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Purpose: Machine learning models based on radiomic feature extraction from clinical
imagingdataprovideeffective and interpretablemeans for clinical decisionmaking. This
pilot study evaluated whether radiomics features in baseline optical coherence tomog-
raphy (OCT) images of eyes with pigment epithelial detachment (PED) associated with
neovascular age-relatedmacular degeneration (nAMD) can predict treatment response
to as-needed anti-vascular endothelial growth factor (VEGF) therapy.

Methods: Thirty-nine eyes of patients with PED undergoing anti-VEGF therapy were
included. All eyes underwent a loading dose followed by as-needed therapy. OCT
images at baseline, month 3, and month 6 were analyzed. Images were manually
separated into non-responding, recurring, and responding eyes based on the presence
or absence of subretinal fluid at month 6. PED radiomics features were then extracted
fromeach image and imageswere classified as responding or recurring using amachine
learning classifier applied to the radiomics features.

Results: Linear discriminant analysis classification of baseline features as responsive
versus recurring resulted in classification performance of 64.0% (95% confidence inter-
val [CI] = 0.63–0.65), area under the curve (AUC = 0.78, 95% CI = 0.72–0.82), sensitivity
0.79 (95% CI = 0.63–0.87), and specificity 0.58 (95% CI = 0.50–0.67). Further analysis
of features in recurring eyes identified a significant shift toward non-responding mean
feature values over 6 months.

Conclusions: Our results demonstrate the use of radiomics features as predictors for
treatment response to as-neededanti-VEGF therapy.Our studydemonstrates thepoten-
tial for radiomics feature in clinical decision support for personalizing anti-VEGF therapy.

Translational Relevance: The ability to use PED texture features to predict treatment
response facilitates personalized clinical decision making.

Introduction

Current recommendations regarding scheduling
of anti-vascular endothelial growth factor (VEGF)
therapy for patients with neovascular age-related
macular degeneration (nAMD) balance clinical efficacy

of treatment with costs to the healthcare system and
to patients. Initial trials demonstrated efficacy of anti-
VEGF therapy using scheduled monthly injections.1,2
The prohibitive costs of monthly injections motivated
future studies with the goal of reducing the number
of injections by increasing scheduled treatment inter-
vals, gradual extension of treatment interval based
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on response (i.e. “treat-and-extend”), and only treat-
ing on an as-needed basis.3,4 The latter two of these
approaches demonstrated noninferiority to scheduled
monthly injections, however, one major drawback to
as-needed or treat-and-extend approaches is that they
are reactive in nature and only personalize treatment
after a patient has experienced a recurrence of disease,
exposing patients to additional complications resulting
from inadequate treatment.

In recent years, there has been growing interest in
prediction in the clinical setting thanks to improve-
ments in computational power and machine learn-
ing algorithms. Applications of machine learning for
prediction have shown promise for automated diagno-
sis of many common ophthalmic diseases, including
macular degeneration and diabetic retinopathy.5–8 One
drawback to many machine learning algorithms has
been the inability to see into the “black box” in order to
gain intuition for why amodel behaves in a certain way,
making nuanced decision making in a complex health-
care environment difficult.9,10 This has led to increased
emphasis on the identification of biomarkers that can,
in addition to improving prediction, facilitate model
interpretability.11,12

One class of biomarkers that has been applied in the
field of radiology and pathology is texture features, the
application of which is often referred to as radiomics.13
Radiomic techniques provide summary statistics that
describe features of interest in a set of images. This
is useful for at least three reasons. First, it quanti-
fies aspects of images that are of interest to clini-
cians. Second, radiomics features summarize image
information, reducing the amount of data required to
train models, improving the feasibility of prediction
algorithms with fewer patients. Third, these techniques
facilitate interpretability by allowing comparison of
features between groups of images, thus opening the
machine learning black box. Radiomics had been
applied to a growing range of clinical problems
(e.g. diabetic macular edema, myopia maculopa-
thy, and age-related macular degeneration),14–16 and
imaging modalities (e.g., optical coherence tomogra-
phy [OCT], optical coherence tomography angiogra-
phy [OCTA], and ultra-wide-field fluorescein angiog-
raphy [UWFA]).17–19 Radiomic feature extraction is a
promising approach to identifying biomarkers for the
development of intuitive, efficient, and interpretable
prediction algorithms.

In this pilot study, we sought to build upon this
previous work by applying radiomic feature extrac-
tion to OCT images of pigment epithelial detach-
ment (PED) to predict treatment response to anti-
VEGF therapy in nAMD. We first predicted from
baseline images of responding eyes versus eyes with

recurrence at 6 months. We then extracted features to
track changes in PED fluid composition over time in
eyes with recurrence and compared these changes to
features observed in responding and nonresponding
eyes.

Methods

Patient Selection and Data Acquisition

We conducted a retrospective cross-sectional study
involving patients who were selected from a chart
review of patients with nAMD presenting at the
University of Pittsburgh Medical Center. The study
was conducted in accordance with the Declaration
of Helsinki and the Institutional Review Board of
the University of Pittsburgh. Informed consent was
obtained for all patients.

Each patient underwent a complete history and
comprehensive ophthalmic examination, including
baseline visual acuity, intraocular pressure, slit lamp
biomicroscopy, and dilated fundus examination to
confirm the diagnosis of nAMD and rule out other
pathology. Inclusion criteria for this study was nAMD
with PED confirmed on b-scan with a minimal height
and width of 100 microns. Exclusion criteria included
complicated nAMD, drusenoid PED, poor quality
images, and other comorbid ocular disease. Compli-
cated nAMD was defined as the presence of retinal
pigment epithelium (RPE) rips by clinical evaluation.
Both treatment naive and previously treated eyes were
included in the study.

Imaging was performed using spectral domain
optical coherence tomography (SD-OCT) using a
Heidelberg Spectralis Device (Heidelberg Engineering,
Heidelberg, Germany). Analyses were performed on a
single scan passing through the fovea. B-scan resolu-
tion was 1536 × 496 with intensity range of 0 to 255.

Feature Segmentation and Feature
Extraction

To facilitate image analysis and segmentation, b-
scans were preprocessed using the following proce-
dure. First, images were linearly normalized to ensure
that displayed b-scan intensities had similar distribu-
tions across images. This was done by standardiz-
ing each image’s pixel intensities to range between 0
and 1. Second, shadow compensation was performed
to ensure proper visualization of sub-RPE tissue.20
This was necessary because signal extinction can occur
secondary to shadowing from fluid and vessels in
the retina.21,22 To correct for the shadowing effect,
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a compensation factor was calculated on a per-pixel
basis by evaluating idiosyncrasies in the OCT images.21
Last, images were manually segmented by a trained
annotator. This was done by manually identifying the
boundary of the entire PED using ImageJ software
version 1.53 using the polygon selector tool.23 The
initial segmentation was then smoothed using the “fit
Spline” function. Segmentation for each image was
then verified by an expert clinician.

Feature Extraction

To assess the texture features of the segmented
OCT images, we performed texture-based radiomic
feature extraction using the Pyfeats radiomics library.24
Extracted features included first-order statistics, Gabor
filter features, Law texture features, and Gray-Level
Co-Occurrence Matrix (GLCM) features.25,26 First-
order statistics included 10th, 25th, 75th, and 90th
percentile pixel values, coefficient of variation, energy,
entropy, histogramwidth, kurtosis, maximal gray level,
mean, median, minimal gray level, mode, skewness,
and variance. Gabor features were extracted by first
offsetting pixel values to be between −0.5 and 0.5
and then applying Gabor filters with angles of 0,
45, 90, and 135 degrees and spatial frequencies of
0.1 and 0.4 cycles/pixel. Mean and standard devia-
tion of Gabor filter convolution values were used as
features. Law features were extracted using a mask
size of 3.26,27 GLCM features included the follow-
ing summary statistics of the GLCM: angular second
moment, contrast, correlation sumof squares variance,
inverse difference moment, sum average, sum variance,
sum entropy, entropy, difference variance, difference
entropy, information measure of correlation features,
and maximal correlation coefficient. A total of 52
features were extracted from PED pixels in each image.
Once extracted, features were standardized across
images to facilitate later statistical analysis.

Feature overlay plots were obtained by measuring
the above-listed features in a 20 × 20 pixel window
centered on each PED segmented pixel. Extracted
feature values were then normalized across images to
allow comparison between images.

To identify features that explained the greatest
difference between groups, a non-paired t-test was
first performed for each image. This was done for
comparison of baseline responding versus baseline
nonresponding images, baseline recurring versus
baseline responding image features, and pooled nonre-
sponding and responding image features across all
time points. The features with the smallest four
P values were then plotted.

To compare how changes in features in recurring
eyes compared to expected feature values of nonre-
sponding and responding eyes, the following procedure
was applied. First, for each responding eye feature,
average feature value was computed across all samples,
including baseline, month 3, and month 6. This was
repeated for nonresponding eyes and recurring eyes.
Next, the values for recurring eyes were adjusted so
that change toward the corresponding feature mean for
responding eyes resulted in a positive value and change
toward nonresponding eyes resulted in a negative value.
Only features with a difference between responding and
nonresponding means with paired t-test P value less
than 0.2 were used. Finally, a bootstrap 95% confidence
interval (CI) was computed across recurring eye mean
feature changes to measure significance.

Image Classification

Standardized feature values and image labels were
used to train a machine learning model to classify
images as responding or recurring at 6 months. The
following classification procedure was performed for
all images using the sklearn python library.28 Prior to
classification, image features were dimension-reduced
using minimum Redundancy maximum Relevance
(mRmR) to identify the most relevant 16 features
within the training data.29 A linear discriminant analy-
sis model was then used to perform classification.
Model performance was assessed using three-fold
hierarchical cross-validation to ensure that at least
one representative of each class was included in each
train and test set. Models were evaluated by measuring
accuracy, receiver operator characteristic area under
the curve (ROC-AUC), sensitivity, and specificity on
test data. Bootstrap 95%CIs were computed across 100
iterations of the above procedure, shuffling trials with
each iteration to achieve distinct cross-validation fold
compositions.

Results

A total of 39 eyes from 39 patients with nAMDwere
included in this pilot study. Patients received scheduled
monthly anti-VEGF therapy for 3 months as a loading
dose followed by as-needed anti-VEGF therapy for
an additional 3 months (Fig. 1). Response to anti-
VEGF therapy was labeled in each eye with 23 eyes
showing a consistent stable response throughout the
study (referred to as “responding”), 12 eyes showing an
initial response at 3 months followed by a recurrence of
fluid at 6months (referred to as “recurring”), and 4 eyes



Radiomics Prediction of Anti-VEGF Response in nAMD TVST | October 2023 | Vol. 12 | No. 10 | Article 3 | 4

Figure 1. Radiomics classification pipeline. Retinal OCT images were obtained at baseline, month 3, andmonth 6 follow-up appointments
from nonresponding, recurring, and responding eyes. Images were preprocessed and then segmented to select for PED pixels. A battery of
52 texture features were then computed using the PED pixels. A linear discriminate analysis classifier was used to predict image response to
as-needed anti-VEGF therapy.

did not respond to anti-VEGF therapy at 3 months or
at 6 months (referred to as “nonresponding”).

We were first interested in assessing whether it was
possible to identify eyes that could transition to as-
needed therapy after observing an initial response to
treatment between baseline and 3-month follow-up.
To do this, image features were compared at baseline
between responding and recurring eyes (Fig. 2). The
four features with the most significant differences
between the two groups were pixel entropy (P =
0.0012), pixel energy (P = 0.019), GLCM sum entropy
(P = 0.028), and GLCM angular second moment (P =
0.035). The first two of these features represent “first-

order” pixel statistics that describe the average infor-
mation across pixels and the average pixel intensity
within the PED. The GLCM features reflect higher-
order texture captured by measurement of how often
specific pixel values occur near each other in space.
Classificationwas then performed using anLDAmodel
with a classification accuracy of 0.64 (95% CI = 0.63–
0.65), ROC-AUC 0.78 (95% CI = 0.72–0.82), sensitiv-
ity 0.79 (95%CI= 0.63–0.87), and specificity 0.58 (95%
CI = 0.50–0.67).

Next, to facilitate comparison of recurring eyes to
responding eyes and nonresponding eyes over time,
features most distinguishing responding and nonre-
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Figure 2. Features distinguishing responding and recurring eyes. Features distinguishing responding and recurring eyes were identified
based on lowest P value on a non-paired t-test. Left: Overlay image showing themost distinguishing feature, pixel entropy, for nonrespond-
ing, recurring, and responding eyes at baseline, month 3, and month 6. Right: Distribution of four features most distinguishing responding
and recurring eyes separated into nonresponding, recurring, and responding feature values.

sponding eyes were identified. This was done by
pooling responding and nonresponding eye images
from all time points (Fig. 3, left column). The four
features with the most significant differences between
the two groups were mean Gabor angle 0 degrees
frequency 0.1 cycles/pixel (P = 4.6 × 10−4), mean
Gabor angle 90 degrees frequency 0.1 cycles/pixel (P
= 6.2 × 10−4), standard deviation of Gabor angle
90 degrees frequency 0.1 cycles/pixel (P = 2.6 ×
10−3), and GLCM correlation mean (P = 2.7 × 10−3).
The first of two these features capture the amounts
of horizontal (angle 0 degrees) and vertical (angle
90 degrees) edges and the third feature captures varia-
tion in vertical edges within the PED.

Last, we sought to assess change in recurring
features over time relative to the features distinguishing
nonresponding and responding eyes identified above.
Qualitatively, it was noted that recurring features
tended to shift over time, with a tendency to shift
toward the responding mean at 3 months and toward
the nonresponding mean at 6 months. To quantify this
result across a larger number of features, the features
were selected from the features distinguishing respond-
ing and nonresponding eyes with P values greater than
0.2, resulting in 32 features included in the analysis.
Features were further processed to ensure that recur-
ring feature change in a positive direction indicated
movement toward the responding feature means. After
3 months of scheduled anti-VEGF therapy, recurring
eyes were found to have a mean normalized feature

change of 0.15 (95% CI = 0.02–0.14), representing a
shift toward the responding feature mean (Fig. 3, right
column, top plot). In contrast, after 3 months of as-
needed therapy, a recurring mean feature change of
−0.32 (95%CI= −0.39 to−0.19) was observed, repre-
senting a shift toward the nonresponding eye feature
mean (Fig. 3, right column, middle plot). Over the 6-
month study duration, a recurring eye mean feature
shift of −0.13 (95% CI = −0.23 to −0.03) occurred,
indicating an overall shift in recurring features toward
the nonresponding feature mean (Fig. 3, right column,
bottom plot).

Discussion

This pilot study demonstrates the use of radiomic
features from OCT images of nAMD eyes to predict
response to scheduled and as-needed anti-VEGF
therapy. The results demonstrate identification of eyes
that can successfully switch to as-needed anti-VEGF
therapy using a machine learning classifier applied to
radiomic features. The results further leverage these
features to demonstrate transition of recurring eye
PED composition toward feature values associated
with nonresponding eyes over the 6 months’ duration
of the study. This suggests that recurring eyes may
undergo a transition that makes them less responsive
to anti-VEGF therapy over time.
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Figure 3. Recurring eye feature change over time. Left column: Each plot displays 4 features best distinguishing responding and nonre-
sponding eyes at baseline (top), month 3 (middle), and month 6 (bottom). Right top: Comparison of baseline and month 3 feature values.
Each circle represents the average value of each feature at baseline andmonth 3. The circles above the line represent a shift toward respond-
ing eye feature mean and circles below the line represent a shift toward nonresponding eye feature mean. Right middle: same as the right
top, but for month 3 and month 6 recurring features. Right bottom: Same as right top but for baseline and month 6 recurring features.

In this study, we classified images based on whether
they successfully switched to as-needed anti-VEGF
therapy (i.e. responding) or had a recurrence of fluid
after transitioning to as-needed anti-VEGF therapy
(i.e. recurring). This is a decision frequently faced by
physicians, who often rely on fixed treatment regimens
based on predefined treatment intervals followed by
a trial of as-needed therapy.3,4 Such an approach is
unable to account for individual variability in treat-
ment response prior to increasing treatment inter-

val. The ability to classify individuals as likely to
succeed with as-needed therapy would allow providers
to individualize care to their patients. The classifica-
tion approach demonstrated in this study represents a
proof-of-concept decision-support tool for individual-
izing the anti-VEGF treatment interval based on each
patient’s needs.

Our results demonstrated the trend of recurring
eye features toward expressing nonresponding feature
characteristics after 6 months. The cause of this transi-
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tion is unclear. One possibility is that recurring eyes
represent a class of eyes that are in a transition period
between a treatment-responsive state and a nonrespon-
sive state and that this transition would have occurred
even if scheduled therapy had continued for a longer
period of time. Another possibility is that recurring
eyes simply represent eyes that would benefit from
a longer period of scheduled therapy in order to
achieve disease remission, after which point these eyes
would be successful on as-needed therapy. Future work
could address this question by tracking image features
after retreatment and assessing whether features from
retreated eyes return to resembling responding eyes or
if they continue to shift toward nonresponding feature
values.

In this study, we extracted radiomic features from
images to perform image classification and to track
changes in PED fluid characteristics over time. The
use of radiomic features provided several key advan-
tages during this process. First, radiomics reduced the
number of input dimensions required for classification
compared to performing classification using raw pixels.
This reduced the number of model parameters, thereby
also reducing the required number of samples for train-
ing, owing to the fact that the sample size needed
to train a model scale with the number of param-
eters. Second, radiomic features extract meaning-
ful and interpretable statistics from images in ways
that other common dimensionality reduction methods
(e.g. principal component analysis) cannot. Finally,
radiomic features quantify our intuitive understand-
ing of image texture, thus facilitating tracking of
features over time. Further use of radiomic features
in model development can improve the interpretabil-
ity of machine learning models for nuanced clinical
decision making and reduce the cost of model devel-
opment through the efficient use of training data.

Several recent studies have used radiomics to classify
and study retinal OCT.14,30,31 Among these, one
recent study used radiomic features applied to multi-
ple segmented fluid spaces to classify eyes as super-
responders or non-super responders.31 In the current
study, we build upon previous work by predicting
which eyes will successfully switch to as-needed therapy
without recurrence in the first 3 months. As in previ-
ous work, our study demonstrates the successful use of
radiomic features to facilitate machine learning classi-
fication of OCT images with the goal of providing
clinical decision support to personalize treatment to
individual patient’s needs.

Limitations of this study include the small sample
size, inclusion of multiple anti-VEGF treatment
agents, and pooling of treatment-naive and previously
treated eyes. Further work is underway to expand the

study to a larger population to assess the external valid-
ity of the findings. In addition, several steps were taken
to mitigate the effects of small sample size on reported
classifier performance. First, we used a hierarchical
cross-validation structure which ensured that test data
sets included similar proportions of each class as the
sampled population. Although this cannot overcome
biases in sampling in the study population, it can help
prevent additional bias that may arise from evaluating
models on small test data sets. Second, we limited the
number of parameters in our models, reducing the risk
of overfitting. We did this by (1) extracting radiomic
features rather than using raw pixels and (2) using
relatively simple classification algorithms as opposed to
more complex “deep” models which typically require
larger numbers of parameters. A similar approach has
been used in other studies using radiomics for predic-
tion in retinal imaging.30,31

There are also a few areas where our radiomics-
based classification could potentially be improved
without increasing the sample size. For example, our
study focused on single b-scans through the fovea
rather than full 3-D scans consisting of multiple b-
scans. Although selection of a single foveal b-scan
facilitates comparison across time and limits variabil-
ity that might be introduced by taking scans from
different locations within each image, this approach
also risks missing extrafoveal changes in PED compo-
sition. Furthermore, full 3-D scans have the benefit
of potentially adding useful information with only a
small increase in the number of model parameters,
likely leading to better classifier performance. Single
b-scan classification also requires a clinician to select
the scan of interest, a step not required when using 3-
D scans. A disadvantage of 3-D scans is that they are
labor-intensive to manually segment. Future work will
focus on using automated segmentation algorithms to
increase the feasibility of studying 3-D scans.

Another potential area of improvement is in our
choice of features, dimensionality reduction algorithm,
and classification algorithms. We did not perform an
exhaustive search of all possible combinations of these
computational components in order to identify the
algorithms with the best fit. This was intentional so as
to avoid overfitting our model to the test data while
selecting among computational components. Overfit-
ting due to optimization of computational compo-
nents could be overcome by using a separate valida-
tion data set for model selection, a step which we
could include in future studies with a larger sample
population.

One area of future work is to assess the significance
of different features in terms of fluid composition and
anatomy. For example, previous work has successfully
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segmented PED into serous, drusenoid, and fibrovas-
cular fluid types.32 Understanding how such separa-
tion of fluid type relates to radiomic features would
improve the interpretability of radiomics features on
the one hand and possibly reveal additional subcate-
gories of fluid that can be distinguished by radiomics
features on the other hand. Further work in these
areas could lead to improved clinical decision making
and new understanding of the pathophysiology of
PED.

A second area of future work is assessment of other
fluid compartments and anatomic regions. The tools
discussed in this study and others are easily general-
izable beyond PED and other retinal fluid compart-
ments and could be applied to other retinal disease
processes, healthy eyes with comorbid risk factors, and
other types of ocular imaging.14–19 Expanded use of
radiomics for prediction holds promise for improving
care for an even broader patient population.

A third area of future work is to track feature
changes over the course of years. The current study
focused on a 3-month window of as-needed therapy.
The extent to which features from recurring eyes will
continue to grow to resemble features from nonre-
sponding eyes is still unknown. Tracking PED features
over a period of years will be an important step
in understanding mechanisms underlying changes in
treatment response over time.

In conclusion, our study evaluated the use of
radiomic-based image classification on OCT images of
nAMD eyes for predicting which eyes would remain
clinically stable on as-needed anti-VEGF therapy. We
found that our prediction pipeline achieved signifi-
cant classification performance in this task. We further
identified features that were likely relevant to this
classification, improving model interpretability. Future
work will focus on validating these results in larger
study populations and expanding prediction to other
anatomic compartments.
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