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Abstract

Background: Pheochromocytomas and paragangliomas (PPGL) exhibit an up to 20% rate of 

metastatic disease that cannot be reliably predicted. This study prospectively assessed whether 

the dopamine metabolite, methoxytyramine, might predict metastatic disease, whether predictions 

might be improved using machine learning (ML) models that incorporate other features and how 

ML-based predictions compare to predictions by specialists in the field.

Methods: Following prospective examination of the utility of methoxytyramine to predict 

metastatic disease in 267 patients with PPGL, a further retrospective dataset from 493 patients 

with PPGL was used to train and validate ML models according to selections of additional 

features. The best performing ML models were then externally validated using the prospective 

dataset. For comparison, 12 specialists provided predictions of metastatic disease using data from 

the training and external validation datasets.

Findings: Prospective predictions indicated that plasma methoxytyramine could identify 

metastatic disease at respective sensitivities and specificities of 52% and 85%. The best 

performing ML model was based on an ensemble tree classifier algorithm that utilized nine 

features: plasma methoxytyramine, metanephrine and normetanephrine, age, sex, previous 

history of PPGL, location and size of primary tumors, presence of multifocal disease. This 

model presented with an area under the receiver-operating characteristic curve of 0·942 

(CI:0·894-0·969) that was larger (P<0·0001) than that of the best performing specialist before 

(0·815, CI:0·778-0·853) and after provision of SDHB variant data (0·812, CI:0·781-0·854). 

Sensitivity for prediction of metastatic disease in the external validation cohort reached 83% at a 

specificity of 92%.

Interpretation: Although methoxytyramine provides some utility for prediction of metastatic 

PPGL, sensitivity is limited. Predictive value is considerably enhanced with ML models that 

incorporate the above mentioned features. Our final model provides a preoperative approach to 

predict metastases in patients with PPGL, and thereby guide individualized patient management 

and follow-up.
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Introduction

Pheochromocytomas and paragangliomas (PPGL) are neuroendocrine tumors with an up 

to 35% hereditary predisposition1 and approximately a 20% prevalence of metastatic 

disease.2,3 Unlike other tumors, there are no histopathological methods to identify metastatic 

disease and all PPGL must be considered to have variable potential to metastasize.4 

Currently only presence of metastases at sites where no chromaffin tissue should be 

expected (e.g., bones, lymph nodes) establishes a definitive diagnosis of metastatic 

disease.4,5 Therefore, long-term follow-up is recommended for all patients with PPGL.6

Earlier therapeutic intervention in patients with metastatic PPGL is expected to reduce 

morbidity and mortality.7 Identification of features to reliably predict metastatic potential 

of PPGL at initial tumor diagnosis is therefore crucial. The relation of tumoral dopamine 

production to metastatic disease in patients with PPGL is established.2,8,9 Use of 

methoxytyramine, the O-methylated metabolite of dopamine, as a predictor of metastases 

offers promise, but has only been evaluated in a single retrospective patient series.2 Young 

age,10,11 large tumor size,2,11,12 and extra-adrenal location of primary tumors2,12 represent 

other established clinical predictors of metastases. Tumors due to pathogenic variants of 

the succinate dehydrogenase subunit B (SDHB) gene and somatic genomic alterations such 

as ATRX, TERT or MAML3 translocations are also associated with higher metastatic 

potential.13,14 However, such information is rarely available preoperatively when it can be 

useful to establish metastatic risk.

Despite the association of the aforementioned features with the development of metastases, 

there is no robust method to reliably predict metastatic disease in patients with PPGL. Some 

effort has been made to combine different features in scoring systems to predict metastatic 

PPGL, but most involve histopathological parameters.15,16 These are difficult to standardize 

in clinical practice,17 and lack accuracy.18 An attempt to establish a predictive score using 

routinely available clinical features similarly failed expectations according to a low positive 

predictive value.19

Advances in computational power have led to the introduction of multidimensional 

digitalized approaches that could potentially support decision-making in healthcare. 

Machine learning (ML) is one such approach for interrogating multidimensional data and 

an area of artificial intelligence that utilizes computational algorithms for different tasks; 

this is without the need for the explicit programming of previously established mathematical 

relationships.20,21 In diagnostics, these tasks principally involve classification.22,23

Taking the above into consideration, the present study had three aims: 1. prospectively 

validate use of methoxytyramine as a preoperative predictor of metastases in patients with 

PPGL; 2. establish ML models that incorporate methoxytyramine with other features to 

Pamporaki et al. Page 3

Lancet Digit Health. Author manuscript; available in PMC 2024 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



predict metastatic PPGL preoperatively; 3. and compare the performance of the selected ML 

models with the predictions of 12 clinical care specialists with expertise in the management 

of patients with PPGL.

Methods

Patients

This cross-sectional cohort study included 788 patients with and without metastatic PPGL 

enrolled at seven international tertiary centers (Supplemental Methods) under clinical 

protocols approved by local Ethics Committees. Clinical information included sex, age at 

initial tumor diagnosis, presence of multifocal and metastatic disease, initial tumor location 

and size as well as plasma concentrations of free normetanephrine, metanephrine and 

methoxytyramine.

Metastatic disease was defined as the presence of metastases in tissues distant from the 

primary tumor, where chromaffin cells are normally absent.4 Metastases were identified by 

conventional and functional imaging or histopathological examination of resected lymph 

nodes with further details about this and genetic testing provided in the Supplement. 

Testing for germline pathogenic variants of VHL, RET, SDHx, MAX, and TMEM127 
was performed in 708 patients using Sanger sequencing and/or NGS, and multiplex ligation-

dependent probe amplification or custom array CGH for deletion detection.

Study design

Objective 1. Prospective use of plasma methoxytyramine to predict metastatic 
disease—The first objective of the study involved 267 patients with PPGL under the 

Prospective Monoamine-producing Tumor (PMT) trial (https://pmt-study.pressor.org) who 

presented with positive biochemical test results at initial screening. As detailed in the 

Supplemental Methods, one objective of the PMT-trial was to establish utility of plasma 

methoxytyramine to predict metastases. For this purpose, the investigator responsible for 

biochemical tests provided predictions of metastatic disease that were based primarily on 

measurements of plasma methoxytyramine, with additional consideration of the other two 

metabolites. These and other predictions, along with biochemical test results, were provided 

back to the responsible physicians at each participating center. As further detailed in the 

Supplemental Methods, predictions were restricted to patients with positive biochemical 

tests and were in the form of standardized comments that indicated strong, moderate, 

possible or low risk of metastases.

Objective 2. Generation of ML models to predict metastatic disease—For the 

second objective, we retrieved data from 493 patients with PPGL (training cohort) to 

generate and internally test various ML models using four different ML algorithms. The best 

candidate ML models were then externally validated using the dataset of 295 patients with 

PPGL who were enrolled in the PMT-trial (external validation cohort). These included the 

267 patients with positive test results and another 28 with negative test results among whom 

23 had head and neck paragangliomas (Supplemental results). After external validation, we 
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compared ML models using multiple metrics and selected the final top performing models 

(Figure 1).

As detailed in the Supplemental Methods, ML models were developed after data preparation 

and normalization using four supervised ML algorithms with all variables included and 

according to ten cross-validations in five folds. The supervised ML algorithms included 

Decision Tree Classifier (TC), Support Vector Machine (SVM), Naive Bayes (NB), and 

AdaBoost Ensemble Tree Classifiers (ENS). Chi-square feature analysis for classification 

was carried out in the training cohort to identify invalid features containing irrelevant or 

redundant information.

During data preparation we performed feature analysis in the training dataset twice. The first 

feature analysis included nine features: 1. plasma free methoxytyramine; 2. age at initial 

tumor diagnosis; 3. sex; 4. previous history of PPGL (yes/no); 5.primary tumor location; 6. 

primary tumor size; 7. presence of multifocal disease (yes/no); 8. plasma free metanephrine; 

and 9. plasma free normetanephrine. The second feature analysis included the same features, 

supplemented by presence of SDHB pathogenic variants (positive/negative), the genetic 

component with the strongest anticipated metastatic predictive potential.

After feature analysis, multiple rounds of training and internal testing of ML models 

were performed to identify the best candidate ML models according to areas under the 

receiver operating characteristic (ROC) curves (AUC), and with consideration of Matthews 

correlation coefficient (MCC) and balanced accuracy. In order to confirm reproducibility 

of our results, we then externally validated the best candidate ML models in a separate 

cohort of patients from the PMT-trial (external validation cohort). The best ML models 

of the external validation were again selected by comparing their predictive performance 

according to AUC, with consideration of MCC and balanced accuracy. ML was performed 

using MATLAB MathWorks R2020a. Further details on the generation of the ML models 

are provided in the Supplemental Methods.

Objective 3. Predictions of metastatic disease by clinical care specialists—
For the third objective, we invited 12 clinical care specialists with expertise in PPGL to 

provide predictions of metastatic disease for the training and external validation cohorts. 

Seven specialists reported experience of more than ten years, and five less than ten years. 

Specialists were requested to provide their own probabilities of metastatic disease using 

a classification score of four categories: low, possible, moderate and strong probability. 

Before the review process, specialists received detailed definitions for each of the four 

classification categories, including specific probability intervals for metastatic disease and 

narrative interpretations for further patient management (Supplementary Box 1).

Similar to the feature analysis and ML training, specialists were instructed to provide 

probabilities of metastatic disease twice. This included probabilities according to the same 

nine features described above for ML feature analysis. After an interval of four weeks, all 

specialists received a second dataset with the same features, supplemented by SDHB variant 

status (Supplemental Methods). Predictions of specialists were then compared with those of 

the top performing ML models (Figure 1).
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Role of the funding source

The funder had no role in study conception, design or conduct of the study. All authors had 

full access to the data in the study and were involved in data interpretation and writing of 

the report. The corresponding author had final responsibility for the decision to submit for 

publication.

Statistical analysis

Details about statistical methods are outlined in the supplemental methods section.

Results

Objective 1. Prospective use of plasma methoxytyramine to predict metastases

As outlined in Table 1, there were 295 patients with PPGL from the PMT-trial. Among 

these there were 267 patients with positive biochemical test results, in whom predictions of 

metastatic disease were possible according to the prospective study design (Supplemental 

Results). The majority of patients (79%) were correctly classified by specialist-based 

predictions. Specifically, predictions were correct for 186 patients without [specificity:85%, 

(186/219)] and 23 patients with metastases [sensitivity:52%, (23/48)] (Supplementary 

Table 1). Low sensitivity largely reflected patients with normal or mildly elevated 

plasma concentrations of methoxytyramine (Supplementary Figure 1A). Among 13 cases 

classified with a strong risk for metastases, 11 (85%) were correctly classified. The higher 

sensitivity in this particular category, reflected high (>678 pg/mL) plasma concentrations of 

methoxytyramine in all 11 cases.

Objective 2. Generation of ML models to predict metastases

Patient characteristics—As outlined in Supplementary Table 2, the 493 patients with 

PPGL in the training dataset showed some differences from the 295 patients in the PMT-

trial used for external validation. Nevertheless, in both datasets, patients with metastases 

were more often males and younger than those without metastases (Table 1). Patients with 

metastases presented more often with larger, extra-adrenal tumors than those without. There 

was also a higher prevalence of SDHB variants and recurrent disease in the former than the 

latter group. Finally, patients with metastases presented with lower metanephrine, but higher 

methoxytyramine concentrations than those without metastases. All above differences were 

highly significant (P<0·0001).

Training and testing of ML models in the learning phase—Feature and ML 

analyses were performed in the training cohort twice. The first analysis included nine 

clinical and biochemical features, whereas the second was supplemented with SDHB variant 

status (Supplementary Figure 2). Among the nine features in the first analysis, the top 

five that predicted metastases included previous history of PPGL, extra-adrenal primary 

tumor location, large primary tumor size, high plasma methoxytyramine and low plasma 

metanephrine concentrations (Supplementary Figure 2A). For the ten-feature analysis, 

the five most important features were previous history of PPGL, extra-adrenal primary 

tumor location, presence of SDHB variants, large primary tumor size and high plasma 

methoxytyramine concentrations (Supplementary Figure 2B).
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Classification performance of the ML models after external validation—Among 

the 380 initial ML models evaluated in the training cohort (Supplementary Table 3), there 

were 40 best performing ML models that were selected for external validation. Comparisons 

of the AUC, with additional considerations of MCC and balanced accuracy after external 

validation, revealed five top performing ML models, all involving ENS algorithms (Figure 

2A). All five models showed similar diagnostic performance (Supplementary Table 4). The 

best performing ENS model, which had an AUC of 0·942(CI:0·894-0·969), an MCC of 

0·851 and a balanced accuracy of 88%, did not utilize SDHB variant status as a feature 

(Table 2, Figure 2A). This was followed by an ENS model that utilized SDHB variant status 

and displayed an AUC of 0·940(CI:0·886-0·969), an MCC 0·804 and a balanced accuracy 

86%.

Three other algorithms (TC, SVM, NB) provided ML models with predictive performance 

that approached that of the ENS algorithm-derived models (Supplementary Tables 5-8). For 

the dataset that did not include SDHB variant status, the best TC model presented with 

an AUC of 0·889(CI:0·823-0·934), an MCC of 0·863 and a balanced accuracy of 89%. 

The best SVM model displayed an AUC of 0·929(CI:0·889-0·957), an MCC of 0·795 and 

a balanced accuracy of 84%. This was followed by the the NB model, with an AUC of 

0·839(CI:0·752-0·891), an MCC of 0·710, and a balanced accuracy of 80%. (Table 2).

For the dataset supplemented with SDHB variant status, the best TC model displayed an 

AUC of 0·893(CI:0·823-0·936), an MCC of 0·849 and a balanced accuracy of 85%. The 

best SVM model displayed an AUC of 0·924(CI:0·881-0·953), an MCC of 0·795 and a 

balanced accuracy of 86%. This was again followed by the NB model with an AUC of 

0·826(CI:0·751-0·878), an MCC of 0·672 and a balanced accuracy of 79%. (Table 2).

Objective 3. Predictions of metastatic disease by clinical care specialists

Diagnostic performance of clinical care specialists—Among the 12 specialists who 

provided predictions of metastatic risk, predictive performance varied widely according to 

the nine and ten-feature datasets without and with SDHB variant status (Table 3). The 

highest performance among specialists for the dataset without SDHB variant status was 

achieved by specialist 1M (AUC:0·815; CI:0·778-0·853), whereas the highest performance 

for the dataset supplemented with SDHB variant status by specialist 4M (AUC:0·812; 

CI:0·781-0·854).

The diagnostic performance of specialists did not differ among those with more than versus 

less than ten years experience (Table 3 & Supplementary Table 9). Specifically, for the nine-

feature dataset, the specialists with more than ten years experience achieved a mean AUC of 

0·708(CI:0·648-0·768), which was similar (P=0·7550) to the AUC of 0·712(CI:0·662-0·772) 

for those with less experience. Similarly, for the ten-feature dataset supplemented by 

the SDHB variant status, the specialists with more than ten years experience achieved a 

mean AUC of 0·758(CI:0·728-0·788), which again was similar (P=0·6390) to the AUC of 

0·755(CI:0·705-0·805) for those with less experience.

Paired comparisons revealed that only four specialists (4M, 6L, 11L, 12M) improved 

their performance after the provision of SDHB variant status (Table 3). Overall, neither 
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specialists with more (P=0·0630) nor less than ten years experience (P=0·1380) improved 

their performance after provision of SDHB variant status.

Comparison of performance between ML models and specialists—Among the 

12 specialists, none attained the diagnostic performance reached by the ENS model 

(Figure 2B). The average performance of specialists [AUC:0·710 (CI:0·655-0·765)] was less 

(P<0·0001) than the performance achieved by the ENS model [AUC:0·942 (CI:0·894-0·969)] 

(Figure 2B1). After provision of SDHB variant status, average performance of specialists 

[AUC:0·756 (CI:0·716-0·796)] also remained inferior (P<0·0001) to the performance of the 

ENS model (Figure 2B2 & Supplementary Table 9).

Discussion

This study introduces ML models to more accurately predict metastatic disease than 

previously possible. Importantly, these models allow for predictions at first diagnosis of 

PPGL by utilizing clinical features routinely and preoperatively available. More generally, 

our findings support emerging concepts that ML mathematical processes will gain traction 

in medicine and oncology for their potential to facilitate robust non-invasive diagnostic 

stratification and guide personalized patient management.

The initial prospective assessments of plasma methoxytyramine as a predictor of metastatic 

disease confirmed previous retrospective findings.2 However, the 52% of all patients 

correctly predicted by methoxtyramine with metastatic PPGL is only a little better than 

utility of SDHB pathogenic variants for the same purpose, according to a prevalence of 

up to 41% among patients with metastatic PPGL.13 This was supported in the present 

study by an overall 40% prevalence of SDHB variants. Nevertheless, among patients 

with highly increased levels of methoxytyramine, the post-test probability of metastatic 

disease was 85%. Overall, however, and similar to SDHB variant status, measurements of 

methoxytyramine alone cannot be used to accurately predict or exclude metastases.

Apart from methoxytyramine and SDHB pathogenic variants, several other features have 

been indicated as predictors of metastases among patients with PPGL. Our second objective 

was to combine routinely available clinical and biochemical features with measurements 

of methoxytyramine in order to develop a ML tool to predict metastases preoperatively. 

Large tumor size, extra-adrenal tumor location, previous history of PPGL, high plasma 

methoxytyramine and low metanephrine concentrations were consistently identified to 

predict metastases according to the feature analysis. Those risk factors likely reflect 

a more undifferentiated tumor phenotype associated with pseudohypoxia signaling and 

hypermethylation pathways.24,25 Those pathways may drive the mesenchymal transition step 

in metastatic progression.26,27 Findings that high plasma methoxytyramine, but low plasma 

metanephrine predict metastases and that both metabolites are among selected features 

emphasizes the importance of accurate and reliable biochemical tests carried out according 

to appropriate pre- and analytical procedures.

External validation of the best candidate ML models after internal testing revealed five 

best performing ML models with similar diagnostic performance and a mean AUC of 
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0·942(CI:0·891-0·968). Among those models, the ENS model provided the best MMC and 

balanced accuracy metrics without requirement for SDHB variant data, which is often not 

available at initial diagnosis. The finding that SDHB test results were not required for 

prediction of metastases, is explained by the key features of large tumor size, extra-adrenal 

location and noradrenergic/dopaminergic tumor phenotype shared between patients with 

SDHB-mutated metastatic PPGL and the more than twice larger group of all patients with 

metastatic PPGL.10,12

Apart from establishing ML models that can be easily applied preoperatively using readily 

available clinical information, we also validated the models in a separate cohort of patients 

to establish reproducibility. Furthermore, after external validation we also compared the 

best performing ML models with interpretations by clinical care specialists with expertise 

in PPGL. These comparisons established that the finally selected ENS model provided 

significantly improved performance over interpretations of all specialists.

Of course, one could argue that in real life clinicians incorporate more clinical information 

into decision making, and that the determined performance of specialists is rather 

artificial. In an attempt to partially eliminate this potential confounder, we investigated 

whether provision of SDHB variant status improved the ability of specialists to predict 

metastasis. Only four specialists showed improved performance; overall performance 

remained significantly inferior to that of the selected ENS ML model, which did not require 

SDHB variant status as a feature. Another argument to be considered is that clinicians focus 

more on “management decisions” rather than “diagnostic classifications”. In this context, we 

incorporated the “management decisions” in the study design and provided all specialists 

before the review process with narrative interpretations for further patient management for 

each of the four classification categories.

With the aforementioned considerations in mind, our data show that the selected ML models 

provide a suitable tool for prediction of metastases in patients with PPGL. Furthermore, this 

should be of benefit to clinicians at different levels of training and experience. The models 

may be implemented in digital systems or smart phone applications and used together with 

other routinely available data to facilitate individualized diagnostic stratification and patient 

management. Apart from identifying patients with low probabilities of metastases, who may 

then be excluded from intensive, long-term and costly follow-up programs, our ML models 

provide justification for preoperative functional imaging and extensive follow-up in patients 

with high probability of metastases. In turn, this provides opportunities of earlier disease 

detection and interventional strategies for improved patient outcomes.

Despite growing acceptance of the superior predictive power of ML compared to 

conventional statistical scores for oncological staging,28 many have considered ML a 

“black box” where connections between features and disease probabilities are invisible 

to clinicians.29 These concerns are being addressed by interfaces that integrate data with 

clinical decision support systems to provide automated patient-specific interpretations and 

narrative reports to assist clinicians towards a decision.30 Thus, ML-integrated decision 

support systems are expected to facilitate further the smooth and trustworthy integration of 

ML technologies into the clinical setting.
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Our study has limitations and strengths as enlarged upon in the Supplement. The shorter 

duration of follow-up among patients without compared to those with metastases in 

the prospective PMT cohort may have impacted the importance of methoxytyramine to 

predict metastases by underestimating diagnostic sensitivity. We also did not develop ML 

models for patients with head and neck tumors separately from those with abdominal 

paragangliomas known to have different characteristics. Finally, the present data do not 

establish whether our ML models improve decision making and outcomes for patients, 

which requires a prospective clinical trial.

Another apparent study limitation, enlarged upon in the Supplemental Discussion, is the 

omission from the ML analyses of histopathological, radiological and somatic variant 

features that could have strengthened predictive value of ML models. Heterogeneity in 

radiological procedures and histopathological interpretations renders retrospective use of 

such features problematic. It should also be appreciated that the higher the complexity of the 

ML models, the lower their applicability in routine clinical practice health care setttings.

Despite the aforementioned limitations, our study is the first to develop accurate ML models 

for the prediction of metastases in patients with PPGL using routinely available data, and 

without need for genetic, imaging or histopathological data. High performance of our ML 

models was facilitated by the availability of complete and comprehensive data in the training 

and external validation datasets and the long duration of follow-up in the training cohort that 

minimized possibilities of misclassifying patients with metastatic risk among those without 

evidence of metastases. Importantly, the large number of patients included in the study and 

its international multicentric design, supports generalizability of our ML models. Finally, the 

reproducibility of the selected ML models was secured not only through external validation 

by a different patient cohort, but also through comparisons with the performance of clinical 

care specialists with expertise in the care of patients with PPGL.

Conclusions

In conclusion, our study demonstrates that although plasma methoxytyramine provides some 

utility to predict metastases among patients with PPGL, sensitivity is limited. However, 

incorporation of plasma methoxytyramine in ML models along with other clinical features 

such as primary tumor location and size, provides a highly accurate, non-invasive approach 

to predict metastases in patients with PPGL, and thereby guide individualized patient 

management and follow-up strategies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Research in Context

Evidence before this study

We searched PubMed on June 10, 2022 using the search (metastatic[Title] OR 

malignant[Title]) AND (pheochromocytoma[Title] OR paraganglioma[Title]) AND 

(predictor OR predict OR diagnose OR diagnosis). We also searched abstracts of the 

American Society of Clinical Oncology Annual Meeting, European Society for Medical 

Oncology Congress and American Association for Cancer Research Annual Meeting, 

European Society of Endocrinology Annual Meeting, Ensat International Adrenal Cancer 

Symposium, within the past 3 years using the same search terms. We identified several 

studies on predictors of metastatic disease among patients with pheochromocytoma/

paraganglioma (PPGL). In particular, retrospective observational studies have established 

that young age, large tumor size, extra-adrenal tumor location, presence of specific 

pathogenic germline (e.g. SDHB) or somatic variants (ATRX, TERT, MAML3), as 

well as specific long noncoding RNAs are associated with higher risk of metastatic 

disease among patients with PPGL. Nevertheless, none of the aforementioned features, 

was robust enough alone to predict metastatic disease. We also identified five studies 

that focused on combining features in scoring systems. Histopathological features were 

included in most of these scores; however, these lack reproducibility and accuracy. 

Similarly, a scoring system derived purely from clinical data showed inappropriately 

low positive predictive value. Machine learning (ML) is a new digital approach that 

could potentially support decision making in health care. We identified studies that 

established ML models to differentiate patients with PPGL from patients with other 

forms of hypertension, utilizing mainly metabolomics, or in the field of radiomics for 

the differentiation of incidental adrenal masses. However, no studies were identified that 

introduced ML models to predict metastatic PPGL.

Added value of this study

This clinician-designed and implemented study introduces robust noninvasive ML 

models to predict metastatic disease in patients with PPGL. These models utilize only 

routinely available features preoperatively, and can be readily applied and adapted 

by clinicians not only for PPGL, but also for other cancers. High performance and 

reproducibility of the selected ML models was secured by both external validation 

using a different patient cohort and also through comparisons with interpretations by 

an international group of clinical care specialists with expertise in the management of 

patients with PPGL. The latter established that the selected Ensemble Tree Classifier ML 

model provided significantly superior performance over interpretations of all specialists 

and could reliably predict metastatic disease in most patients with PPGL.

Implications of all the available evidence

We expect that clinicians will benefit from the assistance of the selected ML models, 

as they provide suitable tool for prediction of metastatic PPGL, and can be easily 

implemented in digital health care systems. Overall, our findings support emerging 
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concepts that ML will gain traction in oncology for its potential to facilitate robust 

diagnostic stratification and guide personalized patient management.
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Figure 1: 
Workflow for the data analysis
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Figure 2: 
A. Predictive performance of the top five ML models after external validation according 

to receiver operating characteristic (ROC) curves. Areas under ROC curves (AUC) for 

ROC curves are shown with 95% confidence intervals (dotted curves). All five ML 

models presented with similar diagnostic performance in terms of AUC. The final selected 

ML model was a model (red) that did not utilize SDHB pathogenic variant status and 

presented with high MCC and balanced accuracy metrics. B. Comparison of the diagnostic 
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performance of the selected ENS model with that of the twelve clinical care specialists 

according to their interpretations of likely presence or absence of metastatic disease. The 

classification performance of the ENS model, which was established without requirement 

of the SDHB pathogenic variant status, was significantly better than the performance of 

all specialists, both before (B1) and after provision of information about SDHB pathogenic 

variant status (B2).
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Table 1.

Characteristics of patients with PPGL according to presence versus absence of metastatic disease for the 

training and external validation (PMT-trial) cohorts.

Training cohort External validation cohort

Without
metastases

With
Metastases

P Value Without
metastases

With
metastases

P Value

Number 327 166 238 57

Sex (males) 48% (156/327) 57% (95/166) 0·0450 39% (93/238) 58% (33/57) 0·0100

Age (years) # 39·6 (37·9-41·3) 31·8 (31.9-35.4) <0·0001 44·7 (43·2-46·2) 40·6 (39.2-42.1) 0·0250

Tumor size (cm)* 2·7 (2·4-2·9) 4·4 (4.3-4.5) <0·0001 2·8 (2·6-2·9) 5·4 (5.3-5.5) <0.0001

Location (extra-adrenal) 17% (55/327) 71% (118/166) <0·0001 22% (53/238) 58% (33/57) <0·0001

Multifocal 21% (67/327) 20% (33/166) 0·0870 17% (41/238) 23% (13/57) 0·3180

Presence ofSDHB mutation € 6% (16/267) 50% (74/149) <0·0001 3% (7/236) 27% (15/56) <0·0001

Previous history of PPGL $ 10% (31/327) 70% (116/166) <0·0001 14% (34/238) 70% (40/57) <0·0001

Biochemistry (pg/mL)

Normetanephrine 598·3 (594-602) 832·9 (827-838) 0·0260 549·5 (523.5-531) 526·1 (521-531) 0·8130

Metanephrine 144·8 (139-150) 42·1 (38-45) <0·0001 124·2 (118-129) 52·5 (48-56) <0·001

Methoxytyramine 13·6 (10-16) 46·2 (44-47) <0·0001 15·1 (12-17) 49·5 (40-58) <0·0001

Follow-up (months) 82·8 (79-85) 95·6 (92-98) 0·1430 49·3 (46-51) 99·7 (96-103) <0·0001

Continuous parameters are shown as geometric means with confidence intervals, #: age at initial tumor diagnosis; *: initial tumor size; €: for 
60 patients without and for 17 with metastases in the “training” cohort and for two patients without and one with metastases in the “external 

validation” cohort, genetic testing was not available; $: local recurrence and/or new tumor
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Table 2:

Classification performance of the top performing ML models established after external validation for each of 

the four ML algorithms utilizing nine and ten features.

Data set with nine features (without SDHB mutation status)

Algorithms TC SVM NB ENS

AUC & CI 0·889 (0·823-0.934) 0·929 (0·889-0·957) 0·839 (0·752-0·891) 0·942 (0·894-0·969)

MCC 0·863 (0·808-0·893) 0.795 (0·735-0·840) 0·710 (0·651-0·771) 0·851 (0·801-0·898)

F1-score 0·774 (0·699-0·863) 0·661 (0·549-0·770) 0·554 (0·417-0·610) 0·755 (0·667-0·833)

Sensitivity 0·854 (0·725-0·939) 0·813 (0·687-0·909) 0·854 (0·757-0·951) 0·833 (0·707-0·929)

Specificity 0·927 (0·894-0·957) 0·866 (0·831-0·914) 0·745 (0·690-0·808) 0·922 (0·893-0·955)

Precision 0·707 (0·599-0·841) 0·557 (0·465-0·691) 0·410 (0·308-0·506) 0·690 (0·568-0·834)

Accuracy 0·914 (0·879-0·939) 0·857 (0·812-0·889) 0·764 (0·723-0·805) 0·907 (0·861-0·932)

Balanced Accuracy 0·890 (0·822-0·933) 0·839 (0·770-0·888) 0·799 (0·758-0·840) 0·878 (0·808-0·922)

Data set with ten features (with SDHB mutation status)*

AUC & CI 0·893 (0·823-0·936) 0·924 (0·881-0·953) 0.826 (0.751-0.878) 0.940 (0.886-0.969)

MCC 0·849 (0·782-0·891) 0·795 (0·761-0·841) 0·672 (0·617-0·719) 0.804 (0·741-0·849)

F1-score 0·750 (0·635-0·826) 0.651 (0·533-0·726) 0.559 (0·423-0·695) 0·672 (0·571-0·780)

Sensitivity # 0·750 (0·596-0·841) 0·896 (0·783-0·962) 0·791 (0·636-0·946) 0·854 (0·777-0·939)

Specificity 0·948 (0·908-0·974) 0·821 (0·771-0·869) 0·781 (0·726-0·836) 0·859 (0·801-0·900)

Precision 0·750 (0·578-0·834) 0·512 (0·408-0·602) 0·413 (0·293-0·546) 0·554 (0·454-0·674)

Accuracy 0·914 (0·877-0·942) 0·834 (0·785-0·866) 0·783 (0·749-0·832) 0·856 (0·800-0·897)

Balanced Accuracy 0·849 (0·793-0·910) 0·858 (0·808-0·908) 0·786 (0·752-0·820) 0·855 (0.789-0·907)

TC: Decision Tree Classifier, SVM: Support Vector Machine Classifier, NB: Naive Bayes Classifier, ENS: Ensemble Tree Classifiers, AUC: area 
under the Roc Curve; CI: 95% confidence intervals; MCC: Matthew`s correlation coefficient; #: sensitivity=recall rates; *Information regarding the 
presence or not of SDHB mutation was included as an extra feature
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Table 3:

Performance of twelve participants for the prediction of metastatic disease in patients with PPGL, before vs 
after provision of the SDHB mutation status

AUCs (CI) Paired
comparisons

Dataset
without SDHB status

Dataset
with SDHB status

Selected ENS model 0·942 (0·894-0·969) 0·940 (0·885-0·968) -

Participants

1M 0·815 (0·778-0·853) 0·761 (0·723-0·799) 0·1020

2L 0·764 (0·723-0·805) 0·787 (0·747-0·828) 0·2350

3L 0·752 (0·710-0·794) 0·766 (0·723-0·810) 0·1090

4M 0·735 (0·689-0·781) 0·812 (0·781-0·854) 0·0001 (↑)

5M 0·731 (0·687-0·776) 0·793 (0·749-0·836) 0·1570

6L 0·717 (0·670-0·764) 0·794 (0·750-0·838) 0·0001 (↑)

7M 0·717 (0·670-0·763) 0·758 (0·711-0·805) 0·1420

8L 0·685 (0·639-0·731) 0·667 (0·617-0·717) 0·1980

9M 0·680 (0·642-0·719) 0·725 (0·685-0·764) 0·1800

10M 0·651 (0·609-0·694) 0·733 (0·684-0·782) 0·1720

11L 0·644 (0·601-0·687) 0·762 (0·720-0·802) 0·0001 (↑)

12M 0·630 (0·582-0·677) 0·730 (0·684-0·776) 0·0001 (↑)

ENS: Ensemble Tree Classifier; M: clinical care specialists with experience on the field of PPGL more than ten years; L: clinical care specialists 
with experience on the field of PPGL between five to ten years; AUC: area under the Roc Curve; CI: 95% confidence intervals
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