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ABSTRACT: We present a robust and computationally efficient
approach for assigning partial charges of atoms in molecules. The
method is based on a hierarchical tree constructed from attention
values extracted from a graph neural network (GNN), which was
trained to predict atomic partial charges from accurate quantum-
mechanical (QM) calculations. The resulting dynamic attention-
based substructure hierarchy (DASH) approach provides fast
assignment of partial charges with the same accuracy as the GNN
itself, is software-independent, and can easily be integrated in
existing parametrization pipelines, as shown for the Open force
field (OpenFF). The implementation of the DASH workflow, the
final DASH tree, and the training set are available as open source/open data from public repositories.

■ INTRODUCTION
Molecular dynamics (MD) simulations enable the time-
resolved study of molecular systems and are, therefore, widely
used in biology, chemistry, and material science. The physical
interactions between the particles in the system are thereby
approximated by a set of potential-energy functions (i.e., the
force field).1−6 Applying Newton’s equation of motion allows
the propagation of the system through time. The quality of the
MD simulations is determined by the approximations made in
the functional form of the force-field terms as well as their
parameters. For biomolecular simulations, fixed-charge atom-
istic force fields are predominantly used due to their reasonable
accuracy and low computational cost.6 In such force fields, the
contributions are split into bonded terms (i.e., bond stretching,
bond-angle bending, and dihedral-angle torsion) and non-
bonded terms (i.e., electrostatic and van der Waals).6 The
nonbonded terms describe the intermolecular interactions,
which are directly related to experimental observables such as
the density or the heat of vaporization of a compound. The
calculation of the nonbonded interactions between the atoms
in the system constitutes the computationally most expensive
part of every classical MD simulation. While the van der Waals
forces decay quickly with increasing distance between the
atoms, the long-range contribution of the electrostatic forces is
non-negligible, and many schemes have been developed for
their efficient treatment (e.g., Ewald summation7 based
methods such as smooth particle mesh Ewald8 or reaction-
field (RF) correction9). The slow decay of the electrostatic
forces also means that small changes in the parameters (i.e.,

partial charges, dielectric constant) can lead to large changes in
the potential energy.

Molecules can only have integer charges, but even in a
simple Lewis representation, the assignment of atomic formal
charges can be ambiguous since they are not experimentally
measurable and resonance structures can exist. Nevertheless,
many techniques have been developed over the past decades to
determine atomic partial charges, which can be used to predict
chemical reactivities or perform MD simulations, among other
applications. Early examples of such models include Gasteiger
charges,10 Hirshfeld-type charges,11 Merck molecular force
field (MMFF) charges,12 and Mulliken-type charges.13 The
partial charges are extracted from a quantum-mechanical
(QM) calculation (e.g., Hartree−Fock (HF), density func-
tional theory (DFT), or semiempirical methods) and/or fitted
to reproduce experimental properties. Mulliken-type charges,
for instance, are calculated by integrating the electron density
over the volume of the atoms. One of the most commonly
used representatives from this family is AM1 population
charges, which employs the semiempirical method AM114 for
the QM calculation. Additional bond charge corrections
(BCCs) are then applied to better reproduce the electrostatic
potential (ESP) calculated with the more accurate HF
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method.14 The resulting AM1-BCC model is a reasonably fast
and reliable method, which is used in classical force fields such
as the general AMBER force field (GAFF)15 and OpenFF.16,17

Recently, progress has been made with atoms-in-molecule
(AIM) charges such as DDEC18 and MBIS,19 showing that
they are more accurate in reproducing ESP surfaces than AM1-
BCC charges. However, the higher accuracy comes with
increased computational costs. Additionally, the accuracy
depends on the level of theory and basis set used in the
underlying QM calculation, introducing hard limits on the
feasibility for larger molecules like proteins. The computational
time needed to extract partial charges also matters if the
number and/or size of molecules is large, like in enzyme
screens, where nonbonded interactions are used as features for
substrate prediction,20 or for large virtual screening runs in
drug discovery.21

Since accurate AIM charges are computationally expensive
and scale poorly with the number of atoms, alternatives based
on machine learning (ML) have been explored in recent years.
These attempts range from simpler regression22 or random
forest models23 to more complex graph neural networks.24−30

Bleiziffer et al.23 showed that a random forest model trained on
DDEC partial charges (TPSSh/def2-TZVP level of theory with
an implicit solvent) from 130,000 molecules could predict
partial charges of unseen molecules reasonably well with a
root-mean-square error (RMSE) of 0.03 e. More recent
approaches have explored the usage of different charge models
as well as other ML techniques.26−28,30 All of these ML
approaches predict partial charges with good accuracy while
offering a drastic increase in speed relative to performing a
separate QM calculation for each new molecule and, in the
case of ESPALOMA,29,30 even the integration into a classical
force field. However, the ML models are generally not
interpretable; there is a risk of overfitting, and most models
do not provide uncertainties with their predictions. In addition,
these models are highly dependent on the correct featurizers
and library versions, which often do not have long-term
stability in the rapidly evolving field of machine learning.

In an attempt to peer into the black box of ML models,
explainable artificial intelligence (AI) tools have been
developed (e.g., LIME31 or SHAP32) to explain the predictions
of a model in a retrospective manner. These tools are often
based on the idea of local linear approximations. A recent
addition is the GNNExplainer33 for graph neural networks
(GNNs), where each neighbor of a certain atom is assigned an
attention value, representing the importance that this neighbor
has in the prediction of the value for the given atom. There are
many different ways to get such an attention score.
GNNExplainer is a stochastic explainer, randomly generating
subgraphs and comparing the predictions of the model on
these subgraphs to the predictions on the full graph. This
provides the advantage that the approach is agnostic to the
architecture of the model. While such explanation-based
methods are able to explain a specific prediction and assign a
measurement of importance to each neighboring atom, they
are also computationally expensive due to the iterative and
stochastic learning of the method, presenting a challenge for
large data sets.

In this work, we train a GNN on a substantially increased
data set of QM reference partial charges compared to ref 23.
We demonstrate that the attention values extracted from this
GNN model are in agreement with common chemical
knowledge. Unlike chemical intuition, however, the attention

values are quantitative, enabling us to rank certain atoms and
functional groups over others. Thus, we can not only extract
the important features as patterns but also use the attention
values to construct a dynamic hierarchical tree structure to
assign partial charges without the GNN model. The resulting
dynamic attention-based substructure hierarchy (DASH) is
independent of the ML software library with which the model
was built and provides accuracy similar to that of the
underlying GNN. Moreover, the DASH is human-readable
and provides confidence values for each result.

■ METHODS
Data Set Generation. A generally applicable force field for

organic molecules needs to cover a large chemical space
including the combination of functional groups. In ref 23, we
generated a data set with a large coverage of chemical space
while focusing on lead-like compounds (molecular weight in
the range 250−350 g/mol), such that the molecules were small
enough for high-level QM methods. We used the unique bits
of Morgan fingerprints with a radius of 2 (MFP2) of all lead-
like compounds in ChEMBL34 and ZINC35 to select a diverse
subset of 130,000 molecules that represented all MFP2 bits. At
the time, we considered only one conformer per molecule
since the conformational dependence of DDEC partial charges
was found to be low overall. However, this can introduce noise
for molecules for which the conformational dependency of the
charge assignment is above average. This is, for instance, the
case for molecules that are symmetric in the two-dimensional
(2D) graph but are asymmetric in the three-dimensional (3D)
conformation. In the recently published QMugs data set36

three conformers were included for each of the 200,000
molecules, using a semiempirical method for geometry
optimization and DFT for the calculation of the QM
properties.
Selection of Molecules. In this work, we generated an

extended data set by collecting and filtering molecules from
four different sources: (i) the QMugs data set,36 (ii) the
training set from ref 23, (iii) lead-like molecules from
ChEMBL version 30 (filtered as in ref 23), and (iv) organic
liquids from refs 37−40. The goal was to have the minimal
number of molecules that represent all unique MFP2 atom
environments found in the lead-like compounds of ChEMBL
at least five times.

First, the QMugs data set was filtered by removing larger
molecules (molecular weight >500 g/mol), which are
impractical for high-level QM calculations, and by iteratively
removing molecules for which the bits of their MFP2
fingerprint were already represented at least five times by the
other molecules in the data set. Note that the molecules in the
QMugs data set have a neutral formal charge, but molecules
can be zwitterions, i.e., contain a positively and negatively
charged functional group. With the QMugs subset at hand,
molecules from other sources were added iteratively if their
MFP2 fingerprints contained new bits. For this, the molecules
were sorted by the number of “unseen bits” in their MFP2
fingerprint, and the list was updated after each addition of a
molecule. Finally, we observed that the data set did not contain
a diverse enough set of charged nitrogen environments (e.g.,
protonated amines), thus 21 manually selected molecules with
charged nitrogen-containing functional groups (but a net zero
charge) were added.
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The final data set contains 348,935 molecules with elements
from the organic set (C, H, N, O, P, S, Cl, Br, I, F, B) and a
molecular weight of up to 500 g/mol.
Conformer Generation and Extraction of Atomic Partial

Charges. For the molecules originating from the QMugs data
set, all three semiempirically optimized conformers were
considered. For the other molecules, three conformers were
generated with a similar workflow as in ref 36. The ETKDG
conformer generator41 as implemented in the RDKit42 was
used to generate three diverse conformers. The three
conformers of a compound were treated as separate molecules
in the workflow, except when splitting the data set into training
and test sets; i.e., all conformers of a given molecule were
always assigned to the same split. The conformers were first
optimized with the MMFF94 force field12 as implemented in
RDKit43 for an initial relaxation. These conformers were
further optimized with the semiempirical method xTB-GFN244

for 100 cycles with an implicit solvent (dielectric permittivity ϵ
= 4.9) using the software package PSI4.45 The choice of this
implicit solvent was based on ref 23, where we showed that this
dielectric permittivity leads to partial charges most compatible
with the van der Waals parameters of existing force fields
(compared to ϵ = 1 (vacuum) or ϵ = 78 (water)). A single
point DFT calculation was performed for each optimized
conformer with the TPSSh functional46 and a def2-TZVP basis
set47,48 in PSI4. The choice of functional and basis set is the
same as in ref 23, where a small benchmarking of functionals
and basis sets was performed. The PCM implicit solvent model
was used with chloroform as an implicit solvent. MBIS charges
were calculated with the oeprop function in PSI4 with the
wave function from the single point TPSSh calculation, with at
most 300 iterations, 10−4 a.u. as convergence value, 75 radial
points, and 302 spherical points. Conformers with nonphysical
partial charges or charges that disagreed with the chem-
informatics expectation were filtered out. The filter was defined
by selecting partial-charge ranges for each element type and
discarding conformers with atoms with partial charges outside
the range. In a second step, we used the difference between the

partial charge of the same atom in the three conformers to
discard conformers with differences larger than 0.4 e.

Training of the Graph Neural Network. Model
Architecture. The model architecture was based on the first
two layer types of the Attentive FP network developed by
Xiong et al.49 (i.e., the input layer and the attention layer for
atom embedding) and a three-layer multilayer perceptron
(MLP)50 with ReLu activation functions.51 The atomic
features are first passed through the input layer followed by
five layers of the attention layer for the atom embedding type
and are then decoded by the MLP. In a final step, the predicted
partial charges qi are normalized such that the sum of all partial
charges is an integer (i.e., the formal charge qformal of the
molecule). This was achieved by subtracting the average
predicted partial charge of a molecule from each partial charge
and adding the formal charge normalized to the number of
atoms (eq 1). The latter term is necessary for formal charges ≠
0. A size of 200 was chosen for all hidden layers.

= +q q
q

N N
q1

i i
i

N

i
formal

atoms atoms

atoms

(1)

where Natoms is the number of atoms (partial charges) in the
molecule.

For the atom and bond embedding, an adapted version of
the features proposed by Kearnes et al.52 was used. Atoms were
encoded by creating a feature vector of length 23 containing
element type (i.e., C, N, O, F, P, S, Cl, Br, I, B, or H), formal
charge, hybridization (i.e., SP, SP2, or SP3), aromaticity, and
degree (i.e., 0, 1, 2, 3, 4, 5, or other). Bonds were encoded by
creating a feature vector of length 11 containing the bond type
(i.e., single, double, triple, or aromatic), whether the bond is in
a ring, whether the bond is conjugated, and stereo code
following the RDKit42 definition (i.e., STEREONONE,
STEREOANY, STEREOE, STEREOZ, or other).
Training Procedure. The GNN was trained on all available

conformers of a randomly selected 90% subset (976081 3D
structures) using the Adam optimizer53 for 100 epochs. The
mean square error was chosen as the loss function. The effects
of different learning rates (i.e., 0.0001, 0.00001, and 0.000001)

Figure 1. Schematic depiction of the workflow to construct the DASH tree structure: (1: Data Preparation) Reference charges were calculated for
molecules from multiple data sets (blue). (2: Machine Learning) Molecules were split into a training set (orange) and a validation set (red). The
training set was the input for training an Attentive FP GNN model to learn partial charges. The GNN was in turn the input for the GNNExplainer
to extract attention values on the training set molecules. (3: DASH Tree) These data were subsequently used to construct the DASH tree structure.
The GNN and DASH tree employed the same validation set. The test set (dark green) was used only for verification of the final DASH tree.
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and batch sizes (i.e., 32, 64, 128, 256, and 512) were studied in
a hyperparameter optimization. The remaining 10% of the data
set (100,171 3D structures) was used as a validation set during
training of the GNN. The same split was later used for the
DASH tree construction (see Figure 1).

Extraction of the Attention Values. The attention values
of the trained GNN were extracted with GNNExplainer from
PyTorch Geometric.33 GNNExplainer takes as input the
trained graph-based model, the data for which the attention
should be extracted, and the number of epochs on which the
GNNExplainer model should be run in order to generate
attention values. The number of epochs was set to 500, the
learning rate was set to 0.01, and the return type was set to the
default value of log_prob. These values were found to give a
good performance of the model, and no systematic parameter
search was performed. The attention values were then
extracted for all atoms in all molecules in the training set.
Note that the attention values are not directly normalized per
molecule. To enable a comparison of values between
molecules, we divided the attention value of each atom in a
molecule by the sum of all attention values in the molecule.

For a given atom, the neighboring atoms contributing most
to the prediction of its partial charge can be identified using
either an attention threshold or a fixed number of atoms
(environment size). The subgraphs (or substructures) of a
molecule extracted in this manner can be compared to
chemical intuition and can be processed further to generate a
substructure-based table (i.e., using SMARTS or SMILES) to
assign the atomic partial charges of a molecule. The choice of
the metaparameter (attention threshold or the number of
atoms) determines the performance of such an assignment
table (accuracy vs speed of assignment).

Dynamic Attention-Based Substructure Hierarchy
(DASH). To circumvent the issues associated with a static
cutoff (in either the number of atoms or the attention), we
propose a dynamic attention-based substructure hierarchy
(DASH), where each node corresponds to a certain atom type,
the neighbors of a node are ordered by attention, and branches
can have different depths (dynamic). This way, the attention
values can be used to linearize the search through the
exponentially growing number of possible patterns. To
parametrize a particular atom in a molecule, a subgraph
(substructure) of the molecule is grown starting from this atom
by iteratively adding the neighboring atom with the highest
attention value to the subgraph until a user-defined depth is
reached. Note that no attention values have to be calculated for
new molecules; the partial-charge assignment occurs by
looking up the environments of each atom in the DASH tree.

Atom Features. To build the subgraphs, we define a feature
vector for each atom that contains the necessary information to
identify the atom type. While the same features as in the GNN
training could be used, the feature vector for DASH should be
as small as possible to reduce the number of possible patterns
and improve human readability. We wanted to be able to
calculate the atom features easily and rapidly from an RDKit
molecule. Thus, we decided for an atomic feature vector with
the following information:

• Element type (H, C, N, O, S, F, Cl, Br, P, I, B)
• Number of bonds (1, 2, 3, 4, 5)
• Formal charge (−1, 0, 1)
• Is conjugated (True or False)
• Number of attached hydrogens (0, 1, 2, 3)

The conjugated flag is set to true for an atom if at least one of
its connecting bonds is conjugated. This definition leads to 122
possible initial atom types, since many combinations of these
properties are not physical or not present in our data set of
organic molecules. For example, a hydrogen atom with one
bond and a formal charge of zero has the atom type “H 1 0
False 0”. These feature vectors are further translated to simple
integers (keys) and stored in a dictionary object.

When the subsection is extended by one atom during the
DASH construction, the atom with the highest attention value
is added. The feature vector for the new atom contains
additional information about how it is attached to the current
subgraph (i.e., relative index in the subgraph and bond type).
The bond type is an integer with values 1 (single), 2 (double),
3 (triple), or 4 (conjugated, independent of whether single or
double bond). For the hydrogen dimer H2 as example, the
second hydrogen atom has the feature vector [37, 0, 1] (atom-
type key with connectivity), where the first element is the key
of the atom type in the dictionary, the second element is the
level of the atom in the subgraph (the root of the subgraph has
level 0), and the third element is the bond type. The key with
connectivity information can be used as an identifier for a node
(atom) chained together to generate a chemical pattern. For a
more complex example, the atom feature vectors of acetic acid
are shown in Figure 2.
DASH Implementation as Tree Structure. Level 0 of the

tree consists of the 122 nodes, one for each atom type, which
branch out from the root. Every node stores the key of the
atom type together with the GNN attention value and
computes the partial charge of every atom with that type in
the training set. Level 0 could already be a simple lookup table
for partial charges for a force field by simply averaging the
partial charges at each node. This simple approach would,
however, ignore most of the information about the environ-
ment of the atom and result in fairly crude partial charges.

Figure 2. Example of the feature vectors/atom types of acetic acid. The oxygen atom with index 2 is selected as the root of the subgraph (level 0).
Therefore, its connection information is nonexistent and set to −1. The second atom to be added is the carbon with index 1 and an atom type 26,
which is connected to atom 0 in the subgraph with a conjugated double bond (type 4). Next, a choice has to be made between the oxygen with
index 3 and the carbon with index 0 based on the attention values.
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The accuracy can be improved by taking larger substructures
into account, thus adding more information about the atomic
environment. In the DASH approach, this is done by adding
neighboring atoms in the order of decreasing attention values
until the maximum graph depth is reached or all of the atoms
in the training molecule have been added. Since each node in
the tree stores not only a list of partial charges (from which an
average charge per node can be calculated) but also the
attention values, the attention could be used as an early
stopping condition during the construction procedure to avoid
overfitting of the tree to the training data set (not done here).
A pseudocode implementation of the algorithm is provided in
the Supporting Information. Figure 3 shows an example DASH
tree if it were constructed based on only one molecule (acetic
acid). The final DASH tree was built with the same training
data set as used for the GNN training to avoid any mixing of
the training and validation sets.
Normalizing DASH Partial Charges. As each atom is

considered individually in the DASH assignment process, the
resulting partial charges do not necessarily sum up exactly to
the formal charge on the molecule. We explored two
normalization schemes to address this issue. The first scheme
calculates the difference between the sum of the partial charges
and the formal charge on the molecule (eq 2), divides this by

the number of atoms, and adds the result to the partial charge
of each atom (eq 3). The second normalization scheme makes
use of the standard deviation of the partial charges assigned to
each atom (similar to the idea used in refs 22 and 23). Here,
the difference between the sum of the partial charges and the
formal charge is distributed across the atoms using weights
derived from the standard deviations of the partial charges
assigned by DASH (eq 4).

=
=

Q Q Q
i

N

i
0

formal
(2)

= +Q Q
Q

Ni i (3)

= +
·

=

Q Q
Q

i i
i

j
N

j0 (4)

Here, Qi is the partial charge assigned to atom i by the tree,
Qformal is the formal charge on the molecule with N atoms, and
σi is the standard deviation of the partial charges in the leaf of
the DASH tree corresponding to atom i from the tree. Both
methods were tested on the validation set and compared to

Figure 3. Example of acetic acid. (A) Attention values for the carbonyl oxygen atom (index 2, level 0) are shown as a heatmap overlaid with the
molecule. (B) DASH tree if it were constructed based only on acetic acid. In light green, the subgraph starting at the oxygen atom (index 2) is
highlighted, with the atom types and connectivity information from Figure 2. The remaining nodes of the DASH tree are colored dark green. For
clarity, nodes in higher levels are omitted, as indicated with “···”. In this simple example, all heavy atoms could be uniquely identified on level 0. The
branching of the hydrogens (atom type 37) into the two different subgraphs occurs in level 1.

Figure 4. Example of the DASH charge assignment for matching “�O” in the molecule CCCC(�O)O. By traversing the levels of the DASH tree,
a fragment for the charge assignment is built up. The partial charge at each level is denoted by a green dot with a standard deviation (left y-axis).
The attention value is shown with a green dashed line (right y-axis).
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both the QM reference charges and the raw DASH partial
charges.
Symmetrizing DASH Partial Charges. The QM reference

charges are, per definition, dependent on the 3D conformation
of the molecule. This means that topologically equivalent
atoms can have different computed partial charges. This
conformational dependency is, in principle, removed in the
GNN due to the 2D input (topology); i.e., partial charges of
topologically equivalent atoms will be averaged in the GNN
predictions. However, asymmetries may be (re)introduced in
the DASH assignment process because subgraphs are matched
using a greedy approach (always adding the node with the
highest attention). The degree of asymmetry can be tested
using the RDKit CanonicalRankAtoms function to find atoms
with the same rank (topologically equivalent) and comparing
the partial charges from the QM reference calculation, the
GNN, and DASH. Note that the DASH partial charges can be
simply symmetrized by averaging the partial charges of the
atoms with the same rank.
Assigning DASH Partial Charges for New Molecules.

DASH partial charges of a new molecule are assigned by first
matching each atom separately in the DASH tree structure. For
each atom, the tree is traversed until either the maximal depth
or the attention threshold is reached or the subgraph is equal
to the size of the molecule. In Figure 4, the assignment process
is shown for the double-bonded oxygen in butyric acid as an
example. The subgraph is built up over six levels, where the
nodes at each level contain partial charges with standard
deviations and attention values (which are used as the stopping
criterion). After all atoms have partial charges assigned
individually, the atomic charges are normalized and symme-
trized.

Note that the DASH tree is by design applicable only to
molecules with a valid RDKit representation (Lewis structure)
and with atom types present in the training set. For molecules
outside of this applicability domain, an error is returned. If a
specific atom type is missing and should be included, the MBIS
calculation could be carried out for representative molecules,
and the values could be added to the DASH tree. This
behavior is comparable to other rule-based partial charge
models, like the Gasteiger model10 or classical force fields like
MMFF94.54

OpenFF Plug-In. To integrate the DASH partial charges
with the rest of the force-field assignment, the DASH tree
structure was implemented as a NonBondedHandler in the
OpenFF toolkit software55 and can be installed as a plug-in.
The plug-in, the stand-alone DASH tree, and the DASH tree
constructor functions as well as the GNN are available as open
source source code on GitHub (https://github.com/
rinikerlab/DASH-tree).

Performance Assessment. The prediction accuracy with
DASH was assessed with the same validation set as used for
the GNN as well as two external test sets. The first external
data set with the 20 canonical amino acids shows the potential
applicability of DASH for biomolecular force fields. Two
different meta-parameters were compared: the maximal depth
of the DASH tree structure and the attention threshold when
constructing DASH. In addition, simple pruning by the
maximal depth or attention threshold was compared to a
pruning scheme based on the standard deviation of the partial
charges in the nodes. If the change in the average partial charge
from parent to child was smaller than the standard deviation of

all partial charges in the child nodes multiplied by a scaling
factor, the node was pruned (eq 5).
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Different scaling factors were tested.
The performance was assessed using the mean absolute error

(MAE), the root-mean-squared error (RMSE), and the
Pearson correlation coefficient R2 compared to the QM
reference partial charges. In addition, the computing time
needed to assign the DASH charges and the size of the DASH
tree itself was monitored.

In addition to the amino acid test set, MBIS charges were
calculated for 24,657 molecules of the VEHICLe data set
(virtual exploratory heterocyclic library),56 which were not in
the DASH data set. The MBIS charges were calculated with
the same procedure as described above and matched with the
DASH tree.

Other Partial-Charge Models. The DASH partial charges
were compared with semiempirical Mulliken-type charges,57

AM1-BCC charges,58 2D Gasteiger charges,10 and MMFF94
partial charges.54 The Mulliken-type charges were taken from
the XTB-GFN244 conformer optimization step during data
preparation. AM1-BCC charges were calculated with the
OpenFF toolkit (version 0.10.0),55 using the Amber toolkit
(version 22.0).59 The 2D Gasteiger and MMFF94 partial
charges were obtained with RDKit42 (version 2022.9.1). For
the amino acid test set, restrained electrostatic potential
(RESP) charges60 calculated with PSI4 and PsiRESP (B3LYP/
STO-3G, RESP2, and TPSSh/def2-TZVP) were also com-
pared.

Liquid Properties: MD Simulations. MD simulations
were performed for a set of 123 organic liquids with
experimental values for density and heat of vaporization
available.37 The molecules were parametrized using the
OpenFF toolkit55 with OpenFF version 2.0.0 (Sage)17 and
the DASH plug-in. To evaluate the density and heat of
vaporization, the openFF-evaluator61 package was used, with
the default schemes to estimate the two properties in the
OpenMM62 engine (version 8.0.0). The default scheme uses a
box of 1000 molecules and consists of an energy minimization,
an NPT equilibration (100,000 steps with 2 fs), and up to 100
NPT production runs (1,000,000 steps with 2 fs) until a
convergence criteria is met, followed by a decorrelation step.
All simulations in this scheme were performed with the
Langevin integrator (298.15 K) and a Monte Carlo barostat
(101.325 kPa) for the NPT simulations. The results were
compared to simulations using AM1-BCC charges.

■ RESULTS AND DISCUSSION
Overview of the Data Set. The final data set contained

398,935 unique molecules with up to three conformers per
molecule. These molecules were selected to represent the
substructures (as measured by unique bits in MFP2) found in
molecules with a maximum molecular weight of 500 g/mol in
ChEMBL with a minimal subset of molecules. Figure 5 shows
the number of data points per element. While the goal was that
each bit is represented at least five times in the data set, a few
MFP2 bits are only present once. These belong to very small
molecules for which radius 2 describes the entire molecule
(i.e., there exists exactly one molecule that can have this bit).
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To estimate the conformational variation of the partial
charges, we compared the differences in the MBIS reference
charges between the three conformers of the same molecule.
The RMSE of the individual conformer to the median over the
three conformers is 0.0125 e, which presents a lower bound on
the accuracy that can be reached by an ML model that uses the
2D topology of the molecule as input. A histogram of the
absolute difference between the conformers can be found in
Figure S1 in the Supporting Information.

The data set of 398,935 unique molecules (three conformers
each, i.e., 1,029,785 3D structures in total) was split randomly
into a 90% subset for training of the GNN and DASH, while
the remaining 10% (100,171 3D structures) served as
validation set. Note that the three conformers of a molecule
were always kept together, i.e., either in the training set or in
the test set.

GNN Performance. The architecture of the GNN was
already optimized in ref 49; therefore it was kept constant in
this study. The hyperparameters (learning rate from 0.000001
to 0.01 with 10-fold increments and batch size ranging from 64
to 512 with 2-fold increments) were screened to identify
optimal values for the data set (Table S1 in the Supporting
Information). A learning rate of 0.0001 and a batch size of 64
yielded the GNN model with the smallest RMSE on the
validation set (left panel of Figure 6). The distribution of the

absolute differences between the GNN prediction and the
MBIS reference reaches an accuracy similar to the conforma-
tional variation limit. The direct comparison is provided in the
right panel of Figure 6.

DASH Performance. After the GNN was successfully
trained and tested, the attention values were extracted, and the
DASH tree structure was constructed using the training set of
the GNN. The validation set was used to evaluate the
performance of DASH and to tune its hyperparameters:
maximal depth and attention threshold. A tree with a maximal
depth of 16 layers and an attention threshold of 5.23 was found
to perform well on the validation set (Figure 7). The RMSE as
a function of the maximal depth is provided in Figure S2 in the
Supporting Information. The same figure also shows that the
time to assign partial charges increases roughly linearly with
the maximal depth. The choice of this hyperparameter is thus a
trade-off between accuracy and speed of assignment.

The right panel of Figure 7 shows the RMSE values of the
DASH partial charges with respect to the MBIS reference
charges on the validation set for each element. The RMSE
values are generally very small. The largest RMSE values are
observed for phosphorus, which is particularly difficult for
charge assignment because it shows a large range of partial
charges and is under-represented in the data set (and generally
in ChEMBL). Normalizing the DASH charges with eq 4
reduces the errors slightly. Using eq 3 instead gives very similar
results (Figure S3 in the Supporting Information). As integer
values for the total charge of a molecule are important for MD
simulations, we used normalization with eq 4 in the remainder
of this work.

The effect of the depth of the DASH tree structure can also
be seen in Figure 8, which shows the distribution of the nodes
over the range of partial charges at different levels of the DASH
tree. Note that level 0 consists of the 122 initial atom types,
which can be seen as discrete bars in the histogram. At level 1,
the possible partial charges have already a much larger set of
possible but still clearly separated values. This strong
discretization becomes further refined with an increasing
depth. At the maximum depth of 16, there is a nearly

Figure 5. Atom counts per element in the full data set (398,935
unique molecules).

Figure 6. (Left) RMSE of the GNN predicted charges with respect to the MBIS reference charges on the validation set (100,171 3D structures) as
a function of the training epoch. The GNN was trained with a learning rate of 0.0001 and a batch size of 64 (final RMSE = 0.0153 ± 0.0002 e). The
shaded area indicates the statistical uncertainty. (Right) Comparison between the GNN predicted charges (100 epochs) and the MBIS reference
charges on the validation set.
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continuous distribution of the 4 × 106 nodes over the full
range of possible partial charges.

A similar trend from a more discrete to a more continuous
prediction of the partial charge can be seen in Figure 9 as a

function of the attention threshold. Note that the attention in
the nodes is not strictly confined to the range of 0 to 1 because
nodes can contain information from multiple molecules, and
the attention is normalized in the GNN over all atoms in a

Figure 7. (Left) Comparison between the normalized DASH partial charges and the MBIS reference charges on the validation set (100,171 3D
structures). A maximal depth of 16 layers and an attention threshold of 5.23 were used to construct the DASH tree structure. The colors of the
points indicate the number of atoms in a pixel. (Right) RMSE of the DASH partial charges with respect to the MBIS reference charges for each
element in the validation set. The “raw” DASH charges are shown in dark green, and the normalized ones (eq 4) are in light green.

Figure 8. Distribution of the nodes in the DASH tree structure over the range of partial charges for the tree level = 0 (A), 1 (B), 8 (C), and 16 (D).
A bin size of 1/2000 e was used.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.3c00800
J. Chem. Inf. Model. 2023, 63, 6014−6028

6021

https://pubs.acs.org/doi/10.1021/acs.jcim.3c00800?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00800?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00800?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00800?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00800?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00800?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00800?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00800?fig=fig8&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.3c00800?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


molecule. The RMSE of the DASH partial charges with respect
to the MBIS reference charges on the validation set decreases
with increasing attention threshold, reaching a minimum at
around 5.2 (the exact value will depend on the training set).
Interestingly, the RMSE converges to a value slightly above the
minimum when the attention threshold is increased further.
The fact that additional information does not improve the
accuracy anymore is an indication that the tree is already able
to capture all relevant information at this point and that
additional information leads to overfitting.

The initial attention values of the 122 atom types (nodes at
level 0 in the DASH tree) are shown in Figure S4 in the
Supporting Information. Our assumption is that atom types
with a high initial attention need little additional information
from the environment for a good prediction of the partial
charge, while atom types with low attention values require
larger subgraphs for a precise prediction. It is possible to
observe some chemical trends by comparing the selected atom
types. For example, the attention of the four atom types for the
halogens show that fluorine atoms have the steepest increase in
attention with increasing depth of the DASH tree, while iodine
atoms have the slowest initial increase in attention (Figure 10).
This slower increase in attention may be explained by the
lower hardness of iodine compared to fluorine and therefore
the stronger influence of the environment on the partial
charge.

When assigning the partial charge of an atom with the
DASH tree structure, a greedy approach is followed; i.e., at
each step the neighboring atom with the highest attention
value is added to the subgraph. This can mean that
topologically symmetric atoms may have different partial
charges assigned. However, such asymmetries are rare and
small (Figure S5 in the Supporting Information). To resolve

this issue, a symmetrization step (i.e., averaging the partial
charges of the symmetric atoms) was added after the
normalization. This does not decrease the RMSE significantly
(reduced by 0.12%) on the validation set. It should be noted
here that the symmetry is mostly conserved for atoms that are
equivalent on a QM level of theory, even if they are not
equivalent in their Lewis representation. For example, the
oxygen atoms of a nitro group will have the same partial charge
(inside the confidence interval) even though their representa-
tion and therefore matched subgraph is different.

Comparison with Other Partial-Charge Models. First,
we compared the accuracy of the DASH partial charges on the
validation set to the performance of the AM1-BCC, Gasteiger,
and MMFF94 methods (Figure 11). Unsurprisingly, the
Gasteiger partial charges have the lowest accuracy and are
clearly not suited for MD simulations of condensed-phase
systems. The weaker polarization results in a narrower range of

Figure 9. RMSE of the DASH partial charges with respect to the MBIS reference charges on the validation set as a function of the attention
threshold. The minimum RMSE is at an attention threshold of 5.2. For two attention thresholds (0.7 and 4.21), a comparison between the DASH
partial charges and the MBIS reference charges is shown on the right. A maximal depth of 16 was used for the DASH tree.

Figure 10. Cumulative attention of the nodes as a function of the
DASH tree depth for the four halogen atom types.
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partial charges (approximately between −0.5 e and +0.5 e),
while AM1-BCC and MMFF94 charges are reasonably close to
the MBIS reference charges. Both methods show larger
deviations than the DASH partial charges (part of this may
be because they were fitted to other reference charges),
especially for slightly charged carbons in large conjugated
systems where the partial charge is influenced by far away
atoms. Interestingly, some discretization effects can be
observed for the MMFF94 charges (visible as horizontal
lines in the figure) due to the limited number of atom types in
MMFF94.

Next, we compared the different partial-charge models for an
external test set that consists of 20 canonical amino acids. The
motivation behind this data set is the use of the DASH partial
charges in protein simulations in the future. For this smaller
data set, we calculated also RESP charges and Mulliken-type
charges from the XTB-GFN2 optimization. The results are
shown in Figure 12. The Mulliken-type charges from the XTB-
GFN2 optimization show a similarly narrow range as the
Gasteiger charges due to smaller polarization, which indicates
that they are also not suited for fixed-charge MD simulations of
condensed-phase systems. RESP charges show overall a similar
behavior to the MBIS charges, although deviations can be
observed for some atoms. Reasons for this could be the
different functional and basis set typically used for RESP
(B3LYP/STO-3G) compared to the MBIS charges extracted in
this work and/or the stronger conformational dependency of
RESP compared to MBIS.19 To exclude the first reason, we
calculated RESP charges also with TPSSh/def2-TZVP as used
for the MBIS charges. The differences were minimal (Figure

S6 in the Supporting Information) compared with the
conformational dependency.

As a second external test set, we considered the VEHICLe
set,56 which contains 24,657 small heterocyclic molecules with
challenging atom environments for partial-charge assignment.
In Figure 13, the different charge models are shown against the
MBIS reference charges. The DASH charges still perform well
with an RMSE of 0.09 e. A more detailed analysis of the
charges per element type can be found in Figure S7 in the
Supporting Information. Also for this test set, sulfur atoms are
some of the largest outliers, which could potentially be
improved by including more diverse sulfur environments in the
DASH training set. The findings for the other charge models
are the same as those discussed above for the other test sets.

Liquid Properties. Finally, we tested the combination of
DASH partial charges with the OpenFF-2.0.0 force field by
calculating liquid properties (density and heat of vaporization)
of 123 organic liquids with experimental data available.37 To
construct the topologies, the DASH plug-in was used in the
OpenFF workflow. All force-field parameters were taken from
OpenFF 2.0.0 (Sage),17 and only the partial charges were
calculated differently. The comparison between the calculated
values (using either DASH or AM1-BCC charges) and the
experimental properties is shown in Figure 14. Given that the
Lennard-Jones parameters were not intended for DASH partial
charges (i.e., no refitting was performed), the performance is
similar with only a small increase in the RMSE values. For the
heat of vaporization, there seems to be a slight shift toward
larger values (overestimation). Nevertheless, the overall good
agreement indicates that the DASH partial charges can be

Figure 11. Comparison between the estimated partial charges with AM1-BCC (A), DASH (B), MMFF94 (C), and Gasteiger (D) and the MBIS
reference charges on the validation set. The corresponding RMSE and R2 values are given in the subplots.
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combined with the OpenFF-2.0.0 force field for condensed-
phase simulations, with a substantially reduced computing time
for the charge assignment (see below).

Timings. In addition to a high accuracy with respect to the
MBIS reference, the DASH partial charges can be assigned
much faster (Table 1) than with commonly used methods,
such as AM1-BCC, and even 4 orders of magnitude faster than
MBIS. While the assignment with Gasteiger and MMFF94 is
even faster than DASH, the resulting partial charges are not
well-suited for MD simulations (as discussed above). Note that
the assignment with DASH was carried out as a sequential
single-thread program. The matching of different atoms in a
molecule could, in principle, be done in parallel, potentially
decreasing the computation time.

The required storage space to save all required data is
slightly larger for DASH (about ≈ 500MB if saved as CSV files

per branch and zipped, or ≈ 150MB stored as compressed
pickle files for each branch) compared to the PyTorch state-
dict of the GNN (7MB). However, on most modern machines
with TBs of storage, these differences should not affect the
performance. Note that the state-dict is a compressed machine
format, while the CSV is a human readable file and contains
extra information that is redundant to machines. Furthermore,
GNN requires PyTorch and PyTorch-Geometric libraries,
while DASH relies only on RDKit to interpret the molecules
and assign the simple feature vectors required by the tree. This
basic RDKit functionality is reasonably stable between versions
of the toolkit; therefore, we anticipate that it should not be
necessary to regenerate the DASH model for each new RDKit
release.

Figure 12. Comparison between the estimated partial charges with AM1-BCC (A), DASH (B), MMFF94 (C), Gasteiger (D), Mulliken-type from
XTB-GNF2 (E), and RESP (F) and the MBIS reference charges on the external test set with the 20 canonical amino acids. Note that a different
functional is used for the standard RESP partial charges than for the MBIS charges.
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■ CONCLUSIONS

In this work, a new approach to assign atomic partial charges in
molecules was developed by using a dynamic attention-based
substructure hierarchy (DASH) in a tree structure, where the
attention values are extracted from a GNN trained on high-
quality QM reference charges. DASH was found to provide a
prediction accuracy that is comparable to the GNN but is
independent of fast-changing and quickly deprecated ML
libraries (the only requirement is basic functionality in the
RDKit), directly human interpretable, and allows the retrieval
of meaningful error bars on the predicted partial charges.

Furthermore, assignments can be changed by the user if
needed for a specific application.

To train the model, a data set was built from four different
sources with a total of 393,692 unique molecules and up to
three conformers per molecule. The molecules were selected to
represent the substructures (as defined by MFP2) of the lead-
like molecules in ChEMBL. The QM reference partial charges
were calculated with TPSSh/def2-TZVP in an implicit solvent
(dielectric permittivity ϵ of 4.9) and extracted with the MBIS
method. The attention values from the GNN that was trained
on this data set were used to order the atom types and
construct the DASH tree structure, where the maximal depth

Figure 13. Comparison between the estimated partial charges with AM1-BCC (A), DASH (B), MMFF94 (C), Gasteiger (D), and the MBIS
reference charges on the external VEHICLe56 test set with 24,657 small heterocyclic molecules.

Figure 14. Comparison of the experimental density (left) and heat of vaporization (right) values of 123 organic liquids37 with the calculated values
using OpenFF-2.0.0 with the default AM1-BCC charges (blue) and the DASH partial charges (green).
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of the tree and the attention threshold were optimized
hyperparameters. Postassignment normalization and symmet-
rization ensure physically reasonable partial charges. The
DASH approach outperforms commonly used methods for
classical force fields such as AM1-BCC or RESP in assignment
speed by two or more orders of magnitude, while predicting
partial charges close to the MBIS reference.

In this work, the DASH tree was built with MBIS as the
reference charge extraction method due to its high accuracy
and low conformational dependency. However, the same
procedure could be applied with any other type of partial
charge as reference or also for other atomic properties as
target.

In conclusion, DASH is a robust, fast, and accurate method
for partial charge assignments, where all assignments can be
visualized as fragments of a molecule for full human readability
of each partial charge assignment. The DASH tree structure
and underlying source code as well as an OpenFF plug-in are
freely available.
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