Skip to main content
. Author manuscript; available in PMC: 2024 Sep 1.
Published in final edited form as: Lancet Digit Health. 2023 Jul 18;5(9):e551–e559. doi: 10.1016/S2589-7500(23)00094-8

Table 2:

Classification performance of the top performing ML models established after external validation for each of the four ML algorithms utilizing nine and ten features.

Data set with nine features (without SDHB mutation status)
Algorithms TC SVM NB ENS
AUC & CI 0·889 (0·823-0.934) 0·929 (0·889-0·957) 0·839 (0·752-0·891) 0·942 (0·894-0·969)
MCC 0·863 (0·808-0·893) 0.795 (0·735-0·840) 0·710 (0·651-0·771) 0·851 (0·801-0·898)
F1-score 0·774 (0·699-0·863) 0·661 (0·549-0·770) 0·554 (0·417-0·610) 0·755 (0·667-0·833)
Sensitivity 0·854 (0·725-0·939) 0·813 (0·687-0·909) 0·854 (0·757-0·951) 0·833 (0·707-0·929)
Specificity 0·927 (0·894-0·957) 0·866 (0·831-0·914) 0·745 (0·690-0·808) 0·922 (0·893-0·955)
Precision 0·707 (0·599-0·841) 0·557 (0·465-0·691) 0·410 (0·308-0·506) 0·690 (0·568-0·834)
Accuracy 0·914 (0·879-0·939) 0·857 (0·812-0·889) 0·764 (0·723-0·805) 0·907 (0·861-0·932)
Balanced Accuracy 0·890 (0·822-0·933) 0·839 (0·770-0·888) 0·799 (0·758-0·840) 0·878 (0·808-0·922)
Data set with ten features (with SDHB mutation status)*
AUC & CI 0·893 (0·823-0·936) 0·924 (0·881-0·953) 0.826 (0.751-0.878) 0.940 (0.886-0.969)
MCC 0·849 (0·782-0·891) 0·795 (0·761-0·841) 0·672 (0·617-0·719) 0.804 (0·741-0·849)
F1-score 0·750 (0·635-0·826) 0.651 (0·533-0·726) 0.559 (0·423-0·695) 0·672 (0·571-0·780)
Sensitivity # 0·750 (0·596-0·841) 0·896 (0·783-0·962) 0·791 (0·636-0·946) 0·854 (0·777-0·939)
Specificity 0·948 (0·908-0·974) 0·821 (0·771-0·869) 0·781 (0·726-0·836) 0·859 (0·801-0·900)
Precision 0·750 (0·578-0·834) 0·512 (0·408-0·602) 0·413 (0·293-0·546) 0·554 (0·454-0·674)
Accuracy 0·914 (0·877-0·942) 0·834 (0·785-0·866) 0·783 (0·749-0·832) 0·856 (0·800-0·897)
Balanced Accuracy 0·849 (0·793-0·910) 0·858 (0·808-0·908) 0·786 (0·752-0·820) 0·855 (0.789-0·907)

TC: Decision Tree Classifier, SVM: Support Vector Machine Classifier, NB: Naive Bayes Classifier, ENS: Ensemble Tree Classifiers, AUC: area under the Roc Curve; CI: 95% confidence intervals; MCC: Matthew`s correlation coefficient; #: sensitivity=recall rates; *Information regarding the presence or not of SDHB mutation was included as an extra feature