 g g~! dry weight) and alkaloids (302.51
gg ' DW).

Impact of the concentration of phosphate

The production of secondary metabolites is significantly
influenced by the phosphate content of plant cells and the
tissue culture medium. In cell cultures of Panax ginseng
and P. quinquefolius, a higher concentration of saponins is
caused by an increase in phosphate levels (Liu and Zhong
1998). Yang et al. (2015) investigated the effects of MS
medium phosphate concentrations (0, 0.6, 1.2, 1.8, 2.4, and
3.0 mmol) on D. candidum PLB biomass and metabolite
accumulation. When the phosphate concentration was at the
1.8 mmol level, they recorded the maximum biomass accu-
mulation (159.2 g~ fresh and 15.7 g~! dry biomass) and the
polysaccharide (296.41 mg g~! DW) and alkaloid (336.12 g
g~! DW) production.

Somatic embryo suspension culture
in bioreactors

Manual handling of different stages of in vitro culture
might be eliminated and production costs could be reduced
by using a liquid medium in the bioreactor growth of plant
cells and organs (Murthy et al. 2023a, b). Because bioreac-
tors can control several variables, including aeration, gas
levels such as those of oxygen, carbon dioxide, and ethyl-
ene, and hydrogen ion concentrations, the bioreactor cul-
ture system has more advantages than the conventional tis-
sue culture approach. Nutrient absorption can be boosted
by continuous agitation of the medium. Increasing the
cell proliferation and regeneration rates can also acceler-
ate production and improve product quality (Murthy et al.
2014, 2022, 2023a, b). Stirred tank, bubble column, airlift,
and wave-mixed bioreactors are the most popular biore-
actor designs used for biomass and secondary metabolite
production in plants (Murthy et al. 2023a, b). The most
crucial decision in choosing a bioreactor design is the type
of culture that will be used. Because stirred tank bioreac-
tors typically have mechanical components, such as impel-
lers, that could harm organized structures, they are not
suitable for culturing somatic embryos. However, pneu-
matically driven, bubble column, and airlift bioreactors
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are often employed. These bioreactors also facilitate an
efficient mixing process and have a high oxygen capacity.
To cultivate somatic embryos and protocorm-like bodies,
modified airlift bioreactors such as balloon-type bubble
bioreactors have been studied and used for biomass and
secondary metabolite production (Tables 1 and 2).
Eleutherococcus sessiliflorus (Shohael et al. 2005), E.
senticosus (Shohael et al. 2014a), E. koreanum (Park et al.
2005) and E. chiisanensis (Jeong et al. 2005) are among
the species whose somatic embryos have been cultured in
bubble or airlift bioreactors to produce secondary metabo-
lites. Misra and Dey (2013) have used both airlift biore-
actors and Nalgene culture vessels to cultivate S. album
somatic embryos. Similarly, PLB cultures of D. candidum
have been established in modified bubble or airlift biore-
actors (Cui et al. 2014a, b; Wang et al. 2016; Yang et al.
2015), and various parameters affecting biomass have been
determined, including inoculum density, aeration volume,
mode or method of culture, light quality, temperature, and
elicitation. The following sections list several variables
that affect the generation of secondary metabolites and
embryogenic biomass in bioreactor cultures.

The choice of bioreactors and the factors that affect
culturing techniques

An appropriate bioreactor configuration must be selected
to promote the accumulation of biomass and secondary
metabolites (Murthy et al. 2023a, b; Thanh et al. 2006).
Shohael et al. (2014a) used balloon-, bulb-, cone-, and
cylinder-type bubble bioreactors for culturing E. sentico-
sus somatic embryos and reported the highest accumula-
tion of biomass (102.3 g L™! fresh and 11.3 g L™! dry
biomass), eleutheroside B (20.0 pg g_l DW), eleutheroside
E (47.2 pg g_1 DW), eleutheroside E1 (34.4 pg g_1 DW),
and chlorogenic acid (1.1 mg g~! DW) in balloon-type
bubble bioreactors. These findings were related to the
volumetric oxygen transfer coefficient (kLa), which was
best in the balloon-type bubble bioreactors. Eleutherococ-
cus sessiliflorus embryo cultures have been tested using
a variety of culture methods, including continuous and
temporary immersion, using the ebb and flood approach
described by Shohael et al. (2005). The continuous immer-
sion system produces the maximum biomass (239.65 g
FW and 25.53 g~! DW). Furthermore, Dendrobium can-
didum PLB cultures have been established by Cui et al.
(2014a) in balloon-type bubble bioreactors using continu-
ous immersion, raft, and ebb and flood techniques. In the
immersion cultures, fresh and dry biomass accumulation
reached optimal levels of 323.33 ¢ L™' and 16.13 g L™/,
respectively. Immersion cultures were also discovered to
have the highest levels of polysaccharides (404.48 mg g~

@ Springer

DW), coumarins (18.36 mg g~! DW), polyphenolics (13.33
mg g~' DW), and flavonoids (3.97 mg g~! DW).

Inoculum density effects

The ideal inoculum density is one of the elements that
influence the biomass and metabolites in bioreactor cul-
tures (Jeong et al. 2009; Murthy et al. 2023a, b). In somatic
embryo cultures of E. senticosus, Shohael et al. (2014a)
similarly showed the significant impact of inoculum on the
accumulation of biomass and the generation of metabolites.
They used balloon-type bubble bioreactors with a 3 L capac-
ity and 2 L of MS medium to examine 1, 3,5, 7,and 9 g
L~! inoculum. They obtained maximum biomass (1037 g
L~!' FW and 11.5 g L™! DW) and optimal productivity of
eleutherosides (21.2 pug g~ DW of eleutheroside B, 49.9 g
g~! DW of eleutheroside E, 28.9 ug g~! DW of eleutheroside
E1) and chlorogenic acid (1.2 mg g~! DW) at an inoculum
density of 5 g L',

In 3 L balloon-type bubble bioreactors using 2 L of
MS media, Cui et al. (2014a) generated PLB cultures of
D. candidum and examined the effects of inoculum densi-
ties of 10, 30, 50, 70, and 90 g L' on the accumulation
of biomass and secondary metabolites. They observed an
increase in biomass with increasing inoculum density, but
at an inoculum density of 50.0 g L™, they observed the best
growth rates and the highest concentrations of polysaccha-
rides (399.65 mg g~! DW), coumarins (19.64 mg g~! DW),
phenolics (14.63 mg g~! DW), and flavonoids (4.75 mg g™
DW). These findings highlight the effect of inoculum den-
sity on the buildup of biomass and metabolites in bioreactor
cultures.

Impact of aeration volume

Because aeration is responsible for mixing biomass with
a liquid medium, providing crucial nutrients, and supply-
ing crucial gaseous substances such as oxygen and carbon
dioxide, it is a key element that regulates the accumulation
of biomass and the generation of metabolites in bioreac-
tors (Jeong et al. 2006; Murthy et al. 2023a, b; Thanh et al.
2006, 2014). Shohael et al. (2014a) evaluated E. senticosus
somatic embryo cultures with both a constant air supply of
0.05, 0.1, 0.2, and 0.3 vvm (air volume/medium volume/
min) and incremental air supply of 0.05, 0.1, 0.2, and 0.3
vvm (air supply was adjusted once per week over the culture
period). They observed the highest accumulation of fresh
and dry biomass (99.2 g L' FW and 11.3 g L™! DW), as
well as the formation of eleutherosides and chlorogenic acid
with variable air volume over the culture period.

In 3 L capacity balloon-type bubble bioreactors for D.
candidum PLB cultures, Cui et al. (2014a) investigated the
effects of aeration volumes of 0.05, 0.1, 0.2, and 0.3 vvmm
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constant air supply and 0.05-0.3 vvm incremental air sup-
ply (increments of 0.5 vvm per week). They reported that
a 0.3 vvm continuous air supply was appropriate for bio-
mass growth and metabolite accumulation (416.53 mg g™*
DW of polysaccharides, 20.77 mg g~! DW of coumarins,
12.01 mg g~! DW of phenolics, and 5.00 mg g~! DW of
flavonoids). According to Cui et al. (2014a), increasing the
aeration volume helps ensure appropriate agitation and pre-
vents embryogenic biomass from settling at the bottom of
the bioreactors.

Influence of light quality

Light intensity and quality are essential abiotic factors
required by plants for photosynthesis, growth, and second-
ary metabolite accumulation (Tang et al. 2022). For exam-
ple, the yield of essential cyclic monoterpenes increases in
response to light intensity and quality (Ueda et al. 2021).
The light quality (red, far-red, and blue) provided by light-
emitting diodes also influences the accumulation of second-
ary metabolites in plants (Alrifai et al. 2019; Yeow et al.
2020). Light intensity and quality also control growth, bio-
mass accumulation, and secondary metabolite production
in cultured cells and organs (Murthy et al. 2014, 2023a,
b). Shohael et al. (2006a) tested how fluorescent, blue, red,
and blue plus far-red lights affected E. senticosus somatic
embryo suspension culture development and metabolite
buildup. Although the effect of light on biomass accumula-
tion was negligible, their experimental results demonstrated
a stimulatory effect on secondary metabolite accumulation.
Eleutheroside E (54.5 g g-1 DW) and eleutheroside E1 (50.4
g g~ DW) accumulation was stimulated in cultures exposed
to red light, whereas eleutheroside B (27.9 g g~' DW) accu-
mulation was stimulated in cultures exposed to blue light.
These findings imply that altering the light quality can be
used to manipulate secondary metabolites.

The effect of temperature

Suspension cultures need to be subjected to the best tem-
perature treatment for the accumulation of biomass and
secondary metabolites (Murthy et al. 2014). Shohael et al.
(2006b) investigated the effects of several temperature
regimes, namely 12, 18, 24, and 30 °C, on biomass and
metabolite accumulation in E. senticosus somatic embryo
bioreactor cultures. They claimed that cultures incubated at
24 °C produced the highest accumulation levels of biomass
(102.1 g L™! fresh and 11.10 g L™" dry biomass) and metab-
olites (21.2 g g~! DW of eleutheroside B, 39.6 g g~! DW of
eleutheroside E1, and 1.0 mg g~' DW of chlorogenic acid).
However, they noted that cultures incubated at a temperature

of 12 °C showed the greatest accumulation of eleutheroside
E (43.1 g 7! DW). Incubation temperature can therefore be
adjusted to control the accumulation of specific metabolites
in suspension cultures.

Elicitation

Plants produce secondary chemicals to defend themselves
against pathogen attacks and combat the effects of abiotic
stressors. As a result, the use of biotic and abiotic elicitors
causes the buildup of secondary chemicals in in vitro cul-
tures (Chen et al. 2019; Ho et al. 2020). In cell and organ
cultures, the accumulation of secondary chemicals has been
successfully induced by methyl jasmonate (MJ), jasmonic
acid, and salicylic acid (Gai et al. 2019; Malik et al. 2021;
Murthy et al. 2014). Shohael et al. (2007, 2008) carried out
multiple tests and confirmed the impact of MJ (50, 100, 150,
200, 300, and 400 uM) on Eleutherococcus species somatic
embryo suspension cultures. They claimed that the MJ treat-
ment affected the growth of E. senticosus embryogenic cul-
tures. Additionally, the amount of total eleutherosides and
chlorogenic acid increased with increasing MJ concentration
and peaked at 200 uM M, indicating 7.3-fold (649.9 g g~!
DW) and 3.9-fold (4.4 g g_1 DW) increases, respectively, in
comparison to the control treatments. Moreover, they dis-
covered 1.4-, 3.4-, and 14.9-fold increases in the levels of
eleutherosides B, E, and E1, respectively.

Wang et al. (2016) researched the impact of MJ at concen-
trations of 25, 50, 75, 100, and 125 uM on D. candidum PLB
cultures. Their early studies on PLB suspension cultures in
Erlenmeyer flasks showed that MJ inhibits PLB growth. To
address this issue, they established PLB cultures in bioreac-
tors and maintained the cultures for 30 days without elicitor
treatments. After 30 days of cultivation, the cultures were
treated with 75 pM M1J and maintained for an additional 6
days. The highest levels of alkaloids (269.5 mg g~! DW)
and polysaccharides were observed in the MJ-treated cells
(386.7 mg g_, DW). According to these findings, elicitation
is a helpful strategy for the hyperaccumulation of second-
ary metabolites in bioreactor cultures when used with the
appropriate elicitor, concentration, and period of treatment.

Scale-up process

Somatic embryos have been cultured in large-scale airlift
bioreactors to produce phenylpropanoid glycosides and cou-
marin glycosides (Fig. 3). Somatic embryos were induced by
using leaf explants (Fig. 3A, B), following systematic test-
ing in small-scale cultures (Fig. 3C), Shohael et al. (2014b)
cultivated somatic embryos of E. senticosus using MS media
with 3% (w/v) sucrose without growth regulators in 20 L
(Fig. 3D) and 500 L balloon-type (Fig. 3E) bioreactors. A
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@ Small scale

~—/ Bioreactor culture

c) Suspension culture of
embryos in flasks

\‘/ B ) Somatic embryos

@®—— Induction of Somatic
embryogenesis

Fig.3 Suspension cultures of Eleutherococcus senticosus somatic
embryos: A Leaf explants were used for callus and somatic embryo
induction, B somatic embryos in MS medium supplemented with
30 g L™! sucrose and 1.0 mg L™! 2,4-D, C embryogenic suspension
in flasks containing MS liquid medium supplemented with 30 g L™!

3 g L™! inoculum of somatic embryos was used to establish
the large-scale bioreactors. The bioreactors were then aer-
ated with 0.1 vvm, and the cultures were maintained for 30
days. They obtained 5.7 kg of dried embryo biomass and
63 kg of fresh biomass using the 500 L balloon-type bioreac-
tors (Fig. 3F). They also reported eleutherosides B, E, and
E1 concentrations of 220, 413, and 262 g L™, respectively,
with the embryogenic biomass. This study illustrates that
the large-scale generation of secondary metabolites can be
accomplished using embryogenic suspension cultures and
embryo biomass produced by bioreactor cultures is utilized
by pharmaceutical, food, cosmetic, and other industries.

Conclusions and future perspectives

The pharmaceutical, food, and cosmetic industries cur-
rently use cell, adventitious root, and hairy root cultures
as in vitro production platforms for secondary metabolites.
Somatic embryonic development occurs in some plant spe-
cies as a result of in vitro cultivation. Somatic embryos
cultivated in vitro are capable of secondary metabolism,
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sucrose and 1.0 mg L™! 2,4-D, D embryogenic suspension in 20 L
capacity balloon-type bubble bioreactors containing MS medium
with 30 g L™! sucrose, E embryogenic suspension in a 500 L balloon-
type bubble bioreactor containing MS medium with 30 g L™! sucrose,
and F somatic embryo biomass harvested from 500 L bioreactors

biomass increase, and multiplication. To date, many plant
species have been used to establish embryogenic suspen-
sion cultures and different aspects of biomass and metabo-
lite accumulation have been studied. In bioreactor systems,
somatic embryos have also been raised to produce second-
ary metabolites. Other strategies that can be used with
embryogenic cultures include the selection of high-per-
forming embryogenic lines, culture optimization, permea-
bilization, and biotransformation. The use of elicitation
and scaled-up techniques can improve the acquisition of
secondary products. It is desirable to improve bioprocess
procedures to allow for the continual accumulation and
release of metabolites. Heterologous gene cloning is also
possible if somatic embryos are reliably produced. The
somatic embryogenic system may be a dependable system
for the production of bioactive substances, heterologous
proteins or enzymes, and valuable biomolecules using
various molecular, genomic, and proteomic approaches.
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