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ABSTRACT: Knowledge in the chemical domain is often disseminated graphically via chemical reaction schemes. The task of
describing chemical transformations is greatly simplified by introducing reaction schemes that are composed of chemical diagrams
and symbols. While intuitively understood by any chemist, like most graphical representations, such drawings are not easily
understood by machines; this poses a challenge in the context of data extraction. Currently available tools are limited in their scope
of extraction and require manual preprocessing, thus slowing down the speed of data extraction. We present a new tool,
ReactionDataExtractor v2.0, which uses a combination of neural networks and symbolic artificial intelligence to effectively remove
this barrier. We have evaluated our tool on a test set composed of reaction schemes that were taken from open-source journal articles
and realized F1 score metrics between 75 and 96%. These evaluation metrics can be further improved by tuning our object-detection
models to a specific chemical subdomain thanks to a data-driven approach that we have adopted with synthetically generated data.
The system architecture of our tool is modular, which allows it to balance speed and accuracy to afford an autonomous, high-
throughput solution for image-based chemical data extraction.

■ INTRODUCTION
Research in the materials-science community is becoming
more data driven than ever. Thanks to initiatives such as the
Harvard Clean Energy Project1 and Novel Materials Discovery
(NOMAD),2 computational data are accessible for researchers
around the world to drive the development of new materials.
The availability of millions of data concerning the structures of
materials and their cognate properties enables so-called big-
data approaches in science. Contemporary approaches for data
mining often use natural language processing (NLP) to extract
data from text sources.3−12

Computer vision, another important branch of AI, also has
great potential in the area of mining image-based chemical
information from scientific documents. In the field of synthetic
chemistry, a myriad of chemical reaction schemes are displayed
in the literature. Extraction of data from these sources is the
focus of the presented work. When data extraction from a
chemical reaction scheme is considered, the main goal is to
accurately find and classify its individual elements. In the
computer-vision domain, this is known as object detection, and
it is a well-researched task. Thereby, a wide range of detection
networks exists, depending on usage domain, and required
inference speed and accuracy.13−25

Computer vision for optical chemical structure recognition
(OCSR) is a core challenge that one needs to resolve if one is
to automate the interpretation of image-based chemical
reaction schemes; chemical diagrams are ubiquitous in such
schemes. Computer vision has been applied to interpret
chemical diagrams in images for around 30 years26 and the
problem of converting raster images of chemical diagrams into
digital formats, e.g., machine-readable format such as a
simplified molecular-input line-entry system (SMILES),27 has
been well studied. Initial attempts26,28−31 at tackling this
problem included rule-based algorithms which involve defining
primitives that form carbon skeletons, bonds, and superatoms.
However, such tools offer a limited scope for improving their
assessment metrics, owing to their complex and rigid nature.
More modern solutions32−35 are driven by data, and use neural
networks to approximate highly nonlinear mappings from the
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signal domain to output digitized representations of chemical
information. A recently published paper on the DECIMER34

software, which employs a transformer-based architecture,
affords an accuracy of 90% (measured from the average
Tanimoto similarity). An OCSR-based tool, ChemSchemati-
cResolver, developed by Beard and Cole36 is also capable of
separating chemical diagrams and their labels into two classes
where they appear together in chemical schematics; however,
its usage is limited to images that contain only these two types
of objects.
Few solutions currently exist to extract data from full

chemical reaction schemes, which represents a substantial
extension to the OCSR problem. In addition to the need to
recognize chemical diagrams from images, chemical reaction
schemes involve object-detection problems in resolving
chemical structures and other reaction descriptors, as well as
making connections between different parts of the reaction
scheme (e.g., diagrams and their labels) and establishing
context for the chemical transformations by deciphering the
role of each chemical displayed in different steps of a chemical
reaction (e.g., reactant, intermediate, product) and making
logical connections between them. Qian et al.38 have recently
formulated a method of data extraction from reaction schemes
via an image-to-sequence translation task. Their model is a
single encoder-decoder architecture closely following Pix2-
Seq,39 which has been developed as a generic object detection
model, whereby the task is expressed in the language modeling
domain. This formulation allows extension of object detection
into an ordered sequence detection that is suitable for reaction
scheme parsing. Qian et al.38 mentioned further possible
improvements of their methodology via use of more annotated
data.

We present a tool, ReactionDataExtractor v2.0, that is
capable of capturing additional data such as the reaction
arrows, arrow annotation information (environmental con-
ditions of reactions) placed below and above reaction arrows,
and chemical labels that may form an important context
surrounding the chemical diagrams. Our tool can be used on
reaction schemes from a variety of sources, e.g., journal articles.
Extracting chemical labels and linking them to their parent
chemical diagrams using our tool allow the identification of
chemical species which are often mentioned in the main text
using merely their labels. Furthermore, our work is also
complementary to the OCSR approaches which analyze
individual chemical diagrams, whereas our tool infers relation-
ships between the different chemical diagrams based on spatial
information, as well as other visual information (e.g., reaction
arrows), thus leading to the reconstruction of full reaction
schemes in a machine-readable format. Previous attempts, such
as ReactionDataExtractor v1.037 are more limited in scope
owing to the assumptions that the tool makes about elements
of the reaction schemes. For example, its use of the Hough
transform for arrow detection limits the scope of resolving
simple reaction schemes to those with solid arrows only, while
its diagram-extraction model makes implicit assumptions about
the presence and length of a carbon skeletal backbone in
chemical diagrams. Therefore, prior to data extraction, a
manual filtering step is required in ReactionDataExtractor
version 1.0 to align the data distribution to its defined scope,
thus limiting its practical use for high-throughput data
extraction. This paper presents v2.0, which has been designed
to overcome these two limitations. Thanks to the use of deep-
learning approaches for object detection, neural-network-based
models have become more flexible in accommodating a larger
variety of input data. The system architecture of ReactionDa-

Figure 1. Example reaction scheme40 that will serve as the working example in this paper to illustrate the key steps of the operational pipeline in
ReactionDataExtractor v2.0. No changes were made by the authors to this originally published reaction scheme.
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taExtractor version 2.0 combines neural-network models with
new symbolic algorithms that aim to inject expert knowledge
into the pipeline. This new foundational architecture of
ReactionDataExtractor effectively lifts the barriers to extraction
that v1.0 encountered. Furthermore, the data required to train
the neural network are generated synthetically (artificially);
thus, its data-extraction process can be fine-tuned to a specific
chemical subdomain by training neural-network models on
data that were synthetically generated according to the user-
specified schema. This makes the tool more suited for the
automatic generation of databases of chemical reactions.

■ SYSTEM OVERVIEW
ReactionDataExtractor is used for automatic data extraction
from images of chemical reaction schemes. An example of a
reaction scheme is shown in Figure 1, which we shall use as the
working example throughout this paper to illustrate certain
distinct features of our tool.
ReactionDataExtractor v2.0 comprises two parts: its

synthetic data-generation pipeline (Scheme Engineer) and its
main operational pipeline. The relationship between the two is
shown in Figure 2.

■ SYNTHETIC DATA-GENERATION PIPELINE
A “Scheme Engineer” Workflow: Conceptual Idea

and Rationale for Development. Even though chemical
reaction schemes can convey unique semantic information,
they generally obey common types of schema. For example,
simple chemical reaction schemes tend to be drawn
horizontally along a single line, with arrows defining reaction
steps and separating reactants and products in each steps. A

good degree of order is generally displayed in such schemes,
from which chemical patterns emerge. It is therefore possible
to recreate the data distribution via the means of a so-called
synthetic data-generation process, whereby the data resembling
real-world data are created artificially. To achieve this goal, we
need to carefully define the schema and populate the schemes
using elements of individual reaction schemes. To this end, we
have developed a pipeline called the Scheme Engineer. The
process of creating these artificial reaction scheme data is
visualized in Figure 3. In the context of this generation process,
we use terms “synthetic data generation” to represent the
general concept of our design and ‘artificial reaction schemes’
to denote the created data. This is to provide more clarity as
the word “synthetic” has a special meaning in the field of
chemistry, and its improper use can lead to confusion.
In the next section, we describe in detail how the individual

elements (chemical diagrams, labels, reaction arrows, and their
annotations) of reaction schemes are sourced. Later, we
describe how these elements are used and augmented to create
new, artificial reaction schemes.

Sourcing Data Components to Generate Artificial
Reaction Schemes. In this section, we describe how the
individual data components (chemical diagrams, reaction
arrows and their annotations, chemical labels, etc.) are sourced
and preprocessed for use in order to generate artificial reaction
schemes for training the main object detection model. The
initial data used to generate the individual pieces of our
artificial reaction schemes were sourced from publicly available
databases as well as from a small number (about 150) of
annotated reaction schemes. The reaction schemes were taken
from closed-access articles from scientific journals. The closed-

Figure 2. System architecture of ReactionDataExtractor v2.0 with its operational pipeline being shown as propagating from top to bottom and its
synthetic data-generation pipeline being shown across a horizontal traverse. The block-set symbols denote processes that use neural networks, and
the cog symbols highlight symbolic postprocessing and data-generation algorithms.
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access criterion ensured that there is no intersection between
these data and our evaluation set, described later in the
technical evaluation section. These annotations were used
indirectly to train the main object-detection model as well as
directly to train the arrow-detection model.
To obtain examples of individual chemical diagrams that

form pieces of the artificial reaction schemes, we randomly
chose 10,000 chemical schematics that are rendered in the
ChemSpider41 database. A dilation with a large disk-shaped
kernel was applied to each image to ensure that a single
chemical species and all connected components belonging to
the largest dilated region were selected to represent the
chemical molecule. Examples of arrow annotations and
chemical labels that form pieces of our artificial reaction
schemes were taken directly from the annotated images. We
extracted regions of these images that contain 418 arrow
annotations and 951 chemical labels. We postprocessed the
cropped arrow annotations to remove fragments of arrows. We
also manually created a small number of plus signs, brackets,
and similar text symbols to provide negative samples that could
inform the object-detection model. It is important to note that
the choice of all reaction elements from this assembled set of
reaction elements, including chemical diagrams, is completely
random. Therefore, the artificial reaction schemes that are
afforded by this Scheme Engineer process make no chemical
sense, which is a potential limitation of this method.
Nevertheless, the image-based features of the individual

elements and relationships between the elements appear to
be sufficient for the model to learn meaningful representations,
which is reflected in high evaluation metrics reported later.

Artificial Scheme Generation. In this section, we
describe how the components of reaction schemes described
earlier are used to create new artificial reaction schemes. The
schemes are created by placing the imagery for chemical
diagrams, their reaction arrows, chemical labels, and arrow
annotations on an empty image-based canvas according to a
predefined schema, which directs both the absolute and
relative positions of individual scheme elements. These
schemas are defined by the user and specify the general layout
of a reaction scheme. For example, a linear schema guides the
creation of simple reaction schemes, which can be drawn along
a single line, while a cyclic schema allows creation of schemes
that resemble simple catalytic cycles. The schemes also define
how many reaction steps are allowed, how many diagrams can
be placed per step, and how many chemical diagrams and
arrows should have labels and arrow annotations, respectively.
Prior to the placement of the image of each reaction
component onto the canvas, it undergoes an augmentation
process. Thereby, each image is subjected to affine trans-
formations (translations, scaling, rotations) and is randomly
blurred to make the object-detection neural network more
robust to dealing with low-resolution images since high-
resolution input data are not always readily available. We also
add a small random number of negative samples to assist in the

Figure 3. Synthetic data generation process. In order to train our main detection model, we created artificial reaction schemes. This is done by first
obtaining the visual data components of a reaction scheme from various sources depending on data type and then using these data as resources to
populate an a priori blank image canvas. Placement of these resources is governed by a user-defined placement schema.
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object-detection model training. We used these artificially
generated data to train this model. An example of an artificial
reaction scheme is given in Figure 4. This method allows us to
produce large amounts of data within the modeled data
distribution. Furthermore, we can define more layouts using a
user-defined schema. From a practical point of view, potential
limitations are those associated with any synthetic data
generation process and data augmentation. These tools work
well when the data distribution is well-defined but scheme
patterns outside of the distribution might not be easily
handled. User-defined schema are one method to overcome
this; nevertheless, it is challenging or even impossible to define
all patterns. Furthermore, in its current form, there is still room
for improvement in some areas, e.g., the relative position of the
reaction arrow and its annotation, which might affect
performance.

■ MAIN OPERATIONAL PIPELINE
Scheme Extraction Pipeline. The main extraction

pipeline is summarized in Figure 2. After preprocessing, an
input image undergoes the core extraction process. The image
is fed to an object-detection model which detects three classes
of chemical information: chemical diagrams, chemical labels,
and arrow annotations. The fourth semantically important
class, reaction arrows, is extracted in a parallel step. To achieve
this, connected components (CCs) are filtered according to
simple criteria to yield proposals that are then fed to an arrow-
detection model. Initial experiments showed that a single
object-detection model performed well for three of the classes
of chemical information but afforded poor results for reaction
arrows. This exception is likely due to the very small size of the
arrows and the little semantic information that is conveyed by
their constituent shapes, as opposed to the larger and/or more
semantically complex chemical diagrams, arrow annotations,
and chemical labels. We therefore defined a different, simpler,
and lightweight model for arrow detection. Both of these
models are described below.

Main Object-Detection Model. We use an object-
detection model from the Detectron242 library. The model is
based on a Faster R-CNN architecture with a ResNeXt-10143

feature-extraction backbone, and a simplified overview has
been sketched in Figure 5. We used 2000 synthetically
generated reaction schemes to train the object-detection model
over 5000 iterations via the means of transfer learning using an
available pretrained model as a starting point. We also
experimented with a larger training set, but no significant
improvement was found, likely due to the small set of unique
annotated data used to create the final training sets. We used
distance intersection-overunion (DIoU) loss for bounding box
regression with relative weights of 2.0 and 10.0 for the region
proposal network and the main detection head, respectively;
and the default weights for the classification heads. We

optimized the neural network using a stochastic gradient
descent (SGD) optimizer with a learning rate of 0.001.

Arrow-Detection Process. The arrow-detection process is
summarized in Figure 6. The arrow-detection model uses a
simple convolutional neural network with a Resnet-1844

backbone which receives as input a 64 × 64 image patch
containing a single connected component and has two
branches: the first branch classifies the input patches as
those that contain arrows and those that do not. A second
branch takes the final features and transforms them further
using two additional fully connected layers to further separate
the arrows into four classes (solid arrows, curly arrows,
equilibrium arrows, and resonance arrows). We use transfer
learning from a pretrained Resnet-18 backbone, and train the
model end-to-end for 20 epochs using an Adam optimizer with
learning rate of 0.001 by applying a binary cross entropy loss to
the first (detector) branch and a cross entropy loss on the
second (classifier) branch:

= +1 detector 2 classifier (1)

where λ1 = 10 and λ2 = 1. To train the model, we used a small
number (ca. 150) of annotated chemical reaction schemes,
extracted all of their individual connected components, and
assigned an arrow classification label from 0 to 5, where 0
represents a nonarrow patch, and classes 1−4 denote the
different types of arrows, to each extracted connected
component. We added to this training set a small number of
arrows that had been created using chemical drawing software
and augmented these arrows using affine transformations and
by randomly applying a small Gaussian kernel to account for
arrows in low-resolution images. This manual addition of
specially crafted arrows ensures that there is a greater diversity
of arrows in the training set, which affords a more balanced
data set. The detected arrows for the worked example are
highlighted in Figure 7.

Diagram Postprocessing. It is important that the
bounding boxes of the relevant image information contain

Figure 4. Example of an artificial reaction scheme. From a chemical point of view, this “scheme” makes no sense, but this is not the goal; rather, the
imagery needs to contain important diagram and text-element features, as well as spatial relationships between them; the features are not chemically
related, so an ensemble chemical interpretation is not appropriate. This scheme was generated by using the linear schema described above.

Figure 5. Overview of the main object-detection model. An input
image containing the full reaction scheme is fed through a
convolutional feature extractor (ResNeXt101), and the output feature
maps are then passed to a Region Proposal Network, where regions of
interest are selected and regressed. After being passed through fully
connected layers, the learned class-specific information is used to
classify and further regress bounding boxes to output image patches
containing chemical diagrams, chemical labels, and arrow annotations.
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the exact regions of interest in achieving the best OCSR
accuracy. In generic object-detection applications, images
contain more information than chemical reaction schemes,
whose backgrounds are usually noninformative and whose
chemical diagrams contain signal discontinuities (e.g., where a
superatom is present). Consequentially, our detection process
could erroneously identify a chemical diagram because it
misjudges its true size. On the one hand, it could afford an
incomplete chemical diagram because it missed some of its
relevant features in an information-poor region of the image in
which the full diagram is contained. On the other hand, it may
capture irrelevant information in addition to the chemical
diagram because it struggles to partition the contents of this

diagram from its surrounding environment. To resolve these
inconsistencies, we apply a similar dilation algorithm to that
reported for ReactionDataExtractor v1.0; i.e., for each detected
diagram, we take the largest detected connected component
and dilate it according to a locally calculated dilation kernel,
and then assign all individual connected components to that
diagram. The effect of this regularization procedure within the
diagram postprocessing is shown in Figure 8. It can be seen
that the process helps to reduce the number of spurious
detections and additionally fine-tunes the boundaries of the
detection bounding box to include terminal superatoms.

Text-Element Postprocessing: Identifying Chemical
Labels and Arrow Annotation Information. From an

Figure 6. Architecture of the arrow-extraction model. The model takes in an image patch which contains a single, isolated connected component.
Features are extracted by the Resnet-18 backbone layers. Transformed features are fed to two parallel branches: one for arrow detection, and
another for classification of arrows into arrow types (solid, curly, equilibrium, resonance).

Figure 7. Application of the arrow detection process for the worked example, highlighting the detected solid arrows in yellow (no other arrows
were found).
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object-detection point of view, text elements that contain
chemical labels and arrow annotations share a high level of
similarity. They comprise blocks of text characters that are
challenging to differentiate without optically recognizing and
parsing the text, the latter being outside the scope of computer
vision. An important visual cue for such a text, which can be
utilized by an object detector, is its relative position within an
image. The positions of arrow annotations and their
corresponding reaction-step arrows are correlated, as is the
position of a chemical label and its corresponding chemical
diagram. As expected, we found that training the object-
detection model with two text-element classes instead of a
single class achieved higher performance and that the model
did not require the explicit use of an attention mechanism.
Nevertheless, as mentioned earlier, only a small number of
unique training data were available due to the high labor cost
of data annotation, which is why a postprocessing step was also
incorporated into the operational pipeline of ReactionDataEx-
tractor v2.0. This step enforces the aforementioned inductive
biases. Figure 9 summarizes the full set of operations in this
text-element postprocessing step.
For each text-element region detected by the neural network

either as a chemical label or as a contained set of arrow
annotations, we find the closest chemical diagram and reaction
arrow. We update the prior class to chemical label if the closer
of the two is a chemical diagram and the text-element region of
interest is below this diagram. If, however, a reaction arrow is
the closer of the two and this region satisfies a directionality

criterion with respect to this arrow, then the prior class is
changed to a set of arrow annotations. The directionality
criterion checks whether the text-element of interest lies along
a line normal to, and passing through, the center of this arrow;
for example, in the case of a horizontal arrow, this criterion
checks whether this region lies either below or above this
arrow within a certain distance from this arrow. Otherwise, we
kept the prior class for this region of interest. Then we pair
each label with its nearest diagram and each region containing
a set of arrow annotations with its nearest arrow. We show the
importance of this step in Figure 10. In particular, the textual
regions that describe a contained set of arrow annotations,
which are characterized by a larger semantic diversity, suffer
from having been trained using few unique data. We quantify
the importance of this step by performing an ablation study, as
described later in the technical evaluation section. The
performance of this step can be further improved with more
data and incorporation of additional scheme patterns through
user-defined schema. Nevertheless, the text-element postpro-
cessing step improves the text-identification performance of
ReactionDataExtractor. Prior to reconstructing the chemical
reaction scheme, we assigned relevant chemical diagrams to
regions of arrow annotations. The final output is shown in
Figure 11.
Finally, we performed OCSR using the DECIMER45

package. We used the Tesseract46 software to decode the
text elements of the images, which have been classified as
chemical labels or arrow annotations.

Figure 8. Initial diagram-detection result and the diagram postprocessing step of the operational pipeline. Raw detections (purple regions) are
postprocessed to give final predictions (purple outlines).

Figure 9. Text-region postprocessing workflow.
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Graph Formation. A graph of the full chemical reaction
scheme was then constructed by applying a search algorithm
around each arrow in the images. We estimated the direction
of a given arrow by fitting a minimal rotated bounding

rectangle to its contour using a least-squares fit. We then
calculated the center-of-mass (COM) coordinates of this arrow
from the constituent pixels. The COM is used to decide which
side of an arrow represents the chemical reactants and

Figure 10. Application of the text-element detection and postprocessing steps of ReactionDataExtractor to the worked example. The two panels
depict detected chemical labels and arrow annotations before (top) and after (bottom) the postprocessing step. Regions labeled as arrow
annotations are marked in green, while chemical labels are colored in blue. After text-element postprocessing, the raw predictions from the text-
element detection step are conditionally reclassified based on simple heuristics. The text-element postprocessing step mainly improves the
performance of detecting arrow annotations, but it also helps when the model prediction with different class labels overlap (bottom part of the top
panel).
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products of a given step. This approach does not work for curly
arrows, which are more complex, and a rotated bounding
rectangle does not properly capture directionality. Typically,
curly arrows have up to 4 end points (2 arrow hooks, and 2
ends), and these end points need to be captured in order to
fully understand the local environment around the arrow. To
do this, we undertake the following heuristics:
We first look at the boundaries of the original (unrotated)

arrow bounding box. We select four rectangular regions, one
per each side of the bounding box. One side of each rectangle
is defined by the width or height of the bounding box, whereas
the other side is equal to a fraction of the other dimension, so
that the regions near the boundaries of the bounding box can
be probed. These regions usually contain all arrow end points.
Of all arrow pixels, we select one pixel per rectangle such that
its coordinates are closest to the probed boundary (for
example, in the region close to the left boundary, we select the
leftmost arrow pixel). We then filter these pixels in two stages.
In the first stage, we filter pixels that are very close to each
other in one arrow end that spans two regions. In the second
stage, we filter pixels that are not end points. This can happen
if an arrow is curved outward. In this case, we erase all pixels
from a given probed region and check if the arrow is still a
single connected component. Removing pixels around an end
point causes no effect on the integrity of an arrow, but if pixels
around the middle are removed, the arrow breaks into two
separate connected components.
Once we have the end points, we find the arrow hooks by

fitting straight lines in the regions around the selected pixels
using a least-squares fit. We then perform a scanning operation
in the direction perpendicular to the fitted line and check
whether the number of arrow pixels is approximately constant

or varies. In the former case, we classify this end point as an
arrow end; otherwise this is deemed to be an arrow hook.
Finally, we select one arrow hook and one arrow end by

checking the size of chemical diagrams closest to them and
choose the hook and end with the largest diagrams nearby.
Here we assume that in each step there is a main reactant and
product, as well as potentially side reactants and products,
depictions of which are strictly smaller than the image size of
the main chemicals displayed in the chemical reaction.
In order to scan around the arrow, we compute two separate

directions, one for a scan of main reactants and one for a scan
of main products, from slopes of lines connecting the midpoint
of the arrow bounding box and the selected arrow end and
hook, respectively. This generalizes the algorithm, which was
originally devised for ReactionDataExtractor v1.0, such that it
can now process different kinds of reaction arrows (including
resonance, curly, and equilibrium arrows). While for a
complicated sequence of reactions, classifications for the role
of chemicals in a reaction, such as ’reactants’ and ’products’,
might not be useful, e.g., for catalytic cycles, they are well-
defined for each individual reaction step. We thus perform two
scans to find “reactants” and “products” of a step by marking
equidistant lines along the derived direction as one moves
away from the center of an arrow. We stop the scan when
another arrow is encountered (representing a different reaction
step) and check for bounding boxes found in each scanning
step. If no “products” or “reactants” are found, it is assumed
that the individual reaction step concerned is spread over
multiple lines; therefore, a search is then performed in the
previous or next line, depending on the position of an arrow
relative to the image size. Individual reaction steps are then
connected into a graph structure by matching “products” of
one step with “reactants” of another. The graph can then be

Figure 11. Final predictions for chemical diagrams (purple), arrows (yellow), arrow annotations (green), and chemical labels (blue). Note that not
all labels are mutually exclusive, for example a region can contain a chemical diagram which belongs to a contained set of arrow annotations.
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exported to an easily processable format. The full reaction
graph for the worked example is depicted in Figure S3.

■ TECHNICAL EVALUATION
Overall Pipeline Performance. The performance of our

pipeline was formally measured using precision, recall, and F-
score metrics, which are defined as

=
+

TP
TP FP

precision
(2)

=
+

recall
TP

TP FN (3)

= × ×
+

F 2
precision recall
precision recallscore

(4)

where TP (true positives) denote correctly extracted data, FP
(false positives) symbolize incorrect extracted data, and FN
(false negatives) refer to the data that were not detected by our
system. Further details on the metrics that were used in the
context of evaluating the accuracy of individual image-
processing steps are provided in the Supporting Information.
Each step of the operational pipeline of ReactionDataEx-

tractor was evaluated wherever it was new or it has been
altered since the production of ReactionDataExtractor v1.0,
i.e., the steps involving the extraction of chemical diagrams,
arrows, arrow annotations, and chemical labels, as well as
matching between chemical labels and their corresponding
diagrams, and the reconstruction of the overall chemical
reaction scheme. In contrast to the evaluation exercise for
ReactionDataExtractor v1.0, we herein limit evaluation of
extracting arrow annotations to an assessment of whether
correct regions were detected, and we do not consider
explicitly if the chemical species that were extracted are
correct. This is for two reasons: (a) the engine used for optical
character recognition in ReactionDataExtractor v1.0 remained
the same for v2.0; (b) a large, diverse test set was created to
evaluate the ReactionDataExtractor pipeline, which was
enabled thanks to the reduced cost of annotation compared
to manual text annotation that was required for v1.0. In
common with the evaluation process for ReactionDataEx-
tractor version 1.0, version 2.0 was assessed using figures from
open-access articles across a wide variety of scientific journals
from two mainstream publishers: Springer and the Royal
Society of Chemistry. A notable difference between these
evaluation processes is that the process for assessing v2.0 was
much less constrained as there are currently no scope
limitations, which were natural when rule-based techniques
were applied for ReactionDataExtractor v1.0. The scraping
process is described in-depth below.
Figures from articles published in Springer journals were

scraped by using the API that was provided by the publisher. A
search was performed using keywords “reaction” and “scheme”
to make no assumptions about the layout of the reaction
schemes or the domain of chemistry from which they originate.
The first 1542 articles were downloaded in HTML format and
analyzed to identify images of reaction schemes using their
names. Thereby, schemes were selected using a pattern-
matching procedure, and the first 360 of these schemes were
selected. Using these names, we downloaded the 360 schemes
from the publisher’s servers.
Similarly, reaction schemes from articles published in

journals across the Royal Society of Chemistry publication

portfolio were scraped using the advanced user search facility.
A similar search was performed using the same keywords:
“reaction” and “scheme”. 1000 articles were downloaded in
HTML format and analyzed for images using their names and
pattern matching; a procedure similar to the one above. The
first 200 schemes were selected, and download was attempted
from the publisher’s servers. Of these, 43 downloads raised a
HTTP exception during the process and were discarded. This
process therefore yielded 157 reaction schemes.
In contrast to ReactionDataExtractor v1.0, we do not make

any assumptions about the reaction schemes in v2.0. Naturally,
there are still boundaries that define a chemical reaction
scheme (e.g., some species should be presented as chemical
diagrams in order to be captured); yet, in the vast majority of
cases where these boundaries are violated, the pipeline will
raise an exception and skip an image automatically.
Table 1 summarizes the precision, recall, and F-score metrics

for the relevant steps of the operational pipeline in

ReactionDataExtractor v2.0. Over 1100 arrows and 2500
chemical diagrams were present in the 517 reaction schemes
that comprised the evaluation test set.
Representative Performance Metrics. We computed distribu-

tions of precision and recall values for the same four stages as
well as their average in individual images; these are provided in
Figure 12. These distributions indicate that the pipeline works
well across the whole data set. The only exceptions are the
precision and recall distributions for label detection, where a
peak is clearly visible at 0%. This is likely due to cases where
labels are of a particularly small size, since these are more
challenging for the main detection model to extract. The
distributions for the overall detections show that objects in
almost 200 schemes have been detected with perfect precision
or recall (196 and 186 reaction schemes, respectively).
The resulting metrics and sources of error are further

discussed in what follows. Qualitative examples referred to in
the text below are presented in Supporting Information.
The arrow-detection stage afforded a precision of 95.7% and

a recall of 96.3%. This is excellent performance with only a
very small fraction of arrows that have not been correctly
detected. Some curly arrows, in particular, present a higher
complexity that requires high model generalization perform-
ance. Moreover, some arrows cannot be captured by the model
since they do not constitute isolated connected components
and are glued to other elements of a reaction scheme.

Table 1. Evaluation Metrics of the Key Steps in the
Operational Pipeline of ReactionDataExtractor v2.0a

pipeline
deliverable TP FN FP recall precision F-score

arrow detection 1131 43 51 96.3% 95.7% 96.0%
diagram detection 2292 237 84 90.6% 96.5% 93.5%
label detection 1439 464 504 75.6% 74.1% 74.8%
arrow annotation
detection

756 299 167 71.7% 81.9% 76.4%

diagram-label
matching

1255 235 N/A 84.2% N/A N/A

overall reaction
graph
evaluation

878 289 120 75.2% 88.0% 81.1%

aFor diagram-label matching, we assessed correct and incorrect
matching, denoted them as true positives and false negatives,
respectively, and computed the equivalent recall metric.
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The detection of chemical diagrams achieved an overall
precision of 96.5% and a recall of 90.6%. Given a simple
definition of a chemical diagram (all chemical species with at
least one single bond line are considered to be chemical
diagrams), these metrics suggest strong performance. Incorrect
detections are mainly due to poor diagram postprocessing,
whereby the dilation process is not sufficient to cover distant
superatom connected components (cf. Figures S4, S5).
Compared with the detection of arrows and chemical

diagrams, the performance of ReactionDataExtractor v2.0 is
lower in detecting textual elements that pertain to chemical
labels and arrow annotations. Apart from reasons specific to
these two classes of information, the detection process
struggles to differentiate between relevant text regions (the
two classes) and other text (such as headers, footers, and
auxiliary information). Such differentiation relies primarily on
contextual information (the local environment of each image
region), which is affected by the density of features (crowding)
within an image. Additionally, the relevant semantic features of
data belonging to textual element classes are challenging to
model fully using a sparse data set.
The detection of chemical labels led to a precision metric of

74.1% and a recall of 75.6%. Label detection is compromised,
particularly where elements of a reaction scheme cannot be
found in the set of data that trained the detection model. For
example, in Figure S4, a dashed horizontal line appears to
derail label detection. The detection also seems to be
negatively affected in reaction schemes that describe synthetic
details from the domain of organometallic chemistry (Figures
S6 and S7). The reason here is likely to be the same issue:
insufficient relevant data within the training set. While
ReactionDataExtractor has been designed with organic-
chemistry applications in mind, readers with an interest in
organometallic chemistry could possibly improve the label-
detection performance by retraining the detection model with
more organometallic compounds in the training set.
The detection of text from arrow annotations results in

precision and recall values of 81.9% and 71.7%, respectively.
One particular issue is the presence of other, nonimportant,

crowded text (Figure S8) . Additionally, these image regions
manifest with much greater semantic complexity and variety in
scale compared to chemical labels, and therefore they require a
much larger number of training samples to more fully model
the class of text. This is particularly visible in certain figures
(e.g., Figure S9 and S10), where parts of chemical diagrams are
erroneously marked as arrow annotations.
Finally, we also performed an overall evaluation of the entire

operational pipeline of ReactionDataExtractor v. 2.0 using the
output reaction graphs as a proxy method. Indeed, it is
challenging to provide a single metric for the whole pipeline.
So, this workflow captures all the crucial elements that form
each reaction scheme graph; the workflow is equally sensitive
to possible issues with the overall reaction graph reconstruc-
tion.
Most reaction schemes are composed of a series of ordered

reaction steps. In order to probe the graphs, the algorithm
constructs a reaction graph from the annotated data by
marking and numbering individual reaction steps and assigning
diagrams to these reaction steps. It then finds starting nodes
both in the annotated data and pipeline output and traverses
the graphs, starting from the initial node (or multiple initial
nodes) and storing individual reaction steps. As it traverses, it
compares the reaction steps from annotation data and pipeline
output and counts the number of matched reaction steps (true
positives), reaction steps absent in the output (false negatives),
and spurious reaction steps (false positives). It handles special
cases of cyclic reaction schemes, where no starting nodes are
found, by selecting a random node as the starting node,
forming a circular traversal path ending with the same starting
node and comparing the reaction steps along the way. The
details of the matching process are provided in the SI. This
evaluation process achieved an F-score of 81.0%, which
indicated good performance. This evaluation relies on correct
chemical diagram detections (used for matching the steps) as
well as correctly detecting the arrow and reconstructing
reaction steps and is very sensitive to incorrect predictions,
thereby giving a good metric for assessing the overall
performance of ReactionDataExtractor v.2.0.

Figure 12. Distributions of precision and recall metrics for pipeline evaluation across the entire evaluation data set.
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Overall, very good performance metrics are achieved, given
the small data sets that were used to train the main object-
detection and arrow-detection models. Nevertheless, it is clear
that certain stages of the operational pipeline for the tool could
benefit from expanding the size of the data set used in training
its various models. This is especially the case for the detection
of chemical arrow annotations. It could also be helpful to
introduce a more varied schema for the synthetic generation of
artificial reaction schemes.

Assessing the Importance of a Separate Arrow
Detection Model. Our arrow detection model is an entity
that is separated from the main object detection model. The
detection of the reaction arrows should be simple: they contain
few visual features and are easily distinguishable from other
detected objects. It is therefore important to justify the
decision to separate the detection of arrows from the main
object detection model. To achieve this, we performed an
ablation study of the main detection model, whereby we added
a fourth label to detect reaction arrows and trained the model
using the same artificial reaction schemes with additionally
annotated arrow bounding boxes. The results are shown in
Table 2. In this test, we evaluated only the detection part of
our developed classifier, in common with our main evaluation.
From the results of this experiment, it can be inferred that

arrow detection suffers from incorporating the task into a
single model. The F-score of 79.9% is very good but can be
significantly improved by delegating the detection exercise to a
simpler classifier. One particular limitation of the classifier is
that the connected components have to be well-separated for it
to work well, as opposed to the main object detection model,
which has no such limitation. This can be problematic, when
individual letters within arrow annotation overlap with an
arrow, but such issues are present in our evaluation data set
and the model still compares favorably with the object
detection model. One consequence of the higher performance
is a higher metric for arrow annotation detection, which
benefits from true positive arrow detections, as this
information is used during the text-element postprocessing
stage.

Assessment of the Combined Arrow Detection/
Classification Model. Our main evaluation shows the results
of the arrow extraction process without specifying the detected
arrow type. To provide a full picture, we provide this
breakdown in Table 3.
Our test set contained no resonance arrows. The table shows

that recall values are 75% or above across all remaining classes
and high values for precision. We note that the model takes as
input all connected components in all images. Given this

information, the number of false positives across all classes can
be considered to be low.

Assessing the Importance of the Text Postprocessing
Routine. We have assessed the importance of the bias
injection performed in the text postprocessing routine on the
overall performance of the pipeline in text element detection.
We report below metrics on the original evaluation set for
arrow annotations, and chemical labels before and after the
postprocessing step (Table 4).
From the comparison, it is notable that while most metrics

remain the same, the number of false positives is drastically
reduced in the arrow annotations class, leading to a significant
increase in the precision value (from 61.4% to 81.9%). Hence,
the postprocessing method limits the number of spurious
detections.

Comparison with ReactionDataExtractor v. 1.0. We
quantitatively compared ReactionDataExtractor v.2.0 to its
predecessor. It is important to note the limited scope of
operation for ReactionDataExtractor v.1.0., which was found to
be capable of extracting ca. 30% of reaction schemes that one
can find in the academic literature, as reported in the original
publication.37 This is because ReactionDataExtractor v.1.0
carries the intrinsic limit that it can process only simple
depictions of reaction schemes. Nevertheless, a fair comparison
can be made by evaluating our current pipeline on the v.1.0
evaluation data set. We compared the detection of reaction
arrows, chemical diagrams, and labels, as data extraction of
arrow annotations is not directly comparable due to differences
in the methodology used (in v.1.0, this part of the data
extraction included optical character recognition). The results
have been collected in Table 5.

Table 2. Ablation Studya

TP FN FP recall precision F-score

arrow detection baseline 1131 43 51 96.3% 95.7% 96.0%
single model 903 326 129 73.5% 87.5% 79.9%

diagram detection baseline 2292 237 84 90.6% 96.5% 93.5%
single model 1996 99 204 95.3% 90.7% 92.9%

label detection baseline 1439 464 504 75.6% 74.1% 74.8%
single model 1319 545 485 70.8% 73.1% 71.91%

arrow annotation detection baseline 756 299 167 71.7% 81.9% 76.4%
single model 491 333 384 59.6% 56.1% 57.8%

aThe ablation study was used to investigate the effect of incorporating the arrow detection model into the main object detection model as an
additional label. Baseline is our current workflow with a main object detection model and a separate arrow detector, whereas the single model
scenario is where the main object detection model is trained to additionally detect reaction arrows.

Table 3. Full Breakdown of the Combined Arrow
Detection/Classification Model Metrics on Our Evaluation
Seta

TP FN FP recall precision F-score

arrow detection 1131 43 51 96.3% 95.7% 96.0%
solid A. classification 1071 48 38 95.7% 96.6% 96.1%
curly A. classification 33 5 17 86.8% 66.0% 75.0%
equilibrium A.
classification

12 4 5 75.0% 70.6% 72.7%

resonance A.
classification

0 0 6 N/A 0% N/A

aIn the first row, the overall metrics for arrow detection are shown
(c.f. Table 1), and in rows 2−5, evaluation of the classification task is
shown. This task is assessed independently from the detection task�
detected arrows are included in false negatives in rows 2−5. In the
evaluation set, no resonance arrows were present.
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Our current pipeline outperforms its predecessor in all areas,
as documented by the reported F-scores, confirming
superiority of the neural network model over detection using
hand-crafted features. The very high precision of arrow
detection for ReactionDataExtractor v2.0 is also noteworthy.
In this evaluation set, only solid arrows were present and these
are particularly easy to detect using our current arrow
detection model.

■ CONCLUSIONS
ReactionDataExtractor v2.0 is a cheminformatics tool that has
been designed for automatic extraction of chemical reaction
schemes and conversion of them into database-ready formats.
The tool detects all salient elements of a reaction scheme using
approaches that are based primarily on deep-learning
algorithms. The tool also links its textual elements (chemical
labels and arrow annotations) to their parent regions (arrows
and chemical diagrams) via rule-based approaches. Once all
relevant chemical information was extracted from a reaction
scheme, the tool reconstructs the context of the entire reaction
from its individual elements to produce it in a standardized
format. These approaches also serve as a way of injecting
expert knowledge into the pipeline on a path to make it
“chemistry-aware”. ReactionDataExtractor v2.0 further integra-
tes state-of-the-art optical character and chemical structure
recognition engines to afford an independent chemical reaction
scheme extraction tool.
Compared to ReactionDataExtractor v1.0, ReactionDataEx-

tractor v2.0 is considerably simpler, as its extraction process is
performed primarily by two deep-learning architectures−a
simple convolutional classifier for arrow detection and a two-
step object-detection model that detects the remaining regions
of interest within the analyzed image. This approach simplifies
the operational pipeline of the tool, while retaining modularity
and enabling potential for further improvement, as the models
can be retrained with addition of alternative data that may suit
the specialized needs of certain domains of synthetic
chemistry; or object-detection models could be swapped for
more contemporary object detectors as the technology
advances. Several postprocessing stages were introduced to
further improve the raw results, and this resulted in a
significant improvement in detection, especially with regards
to the textual region classification.
We evaluated the operational pipeline for ReactionDataEx-

tractor v2.0, using a large set of images from open-source

scientific journal articles. The scope of its pipeline is not
constrained by the particulars of the reaction scheme as long as
chemical diagrams and arrows are present. Hence, the tool
requires no associated selection process, which was an
important obstacle for generating databases using ReactionDa-
taExtractor v1.0. The test set used to evaluate ReactionDa-
taExtractor v2.0 is available at www.reactiondataextractor.org.
Current sources of errors have been discussed, with qualitative
examples provided in the Supporting Information.
The models in ReactionDataExtractor v2.0 were trained

using synthetic data that were generated from a collection of
image patches that had been scraped from chemical databases
and supplied in the form of a small number of annotated
images. These synthetic data were generated using our new
Scheme Engineer module within ReactionDataExtractor v2.0,
which ensures that inductive biases are injected into the image-
based identification of reaction schemes. The integration of the
synthetic data generation capabilities of Scheme Engineer
within the new operational pipeline of ReactionDataExtractor
v2.0 will facilitate the training of its built-in deep-learning
models for object detection. Combining such functionalities
within ReactionDataExtractor allows its extensibility and
provides a further scope for further improvement of the tool.
While the model significantly expands on the capabilities of

ReactionDataExtractor v1.0, it comes with limitations. The
Scheme Engineer, as a method based on data augmentation,
suffers from poor out-of-distribution generalization and
requires one to define new scheme patterns whenever schemes
of interest do not align with the modeled data distribution. The
models could be further improved with more data, requiring
potentially expensive data annotation. Finally, we note the lack
of a single object detection model in the current release, as we
decided to split arrow detection into a separate model. The
goal of combining these models into a single model, without
compromising the metrics, is a subject of potential future work.

■ ASSOCIATED CONTENT
Data Availability Statement
All the source code in this publication is freely available as an
open-source package under an MIT license at http://www.
reactiondataextractor.org/downloads and https://github.com/
dmw51/reactiondataextractor2. ReactionDataExtractor uses
DECIMER, an open-source package (MIT license) that is
freely available at https://github.com/Kohulan/DECIMER-
Image_Transformer. The data set, produced by ReactionDa-

Table 4. Ablation Study Assessing the Importance of Text Element Postprocessing

TP FN FP Recall Precision F-score

labels raw 1254 649 454 65.9% 73.4% 69.4%
postprocessed 1439 464 504 75.6% 74.1% 74.8%

arrow annotations raw 698 359 439 66.0% 61.4% 63.6%
postprocessed 756 299 167 71.7% 81.9% 76.4%

Table 5. Comparison between ReactionDataExtractor v. 1.0 and our current pipeline (v. 2.0)

version no. TP FN FP Recall Precision F-score

arrow detection 1.0 370 48 59 88.5% 86.2% 87.4%
2.0 407 11 56 97.2% 89.9% 93.4%

diagram detection 1.0 722 149 103 82.9% 87.5% 85.1%
2.0 783 88 51 89.9% 93.9% 91.9%

label detection 1.0 375 79 143 82.6% 72.4% 77.2%
2.0 379 74 134 83.6% 73.9% 78.4%
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taExtractor as part of the evaluation, and its annotations, and
the evaluation files are available at http://www.
reactiondataextractor.org/evaluation. A list of all data is given
in the Supporting Information. The associated web scraping
code that was used to obtain the open-access articles is
available at http://www.reactiondataextractor.org/evaluation.
An interactive online demo of ReactionDataExtractor is
available at http://www.reactiondataextractor.org/demo, and
a user guide is available at http://www.reactiondataextractor.
org/docs.
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00422.

Strict definitions of the evaluation metrics at each stage,
a list of figures used in the evaluation set, details on the
overall evaluation process and information on how to
reproduce the evaluation of this work (PDF)
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