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Identification of biomarkers, pathways, and therapeutic
targets for EGFR–TKI resistance in NSCLC
Leilei Zhu1 , Shanshan Gao1, Xianya Zhao1, Ying Wang2

This study aimed to map the hub genes and potential pathways
that might be involved in the molecular pathogenesis of EGFR–TKI
resistance in NSCLC. We performed bioinformatics analysis to
identify differentially expressed genes, their function, gene in-
teractions, and pathway analysis between EGFR–TKI-sensitive
and EGFR–TKI-resistant patient-derived xenotransplantation
samples based on Gene Expression Omnibus database. Survival
analysis was performed via the GEPIA database (GEO). The re-
lationship between the key gene ITGAM and the therapeutic
candidates was retrieved from DGIdb. A total of 1,302 differen-
tially expressed genes were identified based on GEO. The PPI
network highlighted 10 potential hub genes. Only ITGAM was
linked to poor DSF in NSCLC patients. A total of 10 drugs were
predicted to be potential therapeutics for NSCLC with EGFR–TKI
resistance. This study indicates the hub genes related to EGFR–
TKI resistance in NSCLC through bioinformatics technologies
which can improve the understanding of the mechanisms of
EGFR–TKI resistance and provide novel insights into therapeutics.
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Introduction

Lung cancer is the second most commonly diagnosed cancer
worldwide and the leading cause of cancer death. Non-small-cell
lung cancer (NSCLC) accounts for 85% of all lung cancers (1, 2).
Targeted drugs represented by epidermal growth factor receptor
(EGFR)–tyrosine kinase inhibitors (TKIs) have brought revolutionary
progress in the treatment of advanced NSCLC (3, 4). With the ex-
tensive clinical application of EGFR–TKIs, acquired resistance has
become a challenge faced by clinicians (5, 6). Despite extensive
endeavors to fathom the molecular underpinnings of EGFR–TKI-
acquired resistance, a comprehensive understanding of the un-
derlying molecular mechanisms and pivotal genes remains elusive
(7, 8).

In tandem with the rapid evolution of gene sequencing and
bioinformatics analysis technologies, researchers now wield the

capacity to access high-throughput microarray data and next-
generation sequencing functional genomics data through inter-
national repositories such as the Gene Expression Omnibus (GEO)
and The Cancer Genome Atlas (TCGA) (9, 10, 11). These online re-
positories afford simultaneous access to expression data for a
multitude of genes, which can be meticulously analyzed to un-
earth prospective biomarkers and therapeutic targets implicated in
EGFR–TKI drug resistance in NSCLC. Nevertheless, the identification of
thesemarkers predominantly hinges on the comparison of normal and
cancerous tissue samples, with an added emphasis on obtaining drug-
resistant samples—a formidable challenge in itself. Notably, most of
the sequencing studies have thus far concentrated on artificially in-
duced drug-resistant cell lines, which have inherent limitations in
dissecting the key genes underpinning drug resistance in tumors.
Patient-derived xenotransplantation (PDX) model—a potent tool in
the realm of cancer biology research, distinguished by its aptitude
for preserving the salient attributes of patient tumors. Consequently,
it offers superior suitability for experimental inquiries into the mo-
lecular mechanics of tumor progression and drug resistance (12, 13).

In this study, we embarked on the pursuit of identifying dif-
ferentially expressed genes (DEGs) between EGFR–TKI-sensitive
and acquired drug-resistant NSCLC xenograft tumor samples. This
endeavor was realized through a meticulous mining of the gene
expression microarray datasets GSE64472 and GSE130160, sub-
sequently subjecting the DEGs to Gene Ontology (GO) annotation
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis. This analytical journey was facilitated by the Database for
Annotation, Visualization, and Integrated Discovery (DAVID) online
tool. Furthermore, we crafted a protein–protein interaction (PPI)
network using the Search Tool for the Retrieval of Interacting Genes
(STRING) database, followed by in-depth analysis using Cytoscape
software, culminating in the identification of hub genes. Com-
plementing these efforts, we undertook a survival analysis of pa-
tients displaying aberrant hub gene expression, drawing upon
data gleaned from TCGA database. The insights gleaned from this
comprehensive endeavor are poised to illuminate the roles
played by these genes in the genesis of EGFR–TKI resistance. This
study thus represents a pivotal contribution to the understanding
of the molecular mechanisms underpinning EGFR–TKI resistance,
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whereas also unveiling novel gene targets that hold immense
promise for future investigations.

Results

Identification of DEGs

To identify meaningful biomarkers distinguishing the EGFR–TKI-
sensitive and -resistant groups, we used the R limma package and
applied the criteria of P < 0.05 and |logFC| > 2. This analysis revealed
a total of 1,302 DEGs when comparing the EGFR–TKI-resistant and
-sensitive groups using the GSE64472 and GSE130160 datasets. Spe-
cifically, GSE64472 yielded 775 DEGs in the resistant group, com-
prising 339 up-regulated and 436 down-regulated DEGs. In contrast,
GSE130160 produced 529 DEGs, with 479 up-regulated and 52 down-
regulated DEGs in the resistant group. The volcano plot depicting DEGs
is presented in Fig 1A and B, whereas Fig 1C and D illustrate the
expression heatmap of the top 50 DEGs, sorted by Padj value.

GO and KEGG enrichment analyses of DEGs

To elucidate the functional roles of these DEGs in EGFR–TKI re-
sistance progression in NSCLC, we conducted functional predic-
tions. This entailed GO analysis encompassing cellular components
(CC), molecular function (MF), and biological processes (BP), and
KEGG analysis, both using the DAVID database. A false discovery
rate–corrected P-value < 0.05 and an enrichment score > 1.5 were
adopted as the significance thresholds for GO functional enrichment
analysis, resulting in the mapping of 1,302 DEGs into 48 significantly
enriched functional clusters. Among these, 11 GO terms were signifi-
cantly enriched in cellular components, including “plasmamembrane,”

“extracellular region,” “extracellular space,” “extracellular exosome,”
and “proteinaceous extracellular matrix” (Fig 2A). Molecular function
analysis (Fig 2B) revealed enrichment in 8 GO terms, such as “integrin
binding,” “cytokine activity,” “growth factor activity,” “protein homo-
dimerization activity,” and others. Moreover, biological processes (Fig
2C) yielded a total of 29 enriched terms, predominantly encompassing
“immune response,” “cell adhesion,” “extracellular matrix organiza-
tion,” and more. KEGG analysis integrated 1,303 DEGs into 16 enriched
functional clusters, including pathways such as “cytokine–cytokine
receptor interaction,” “melanogenesis,” “circadian entrainment,” “basal
cell carcinoma,” and “dopaminergic synapse” (Fig 2D).

Integration of the PPI network and module analysis

We constructed and visualized the PPI network of the 1,302 DEGs
using the STRING database. Subsequently, we pruned isolated
nodes and loosely connected gene nodes, resulting in a complex
multicenter interaction network with 1,402 nodes and 4,761 edges
(Fig 3A). The average node degree was 7.92, and the average local
clustering coefficient was 0.286. Among the 1,402 nodes, the top 20
DEGs with the highest node degrees were screened (Fig 3B and C).
Expression patterns of the top 20 genes across GSE64472 and
GSE130160 samples are illustrated in Fig 3D and E. The top 10 DEGs
identified were IL6, IL10, CXCL9, ITGAM, CCL5, CD4, IDO1, HAVCR2,
TLR9, and CCR7. Detailed information regarding these hub genes,
including their full names and functions, can be found in Table 1.

Disease-free survival (DFS) analyses of hub genes in NSCLC

In an effort to identify genes among the hub genes that could
potentially contribute to EGFR–TKI resistance and serve as pre-
dictors of cancer progression, we conducted DFS analysis for NSCLC

Figure 1. Identification of differentially expressed
genes.
(A, B) Volcano plot of DEGs in the GSE64472 and
GSE130160 datasets. The red dots represent up-
regulated genes, the green dots represent down-
regulated genes, and the black dots represent
genes with no significant difference in expression.
(C, D) Heatmap of the top 50 DEGs in the GSE64472
and GSE130160 datasets. Red represents up-
regulated genes, and blue represents down-
regulated genes.
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patients using the Kaplan–Meier plotter database. Among these
genes, elevated ITGAM expression was found to be associated with
improved NSCLC patient DFS (HR = 0.73, 95% CI: 1.26–1.81, P = 0.045)
(Fig 4). These results underscore the central role of ITGAM in the
context of EGFR–TKI resistance.

Drug interaction prediction for EGFR–TKI resistance

The relationship between the EGFR–TKI resistance–specific gene
ITGAM and the corresponding potential therapeutic candidates
was retrieved from DGIdb. A total of 207 drugs were predicted to

Figure 2. Gene Ontology and KEGG pathway
analysis of DEGs in NSCLC.
(A) GO covering the domains of molecular
functions (MF). (B) GO covering the domains of
biological processes (BP). (C) GO covering the
domains of cellular components (CC). (D) KEGG
pathways that were the most significantly up-
regulated pathways during SCLC. The bubbles
represent the enrichment pathway with P-values
< 0.05. The bubble size represents the number of
enriched target genes in the process. The
bubble color represents −log10 (P-value); from
green to red, the P-value decreases. The Y-axis
represents the enrichment target of GO or
pathway. The X-axis is the RichFactor: its counts
divided by the third column.
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interact with ITGAM, with some of the highest frequency drugs
including liarozole, rovelizumab, dimethyl sulfoxide, clarithromycin,
fentanyl, phenylephrine, theophylline, morphine, hydrocortisone,
and atorvastatin (Table 2).

Discussion

The mechanisms underlying EGFR–TKI resistance in NSCLC can be
broadly categorized into acquired resistance following EGFR–TKI
treatment and primary resistance characterized by cancer cells
relying on alternative oncogenes like KRAS. The most prevalent
mechanism of acquired resistance involves the emergence of an
EGFR T790M gatekeeper mutation, occurring in a substantial per-
centage of cases (4~50%) (14, 15, 16, 17). Other reported mechanisms
encompass MET amplification (18), hepatocyte growth factor ex-
pression (19), and epithelial–mesenchymal transition (20). Thus, it is
imperative to decipher themolecular mechanisms driving EGFR–TKI
resistance in NSCLC to identify novel therapeutic targets for future
interventions.

Cancer cell lines have long been indispensable for drug
screening; however, they have been cultured for numerous gen-
erations and deviate significantly from primary tumor tissues in
terms of genetic makeup and behavior (21). Subcutaneous or
orthotopic cell-derived tumor xenograft models (CDX models) in-
adequately replicate the genetic diversity observed in human tu-
mors, which has resulted in low clinical trial response rates despite
effective outcomes in traditional animal models (CDX models) (22).
Patient-derived xenograft models (PDX models) have emerged as a
promising alternative in preclinical cancer research over recent
years. These models have demonstrated the preservation of ge-
netic characteristics compared with primary human tumor tissue
(12, 13, 23, 24). For instance, PDXmodels have successfully correlated
gemcitabine responses in pancreatic ductal adenocarcinoma with
clinical patient outcomes (25), and the efficacy of sorafenib in
hepatocellular carcinoma PDX models closely mirrors patient re-
sponses (26, 27). Thus, PDX models offer a valuable platform for

identifying molecular biomarkers associated with drug sensitivity
or resistance and assessing the efficacy of novel drugs.

Microarray technology is a cornerstone in exploring gene ex-
pression patterns in complex disorders (11). However, prior bio-
informatics studies often focused on results derived from cell
line–based or CDXmodels. In our study, we overcame this limitation
by identifying two microarray datasets associated with acquired
resistance in vivo. These datasets (GSE64472 and GSE130160)
contained EGFR–TKI-sensitive PDXs initially responsive to VEGFR
inhibition but subsequently developing resistance following pro-
longed vandetanib and osimertinib treatment. Using these data-
sets, we conducted comprehensive bioinformatic analyses comparing
gene expression in EGFR–TKI-sensitive and -resistant PDX samples.
Our objective was to identify and functionally characterize hub
genes involved in EGFR–TKI resistance, providing insights into the
molecular mechanisms driving drug resistance and offering novel
gene targets for future studies.

In this study, we performed an intersection analysis of the
two datasets to enhance the reliability of our identified DEGs.
Ultimately, 1,203 DEGs were uncovered. GO functional analysis
revealed their enrichment in critical categories, including “plasma
membrane,” “extracellular region,” “integrin binding,” “cytokine ac-
tivity,” “growth factor activity,” “protein homodimerization activity,”
“platelet-derived growth factor binding,” “immune response,” “cell
adhesion,” and “extracellular matrix organization.” Notably, pre-
vious studies have highlighted the up-regulation of integrin β3
post-EGFR–TKI treatment, underscoring its role in EGFR–TKI resis-
tance (28, 29, 30, 31). Furthermore, KEGG pathway analysis dem-
onstrated the involvement of these DEGs in pivotal pathways like
“cytokine–cytokine receptor interaction,” “melanogenesis,” and
“basal cell carcinoma.” Intriguingly, cytokine–cytokine receptor
interactions have been identified as primary drivers of EGFR–TKI
resistance in NSCLC (32). The frequent observation of the loss of
microphthalmia-associated transcription factor in acquired resis-
tance, leading to a mesenchymal-like invasive or neural crest stem
cell phenotype, underscores the importance of differentiation into
basal cells in drug-induced resistance (33, 34).

Figure 3. PPI analysis of DEGs based on
Cytoscape.
(A) Visualized PPI analysis of DEGs. (B) Top 20
genes with the highest MCC scores in DEGs.
(C) Top 10 genes with the highest MCC
scores in DEGs; a darker color represents
higher MCC scores. (D) Heatmap of the top 20
DEGs in GSE64472. (E) Heatmap of the top 20
DEGs in GSE130160. Red represents up-
regulated genes, and blue represents down-
regulated genes.
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Through the construction of a PPI network, we identified 10
candidate hub genes (IL6, IL10, CXCL9, ITGAM, CCL5, CD4, IDO1,
HAVCR2, TLR9, and CCR7) within the DEGs of our study. IL-10, an
immunoregulatory component, has been implicated in promoting
tumor malignancy by influencing T-cell apoptosis and tumor cell
survival (35). Persistently activated IL-6/STAT3 signaling has been
linked to acquired EGFR–TKI resistance in NSCLC treatment (36).
CXCL9, an inflammatory chemokine, has shown inhibitory effects on
NSCLC tumor growth and metastasis by reducing tumor-associated
angiogenesis (37). In our study, CXCL9 exhibited higher expression in
EGFR–TKI-sensitive samples, consistent with its role in inhibiting
tumor-associated angiogenesis and contributing to EGFR–TKI re-
sistance. IDO1, which is overexpressed in NSCLC, is associated with
higher pathological stages and lymph node metastasis, suggesting
its role in immune resistance and tumor progression (38). CCL5,
known for its involvement in cancer cell migration and metastasis

(39), was also identified among the hub genes. Survival analysis
revealed that only ITGAM was significantly associated with poor
NSCLC patient prognosis, with elevated ITGAM expression corre-
lating with poorer DFS. ITGAM, or CD11b, is involved in regulating
macrophage polarization, proinflammatory macrophage transcrip-
tion, and immune responses (40, 41, 42). Recent findings indicate that
ITGAM modulates angiogenesis through cytokine expression con-
trol in murine and human cancer models (43, 44). These results
suggest that ITGAM may directly or indirectly regulate EGFR–TKI
resistance and could serve as a diagnostic biomarker.

In addition, we predicted drugs that could regulate the EGFR–TKI
resistance-specific gene ITGAM in NSCLC patients. Among the 10
predicted drugs for ITGAM, some have demonstrated efficacy in
cancer therapy or combination treatment. For instance, clari-
thromycin (CLM) has been shown to enhance cytotoxic effects when
combined with gefitinib (GEF) in NSCLC cell lines (45). Liarozole

Table 1. Functional roles of 10 hub genes.

No. Gene symbol Full name Function

1 IL6 Interleukin 6 A cytokine that functions in inflammation and the
maturation of B cells.

2 IL10 Interleukin 10
A cytokine produced primarily by monocytes and to a lesser
extent by lymphocytes. This cytokine has pleiotropic effects
in immunoregulation and inflammation.

3 CXCL9 C–X–C motif chemokine ligand 9

The protein encoded is thought to be involved in T-cell
trafficking. The encoded protein binds to C–X–C motif
chemokine 3 and is a chemoattractant for lymphocytes but
not for neutrophils.

4 ITGAM Integrin subunit alpha M

This gene encodes the integrin alpha M chain. This I-domain
containing alpha integrin combines with the beta 2 chain
(ITGB2) to form a leukocyte-specific integrin. The alpha M
beta 2 integrin is important in the adherence of neutrophils
and monocytes to stimulated endothelium and in the
phagocytosis of complement coated particles.

5 CCL5 C–C motif chemokine ligand 5

This gene is one of the several chemokine genes clustered
on the q-arm of chromosome 17. This chemokine, a member
of the CC subfamily, functions as a chemoattractant for
blood monocytes, memory T-helper cells, and eosinophils.

6 CD4 CD4 molecule

The CD4 membrane glycoprotein acts as a coreceptor with
the T-cell receptor on the T lymphocyte to recognize
antigens displayed by an antigen presenting cell in the
context of class II MHC molecules.

7 IDO1 Indoleamine 2,3-dioxygenase 1

A heme enzyme that acts on multiple tryptophan substrates.
This enzyme is thought to play a role in a variety of
pathophysiological processes such as antimicrobial and
antitumor defense, neuropathology, immunoregulation, and
antioxidant activity.

8 HAVCR2 Hepatitis A Virus Cellular Receptor 2

The protein belongs to the immunoglobulin superfamily,
and TIM family of proteins. CD4-positive T helper
lymphocytes can be divided into types 1 (Th1) and 2 (Th2) on
the basis of their cytokine secretion patterns.

9 TLR9 Toll-like receptor 9
The protein encoded by this gene is a member of the TLR
family, which plays a fundamental role in pathogen
recognition and activation of innate immunity.

10 CCR7 C–C motif chemokine receptor 7

The protein encoded by this gene is a member of the G
protein–coupled receptor family. This receptor is expressed
in various lymphoid tissues and activates B and T
lymphocytes.
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Figure 4. Disease-free survival analyses of 10 hub genes based on The Cancer Genome Atlas.

Table 2. Top 10 drug predictions for the EGFR–TKI resistance–specific key gene TIMP1.

Drug Interaction type and directionality Sources Query score Interaction score

Liarozole n/a NCI 2.92 4.25

Rovelizumab Antagonist (inhibitory) ChemblInteractions 1.46 2.13

Dimethyl sulfoxide n/a NCI 1.46 2.13

Clarithromycin n/a NCI 1.35 0.98

Fentanyl n/a NCI 0.67 0.49

Phenylephrine n/a NCI 0.63 0.91

Theophylline n/a NCI 0.37 0.53

Morphine n/a NCI 0.28 0.41

Hydrocortisone n/a NCI 0.23 0.34

Atorvastatin n/a NCI 0.15 0.21
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down-regulates transforming growth factor (TGF)-α and EGFR levels
in head and neck squamous cell carcinoma (46). Dimethyl sulfoxide
(DMSO) has been associated with antiangiogenic effects (47), and
theophylline enhances the sensitivity of lung cancer cells to cell
death induction by other drugs (48, 49). Phenylephrine induces
EGFR phosphorylation, which can be partially blocked by an EGFR
TKI. In addition, statins like atorvastatin have been shown to en-
hance the tumor-inhibitory effects of various antitumor drugs,
potentially reducing resistance in NSCLC patients (50, 51, 52, 53). The
identification of these drug candidates holds promise for further
investigations into EGFR–TKI resistance treatment strategies.

Despite the comprehensive approach of this study, it is not
without limitations. The relatively small sample size due to chal-
lenges in obtaining in vivo experimental models for drug resistance
is a constraint. In addition, individual variations among NSCLC
patients, including socio-economic factors, disease severity, and
duration, may influence result accuracy. Therefore, larger scale
in vitro and in vivo experiments are warranted to validate the
precise roles of hub genes in NSCLC and to guide future research
efforts.

In our investigation, an analysis of gene expression was con-
ducted between EGFR–TKI-sensitive and acquired drug-resistant
samples, using data sourced from the GEO database. This rigorous
analysis led to the identification of aberrant expression patterns
within EGFR–TKI-resistant PDXs. Our study successfully pinpointed
a total of 1,302 DEGs and highlighted 10 hub genes as pivotal
players. The functional roles and pathways associated with these
DEGs were substantiated through comprehensive Gene Ontology
(GO) and KEGG enrichment analyses. Notably, our findings suggest
that ITGAM may hold significant roles in the molecular patho-
genesis of EGFR–TKI resistance. Moreover, the identified core genes
and pathways exhibit promise as potential biomarkers, facilitating
the detection and targeting of EGFR–TKI resistance in therapeutic
interventions. In addition, the predicted drugs identified in our
study offer the potential for use in combination with EGFR–TKIs,
thus mitigating resistance in NSCLC patients and ultimately en-
hancing therapeutic efficacy. These discoveries contribute sub-
stantially to our comprehension of drug resistance mechanisms
and the potential identification of targets to combat EGFR–TKI
resistance. This, in turn, holds promise for the improvement of
therapeutic outcomes in NSCLC patients. Nevertheless, it is im-
perative that further studies be conducted, encompassing a series
of experimental investigations to validate our hypotheses and yield
more precise correlation reports.

Materials and Methods

Microarray data

We initiated our study by querying the GEO database (http://
www.ncbi.nlm.nih.gov/geo) using the search terms “NSCLC” and
“EGFR-TKI resistant” (14). Specifically, we sought out PDX samples
featuring EGFR mutations and exhibiting initial sensitivity to
EGFR–TKI drugs, which were subsequently induced to develop
acquired resistance within a PDX model. Our data analysis focused

on two datasets, GSE64472 and GSE130160, for the evaluation of
DEGs between EGFR–TKI-sensitive and resistant NSCLC samples.
EGFR–TKI resistance was characterized by a threefold increase in
tumor volume compared with pretreatment levels. The GSE64472
dataset included 3 EGFR–TKI-sensitive samples and 2 EGFR–TKI
drug-resistant samples, whereas GSE130160 encompassed EGFR–
TKI-sensitive samples and 1 EGFR–TKI-resistant sample. These
datasets used the GPL6884 Illumina HumanWG-6 v3.0 expression
beadchip and the GPL16791 Illumina HiSeq 2500 (Homo sapiens)
platform.

Screening of DEGs

The R package “limma” (http://www.bioconductor.org/) was used
to normalize the data and execute differential expression analysis
between EGFR–TKI-sensitive and acquired drug–resistant NSCLC
tumor samples. DEGs were identified based on a false discovery
rate–corrected P-value < 0.05 and |log2-fold change (FC)| > 2. To
ensure consistency, probe identification numbers were converted
to gene symbols, with the maximum value selected as the gene
expression value in cases where multiple probes corresponded to
the same gene.

Functional enrichment analysis of DEGs

To gain deeper insights into the functional roles and enriched
pathways associated with the DEGs, we performed Gene Ontol-
ogy (GO) analysis, encompassing biological processes, cellular
components, and molecular functions, and KEGG pathway anal-
ysis. These analyses were conducted using the DAVID (https://
david.ncifcrf.gov/) version 6.8 (12, 13, 20). Terms with P-values < 0.05
and representation by at least two enriched genes were considered
statistically significant.

PPI network construction and hub gene identification

The construction of a PPI network for the DEGs was carried out using
the online STRING database (https://string-db.org). This step aimed
to elucidate the key signaling pathways and cellular processes
implicated in EGFR–TKI resistance in NSCLC (21). Subsequently, we
visualized the network using Cytoscape Version 3.7.1. NetworkA-
nalyzer, a Cytoscape plug-in, facilitated the analysis of relationships
among DEGs by computing network properties such as the clus-
tering coefficient, node degree distribution, and shortest path
length (23). The identification of candidate hub genes was per-
formed with the cytoHubba plug-in, ranking genes based on their
degree, closeness, and betweenness scores. The top 10 genes
according to these scores were considered potential hub genes.

Hub gene survival analysis

To assess the potential role of hub genes in drug resistance, we
conducted DFS analysis for NSCLC patients using Kaplan–Meier
curves from TCGA database (https://portal.gdc.cancer.gov/) (16). A
log-rank test P-value < 0.05 was considered indicative of statistical
significance. This analysis aimed to identify genes associated with
the progression of drug resistance in NSCLC.
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Drug interaction prediction for EGFR–TKI resistance-specific
key genes

To predict potential interactions between genes and drugs specific
to EGFR–TKI resistance, we used the Drug Gene Interaction Data-
base (DGIdb; www.dgidb.org). The EGFR–TKI resistance-specific key
genes were input into DGIdb to identify targeted drugs with po-
tential efficacy against EGFR–TKI resistance in NSCLC.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202302110.
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