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Abstract 

Cooperative societies can be threatened by cheats, who invest less in cooperation and exploit the contributions of others. The impact 
of cheats depends on the extent to which they are maintained in the population. However, different empirical studies, across organ-
isms ranging from RNA replicators to bacteria, have shown diverse cheat–cooperator dynamics. These vary from approaching a stable 
equilibrium to dynamic cyclical oscillations. The reason for this variation remains unclear. Here, we develop a theoretical model to 
identify the factors that determine whether dynamics should tend toward stable equilibria or cyclical oscillations. Our analyses show 
that (1) a combination of both periodic population bottlenecks and density-dependent selection on cheating is required to produce 
cyclical oscillations and (2) the extent of frequency-dependent selection for cheating can influence the amplitude of these oscilla-
tions but does not lead to oscillations alone. Furthermore, we show that stochastic group formation (demographic stochasticity) can 
generate different forms of oscillation, over a longer time scale, across growth cycles. Our results provide experimentally testable 
hypotheses for the processes underlying cheat–cooperator dynamics.

Keywords: serial passage, density dependence, frequency dependence, cyclic dynamics, population bottleneck, stochastic group 
formation

Lay Summary 

Cooperators can be exploited by cheats. Cheats are individuals who gain the benefits of cooperation without contributing their fair 
share. Cheats can be found across the tree of life, including viruses, bacteria, slime moulds, and social insects. The outcomes of the 
interactions between cheats and cooperators can vary widely, from relatively stable proportions of cheats to cyclical oscillations, 
where the proportion of cheats goes up and down. We developed a theoretical model to explain the dynamics between cheats and 
cooperators. We discovered that the emergence of cyclical oscillations relies on the simultaneous occurrence of two key mechanisms: 
periodic population bottlenecks, characterized by recurrent reductions in population size, and density-dependent selection acting 
on cheating behavior, where the fitness of cheats increases with the abundance of cooperators. We then explored the impact of fre-
quency-dependent selection, where the fitness of cheats increases with the proportion of cooperator within the population. We found 
that while frequency-dependent selection can influence the amplitude of oscillations, it is insufficient to generate oscillations in the 
proportion of cheats. Moreover, our examination of stochastic group formation, which is introducing random variations in group 
composition, revealed another form of oscillation and added an intriguing layer of complexity to cheat–cooperator dynamics. Our 
results provide hypotheses that could be tested in either experimental or natural populations.

Introduction
All populations of cooperative organisms are at risk of being 
invaded by cheats, defined as individuals who avoid the costs of 
cooperation but benefit from the cooperation of others (Ghoul et 
al., 2014; Trivers, 1971). Cheats have been observed at many levels 
of biology, from genes to viruses, and bacteria to animals (Ghoul 
& Mitri, 2016; He et al., 2019; Hughes & Boomsma, 2008; Jaenike, 
2001; Strassmann & Queller, 2011; Tapia et al., 2019). In some 
cases, cheats are individuals who do not produce a public good, 
such as replicase enzyme in viruses or iron-scavenging molecules 
in bacteria (Griffin et al., 2004; Leeks et al., 2021). In other cases, 
cheating can take more active or devious forms, such as when a 
cuckoo or other brood parasite tricks individuals of another spe-
cies into rearing their eggs (Davies, 2015). In the extreme, if cheats 
spread to fixation, then cooperation can be lost (Andersen et al., 
2015). Consequently, the influence of cheats will depend on their 

evolutionary dynamics. Will cheating be transient, spread to an 
equilibrium level, go to fixation, or should we even expect cycles 
of cheating (Fig. 1A–C)?

Very different cheat dynamics have been observed across 
empirical studies. In many laboratory experiments with bacteria 
the dynamics approach an equilibrium, where cheats are either 
lost, go to fixation, or maintained at a relatively stable propor-
tion (i.e., frequency; Figure 1D and E) (Diggle et al., 2007; Frost 
et al., 2018; Griffin et al., 2004; Pollitt et al., 2014; Rumbaugh et 
al., 2012; Schluter et al., 2016). In contrast, laboratory experi-
ments with RNA replicators and data from natural populations 
of bacteria have shown cheats cyclically oscillating in proportion 
(Furubayashi et al., 2020; Kümmerli et al., 2015; Mizuuchi et al., 
2022; Raymond et al., 2012). Cyclical oscillations in the proportion 
of cheats are also observed when culturing viruses (Frensing et 
al., 2013; Tapia et al., 2019). Indeed, these cycles are so common 
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across different virus species that they have been given a name—
the von Magnus effect (Kirkwood & Bangham, 1994; Tapia et al., 
2019; von Magnus, 1951; Zwart et al., 2013) (Figure 1F). It is not 
clear why the dynamics of cheats varies so much across these 
empirical studies. Why do cheats show stable dynamics in some 
studies, but oscillate in proportion in others?

The dynamics of cheating is also important for assessing the 
validity of some intervention strategies for treating parasites. 
Synthetic viral cheats, termed “therapeutic interfering particles,” 
are being developed to interfere with and suppress viral infec-
tions (Dimmock & Easton, 2014; Leeks et al., 2021; Metzger et 
al., 2011). Similar strategies have been suggested for bacteria, 
using cheats to introduce either less virulent strains or medically 
beneficial alleles such as antibiotic susceptibility into infections 
(Brown et al., 2009). It has also been shown both theoretically 
and experimentally that it can be harder for parasites to evolve 
resistance against intervention strategies that disrupt coopera-
tion, than against treatments such as antibiotic treatments that 
kill individuals (André & Godelle, 2005; Dieltjens et al., 2020). 
Disrupting cooperation turns all individuals into cheats, making 
it hard for a “resistance” mutation that switches cooperation back 
on to spread (Mellbye & Schuster, 2011). In all of these cases, the 

effectiveness of the intervention will depend upon the cheat–
cooperator dynamics. For example, if the proportion of cheats 
can oscillate in ways that allow the cheats to go extinct, then the 
intervention will be less useful (Rezzoagli et al., 2019).

Theoretical models have made contrasting predictions for 
the evolutionary dynamics of cheating. Hamilton found that 
the fitness of cheats did not depend on their proportion in the 
population, and so cheats would either be disfavored or go to 
fixation (Figure 1G) (Hamilton, 1964). More recent studies have 
found that the fitness of cheats can be greater when they are less 
common (frequency dependence) or when populations are more 
dense (density dependence) (Gore et al., 2009; MacLean & Gudelj, 
2006; Madgwick et al., 2018; Patel et al., 2019; Queller, 1984; Ross-
Gillespie et al., 2007; 2009; Scholz & Greenberg, 2015; van Gestel 
et al., 2014). These processes can result in both cooperators and 
cheats being maintained at some equilibrium proportion in a 
population (coexistence; Figure 1H). Other models have predicted 
nonequilibrium dynamics, in which the frequencies of cheats and 
cooperators oscillate over time (Figure 1I) (Mizuuchi et al., 2022; 
Sanchez & Gore, 2013; Weitz et al., 2016). Because many of these 
models were tailored to specific experimental systems and con-
tained multiple different features, it is not clear why they give rise 

Figure 1. Different types of cheat–cooperator dynamics. (A–C) Conceptual illustrations of different cheat–cooperator dynamics: (A) either cheats 
or cooperators go to fixation; (B) cooperators and cheats are maintained at an equilibrium proportion in a population (coexistence); (C) oscillations 
through time. (D–F) Empirical examples of different cheat–cooperator dynamics: (D) proportion of cheats that do not quorum sense in the bacteria P. 
aeruginosa (Rumbaugh et al., 2012); (E) proportion of cheats that does not produce siderophores in the bacteria P. aeruginosa (Griffin et al., 2004); (F) 
production of public goods by influenza virus and its total population density (Frensing et al., 2013). (G–I) Previous theoretical examples of different 
cheat–cooperator dynamics: (G) Taylor and Frank (1996); (H) Killingback et al. (2010); (I) (Mizuuchi et al. (2022).
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to different predictions. Why do we get stable equilibrium with 
some models, versus oscillations in cheat proportion in others?

We investigate theoretically how different life-history fea-
tures can interact to produce different forms of cheat–cooperator 
dynamics. We use a combination of numerical and simulation 
approaches to examine the influence of four factors that could 
shape the dynamics of cheating: frequency dependence, den-
sity dependence, periodic population bottlenecks, and stochastic 
group formation. These factors have been suggested to be impor-
tant in previous theories but never examined together. Our main 
aims are to (1) understand what maintains oscillations in the 
proportion of cheats and cooperators, as opposed to a tendency 
toward equilibrium; (2) use the results of our model to explain 
variation across previous theoretical and empirical studies; and 
(3) provide experimental designs for testing the empirical influ-
ence of different factors on cheat–cooperator dynamics.

Methods and results
We developed a cheat–cooperator model that allows for several 
factors that could potentially alter the form of dynamics. We 
investigated how the proportion of cheat is influenced by fre-
quency and density dependence on cooperators, periodic pop-
ulation bottlenecks, and stochastic group formation. Frequency 
dependence is when cheats’ growth rate depends on the pro-
portion of cooperators within population; density dependence is 
when it depends on the number of cooperators. By changing the 
parameters of our model, we could include or remove these dif-
ferent factors, and therefore test their different influences as well 
as their interactions.

The model
We derived our model from competitive Lotka–Volterra equations 
where a system of differential equations described the change in 
population density over infinitesimally small increments of time:




dNco
dt = rNco

Ä
1− Nco+αNch

K

ä
dNch
dt = hrNch

Ä
1− αNco+Nch

K
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(1)

where Nco and Nch are the density of cooperator and cheats, r 
is the intrinsic growth rate, α is the relative strength of between-
strain population regulation to within-strain regulation, and K is 
the carrying capacity of the system (Lotka, 1925; Volterra, 1927). 
Equation 1 is comparable to a population with a limited sup-
ply of nutrients that stops growing once the nutrient has been 
depleted (i.e., the population reaches its carrying capacity). We 
simplified the interactions between populations so that cooper-
ators and cheats have the same regulation on each other (i.e., α 
= 1). The growth rate of cheats is the same, except for the bene-
fit coefficient of cheating (h). The benefit coefficient rescales the 
growth rate of cheats: If h < 1, cheats can never grow as fast as 
cooperators; if h ≥ 1, cheats can grow equally well or better than 
cooperators.

We then extended equation 1 to examine the consequences of 
when population density and the frequency of cheats influence 
the relative fitness of cheats. We assumed:
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where two additional terms are multiplied to the rate of 
changes in the cheat density: the density dependence term in 
blue texts and the frequency dependence term in orange text. The 

cheat density dependence term 
(
1− a+ a

1+e−sd(Nco−td)

)
 describes 

how the relative fitness of cheats increases at higher popula-
tion densities because they are better able to exploit coopera-
tors. For example, when bacteria are at higher densities, cheats 
will on average be closer to cooperators and hence better able 
to exploit cooperative behaviors, such as the production of pub-
lic goods molecules (Kümmerli et al., 2009; Ross-Gillespie et al., 
2009). The importance of cheat density dependence is weighted 
by the parameter a, where a = 0 means that there is no density 
dependence. The shape parameter (sd) controls the steepness of 
the density dependence function by changing the function from 
a binary response (higher sd) to a gradual transition (lower sd). 
The threshold parameter (td) controls the location of the density 
dependence function, where a high threshold means the transi-
tion in cheats’ growth rate occurs at a higher density of cooper-
ators. This way in which the relative fitness of cheats can vary 
with density (cheat density dependence) is different and needs 
to be distinguished from how population growth decreases as the 
population density approaches the carrying capacity (population 
density regulation, 1− Nco+Nch

K ). In Supplementary Section 3.1 and 
Supplementary Figure S3, we provide a graphical explanation of 
these model parameters.

The cheat frequency dependence term Å
1− b+ b

1+e
−sf(Nco/(Nco+Nch)−tf)

ã
 describes how the relative fitness 

of cheats increases when they at lower frequencies (proportion) 
in the population because they are better able to exploit cheats. 
For example, when bacteria or yeast cheats are a lower fraction 
in the population then they are more likely to be interacting 
with cooperators (Ross-Gillespie et al., 2007; Gore et al., 2009). 
The importance of cheat frequency dependence is weighted by 
the parameter b, where b = 0 means that there is no frequency 
dependence. The shape (sf ) and threshold (tf ) parameters deter-
mine the steepness and location of the frequency dependence 
function.

The focus of our result will be on the effects of weightings 
of density and frequency dependence (i.e., a and b) because 
the difference in growth rate between cheats and coopera-
tors is the product of (1) the density dependence term; (2) the 
frequency dependence term; and (3) the benefit coefficient of 
cheating (h). As the density and frequency of cooperators can 
vary through time, the relative benefit of cheating can also 
have temporal fluctuation. All parameter values are sum-
marized in Supplementary Table S1 and discussed further in 
Supplementary Information.

Scenario 1: Frequency and density dependence
We started by examining an unstructured and well-mixed (pan-
mictic) population, without population bottlenecks or stochastic 
group formation. Biologically speaking, scenario 1 is analogous to 
chemostats in experimental evolution, where abiotic factors are 
kept constant through time (Gresham & Dunham, 2014; Novick 
& Szilard, 1950).

Result 1: Density and frequency dependence are 
insufficient for dynamic oscillations
By independently varying the levels of density (0 ≤ a ≤ 1) and fre-
quency (0 ≤ b ≤ 1) dependence, we found that neither density nor 
frequency dependence led to dynamic oscillations. Here we are 
referring to density dependence in terms of how density influ-
ences the relative fitness of cheats (equation 2), and not how the 
overall population density influences the rate of growth towards 
the carrying capacity (equation 1). In all cases, we found that our 
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model approached an equilibrium, with the coexistence of coop-
erators and cheats at a certain ratio (Figure 2A and B; analytical 
analysis in Supplementary Section 2.2).

This model reaches equilibria because the population density 
regulation term, 1− Nco+Nch

K , leads to the populations of both coop-
erators and cheats remaining fixed once the carrying capacity is 
reached (Nco +Nch = K). We can also examine the dynamics via 
a vector plot, which shows the direction of changes in popula-
tion densities from any state (Otto & Day, 2007). In other words, 
the arrows in a vector plot would indicate how the population 
dynamic should change in the two-dimension parameter space 
of the densities of cheats and cooperators. Our vector plot con-
firms our predictions, by showing that all dynamics converge to 
the equilibrium point (line) where Nco +Nch = 10 (Figure 2C; thick 
black line). The level of frequency dependence (b) can alter the 
equilibrium proportion of cheats, but it does not change the form 
of dynamics from approach to an equilibrium (Supplementary 
Section 2.1). These results are consistent with a number of pre-
vious theoretical studies have shown how density or frequency 
dependence can lead to coexistence between cheats and cooper-
ators at some equilibrium frequency (Gore et al., 2009; MacLean 
& Gudelj, 2006; Patel et al., 2019; Queller, 1984; Ross-Gillespie et 
al., 2007; 2009).

Scenario 2: Periodic population bottlenecks
We then relaxed the assumption that the population is free 
from disturbance by assuming it goes through periodic bot-
tlenecks. We dilute the population densities of both cheats 
and cooperators by a dilution ratio, D, once every Tgrow time 
units. This leads to the population dynamics following the 
algorithm of

®
if t < Tgrow : equation 1, t = t+ dt
if t = Tgrow : Nch = Nch/D, Nco = Nco/D, t = 0

,
(3)

where Tgrow is the duration of each growth period. Biologically 
speaking, expression 3 is analogous to serial passages, or growth 
cycles and host–host transmission, in experimental evolution 
(Gresham & Dunham, 2014; Lenski et al., 1991). Some theoret-
ical studies have discussed the optimal dilution ratio for exper-
imental evolution, but density or frequency dependence was 
not included (Wahl & Gerrish, 2001; Wahl et al., 2002). Another 
study has looked into cooperation dynamics under different 

bottleneck settings, but without temporal dynamics (Brockhurst 
et al., 2007).

Result 2: The combination of periodic population 
bottlenecks and density dependence generates 
cheat–cooperator oscillations
We found that the combination of periodic population bottle-
necks and cheat density dependence could lead to dynamic 
cycles, where the proportion of cheats and cooperators oscillates 
over time, rather than approaching an equilibrium (e.g., a = 1, b = 
0, D = 10; Figure 3A and B). This combination leads to oscillations 
because the population bottleneck moves populations from high 
density, where cheats are increasing in proportion, to low den-
sity, where cooperators increase in proportion. It is this change 
in whether cooperators or cheats are preferentially favored that 
keeps the oscillations going. After a bottleneck, cooperators are 
favored and so increase in proportion. Then as the population 
grows, the relative fitness of cheats increases, until eventually 
cheats have a higher fitness and then increase in proportion 
(Supplementary Section 3.5).

In contrast, the combination of population bottlenecks and 
frequency dependence did not lead to dynamic oscillations 
(e.g., a = 0, b = 1; Figure 3C and D). This combination does not 
lead to oscillations because the population bottleneck did not 
change whether cheats or cooperators were favored. If cheats 
are initially introduced at a low proportion, and have a fitness 
advantage, they will then increase in proportion, causing their 
relative fitness to decrease. Eventually, the proportion is reached 
at which the fitness of cheats and cooperators is equal, and so 
an equilibrium is reached. Population bottlenecks do not change 
this qualitative pattern because they change density not fre-
quency. Consequently, bottlenecks do not lead to a scenario 
where cooperators are at an advantage, which would require a 
change in the proportion of cheats, rather than just the popu-
lation density.

Additionally, the extent of frequency dependence (b) can 
interact with the extent of density dependence (a) to determine 
the amplitude of cyclic oscillations (Figure 3E). The oscillation 
amplitude is the maximum difference in proportion of cheats 
once the dynamics have stabilized (the bar next to Figure 3B). 
The amplitude of oscillation increases with increasing cheat 
density dependence (colors become brighter as one moves 

Figure 2. Dynamics of the model in a simple set up. (A) Density of cooperator and cheat through time (i.e., population dynamics; Nco and Nch). (B) Proportion 
of cheats through time (i.e., cooperation dynamics; Nch/(Nco +Nch)). (C) Vector field plot showing the model would have static dynamics once population 
densities reach carrying capacity (shown in thick black line) (a = 1, b = 0; other parameter values are listed in Supplementary Table S1).

http://academic.oup.com/evlett/article-lookup/doi/10.1093/evlett/qrad032#supplementary-data
http://academic.oup.com/evlett/article-lookup/doi/10.1093/evlett/qrad032#supplementary-data
http://academic.oup.com/evlett/article-lookup/doi/10.1093/evlett/qrad032#supplementary-data
http://academic.oup.com/evlett/article-lookup/doi/10.1093/evlett/qrad032#supplementary-data
http://academic.oup.com/evlett/article-lookup/doi/10.1093/evlett/qrad032#supplementary-data


Evolution Letters (2023), Vol. 7 | 343

from left to right). Frequency dependence has mixed effects on 
amplitude of oscillation, depending on the weighting of den-
sity dependence—increasing oscillation when density depend-
ence is low, but reducing oscillations when density weighting is 
high (a ≈ 1). This complex pattern happens because frequency 
dependence can change the differences in relative fitness of 
cheats, and if the differences become larger, the amplitude of 
oscillation can grow.

We examined the effects of all model parameters on the 
amplitude of oscillation in supplementary information. In 
Supplementary Sections 3.4 and 3.5, we showed that increas-
ing the benefit of cheating (h, h > 1) decreases the range 
where oscillation happens because cheats can spread even 
at lower densities. There is no oscillation in cheat proportion 
when h = 1 because cheats can never out-grow cooperators. In 
Supplementary Section 3.6, we showed that decreasing the dilu-
tion ratio (D) reduces the amplitude of oscillation. Supplementary 
Section 3.7 suggested sufficient growth time (Tgrow) is needed to 
generate oscillating dynamics. In Supplementary Section 3.8, 
we changed the values of shape parameters and found steeper 
density dependence functions (larger sd) increase the amplitude 
of oscillation, while steeper frequency dependence functions 
(larger sf ) reduce the optimal frequency weighting (b) where 
oscillation is favored. In Supplementary Section 3.9, a higher 
threshold of density dependence function (larger td) reduces the 
range of density weighting (a) where cheat proportion oscillates; 
a higher threshold of frequency dependence function (larger tf
) also reduces the optimal frequency weighting (b) for oscilla-
tion. Lastly, we showed our setting of ODE solver and intrinsic 
growth rate is robust against periodic population bottlenecks 
(Supplementary Sections 3.2 and 3.3).

Scenario 3: Stochastic group formation
Finally, we relaxed the assumption of unstructured and panmic-
tic populations. We examined the stochastic consequences of 

small populations or incomplete population mixing processes 
(Constable et al., 2016; Hilbe et al., 2018; Mizuuchi et al., 2022). 
We could not examine the role of stochasticity with our nonlinear 
deterministic population dynamical model (equation 2), and so 
we instead developed an individual-based simulation. We mod-
eled a population growing at the unit of subpopulations, where 
each subpopulation is partially mixed before going through 
periodic population bottleneck, following Mizuuchi et al. (2022). 
However, we simplified their system to only two possible strains 
(one cooperator strain and one cheat strain) and replaced the 
ordinary differential equations with equation 2 to model popu-
lation growth of cooperators and cheats with density and/or fre-
quency-dependent benefits.

Our simulation divides the population into M subpopula-
tions (social groups), where the interactions between cheats 
and cooperators take place. The life cycle then involves two 
phases. First, a growth phase in the subpopulations. Second, a 
phase of subpopulation mixing, before samples (bottlenecks) 
are taken to initiate the next round of subpopulation growth. 
Population mixing is only partial between subpopulations, 
with each new subpopulation being formed from a sample of 
just two subpopulations, rather than all subpopulations. This 
design helps slow down the spread of cheats or cooperators. 
We repeated the random sampling of two subpopulations and 
creation of two new subpopulations for F×M times to start 
the next growth cycle, where F  is the mixing coefficient (i.e., 
larger F means more mixing process and closer to global mix-
ing). Following the experimental protocols and algorithms by 
Mizuuchi et al. (2022), we converted the population densi-
ties to integers when they were sampled, summed, and after 
diluted. This process increases stochasticity in finite popula-
tions and has been found to help generate oscillating dynam-
ics (Mizuuchi et al., 2022). A full list of parameters is listed in 
Supplementary Table S1 and the simulation process is illus-
trated in Supplementary Section 4.1.

Figure 3. Density dependence (a > 0) is crucial for oscillation in frequency dynamics. (A, B) Density and frequency dynamics when density 
dependence of cheats on cooperators is at the strongest level and frequency dependence is absent (a = 1, b = 0). (C, D) Dynamics when density 
dependence is absent and frequency dependence is strongest (a = 0, b = 1). (E) Broader exploration of amplitude in oscillation, which is defined as the 
maximal difference in proportion of cheats, across all combinations of density and frequency dependence weighting.
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Our simulation allows us to investigate whether stochasticity 
influences cheat–cooperator dynamics by varying the number 
of subpopulations (M), the carrying capacity of each subpopu-
lation (K), and the mixing coefficient (F). These three parame-
ters have experimental analogues and can change stochasticity 
in different ways. Increasing the number of subpopulations (M) 
increases the size of the entire population, thus increases the 
sample size of random sampling and initializing new subpopu-
lations, and decreases stochasticity. Increasing carrying capacity 
(K) increases the number of individuals available to be distrib-
uted into new subpopulations, thus decreases the stochasticity 
in each process. Increasing the mixing coefficient (F) can reduce 
stochasticity by making each subpopulation more similar to 
each other, but increased mixing also disrupts the population 
structure and facilitates the spread of cheats or cooperators to 
other groups.

Result 3: Stochasticity can also generate cheat–
cooperator oscillations
We found that stochasticity, combined with density depend-
ence and population bottlenecks, can lead to oscillations in the 
proportion of cheats across cyclic population bottlenecks (e.g., 
a = 1, b = 0; Figure 4A and D). This oscillation is different from 
result 2, where the oscillation has identical dynamics in each 
growth cycle; instead, the oscillation here occurs across (rather 
than within) bottlenecks and is somewhat noisier (i.e., Figure 
4 quantifies time at the unit of growth cycle, where each grow 
cycle lasts Tgrow). We quantified the cyclic nature of these oscil-
lations with harmonic regression (Halberg et al., 1967; Young et 
al., 1999), which examines the extent to which sine waves can 
explain the observed time series data. The results showed a peak 
of amplitudes at 10–20 growth cycles (Figure 4G), meaning that 

Figure 4. Stochasticity creates an additional layer of oscillation across growth cycles. (A–C) Population dynamics at various degree of stochasticities, 
where increasing number of subpopulations results in an increased global population size, thus decreasing stochasticity (because the carrying 
capacity of each subpopulation is the same). (D–F) Cooperation dynamics of the density time series in (A–C). (G–I) Harmonic regression analyzed the 
time series of cheat frequencies from cycle 51 to cycle 200 and showed the estimated amplitude at each period with confidence intervals. Periodicity 
of cheat frequencies increases if certain periods have much higher amplitude than other periods (e.g., G and H compared to I). The results presented 
here are density-dependence-only model, where a = 1 and b = 0.
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cheat proportion roughly repeats the same oscillating dynamic 
every 10–20 growth cycles under the focal parameter setting. In 
addition, we investigated the role of stochasticity by examining 
how these oscillating dynamics disappear as stochasticity is 
reduced. The cyclic oscillation becomes smaller with interme-
diate number of subpopulations (Figure 4B and E) and quickly 
attenuated in large number of subpopulations (Figure 4C and F). 
Harmonic regression further showed that the size of peak was 
smaller when there were more subpopulations (Figure 4G–I). This 
pattern occurs because increasing sample size results in a less 
stochastic distribution of cheat proportion across all subpopula-
tions, as suggested by central limit theorem. Similarly, by increas-
ing the number of individuals in each subpopulation, we found 
increasing carrying capacity (K) also produces smaller oscillation 
in Supplementary Section 4.2.

In order to understand the cause of oscillating dynamics in 
cheat proportion in scenario 3, we continued our analysis to a 
broader scale of density and frequency dependence. We analyzed 
three properties: the amplitude of oscillation in cheat propor-
tion, where larger values mean the cooperation dynamics are 
more variable or periodic (Figure 5A); cheat’s average relative fit-
ness, where values greater than 1 indicate cheats are fitter than 
cooperators (Supplementary Section 4.3 and Supplementary 
Figure S17); and the coefficient of variation, where larger values 
suggest relative fitness is more variable between subpopulations 
(Figure 5B). These factors are potentially important because they 
inform us about the prevalence of oscillations, and the fitness 
landscape across different scenarios. We found strong density 
dependence and weak-to-moderate frequency dependence can 
generate oscillating dynamics (a > 0.8, b < 0.7). Under these com-
binations of density and frequency dependence, cheats have 
relative fitness between 1 and 1.5, which means cheats can 
slightly outcompete cooperators on average. Furthermore, these 

combinations produce the highest coefficient of variation across 
the entire parameter space. This finding coincides with previ-
ous work on synthetic microbial system, where large variation 
was generated through strong population bottlenecks (Chuang 
et al., 2009). In short, we found that oscillating dynamics in 
cheat proportion is associated with small fitness advantage of 
cheats over cooperators, and high variation of fitness between 
subpopulations.

Why does stochasticity lead to oscillations? We found that 
oscillations occurred when there is greater variations in the fit-
ness of cheats, such that cheats have greater fitness than coop-
erators in some patches but lower in others (Figure 5B). We 
hypothesized that this fitness variation can lead to cycles, and 
not just noise, because limited mixing between groups delays 
the rates where a group can reach an equilibrium proportion of 
cheats. We tested this hypothesis by changing the degree of mix-
ing between groups. In support of our hypothesis, we found that 
greater mixing produces a less periodic dynamic—as the mix-
ing coefficient (F) increases, the peak signal in harmonic regres-
sion becomes smaller, while the nonpeak signals become larger 
(Supplementary Section 4.4 and Supplementary Figure S18, but 
see Supplementary Section 4.5 for a special exception).

Discussion
Our model predicted three different forms of cheat–coopera-
tor dynamics: approach to a stable proportion of cheats (Figure 
2); cyclic oscillations of the proportion cheats within growth 
cycles (Figure 3); and cyclic oscillations of the proportion cheats 
across growth cycles (Figure 4). A combination of both periodic 
population bottlenecks (growth cycles or serial passages) and 
density dependence was required to produce cyclic oscillations 
which repeat each growth cycles (Figure 3E). The stochasticity 

Figure 5. The impacts of density and frequency dependence on oscillations across growth cycles and fitness landscape in scenario 3. (A) Amplitude 
of oscillation is calculated from the maximal signal of cheat proportion after discrete Fourier transformation. Brighter colors represent greater 
oscillation. (B) Coefficient of variation of relative fitness of cheats is calculated from the relative fitness of all subpopulations, using standard 
deviation divided by average, for each growth cycle. In all panels, each grid is the average of 10 repeated simulations. All simulations last 200 growth 
cycles and data was collected from cycle 51 to cycle 200. The number of subpopulations is set to 4,000.
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introduced by small populations or small number of subpopu-
lations was required to produce oscillations in the proportion of 
cheats across growth cycles (Figure 4 and Supplementary Section 
S16).

Our model can explain the variation in predictions between 
previous theoretical models (Table 1). First, comparing with our 
scenario 1, models that assumed frequency or density depend-
ence, but without periodic population bottlenecks, predicted evo-
lution toward an equilibrium proportion of cheats (Brown et al., 
2009; Patel et al., 2019; Ross‐Gillespie et al., 2007, 2009). Second, 
comparing with our scenario 2, models that assumed both peri-
odic population growth, and cheat density dependence, predicted 
oscillations within growth cycles (Sanchez & Gore, 2013; Yurtsev 
et al., 2013). Third, comparing with our scenario 3, models that 
allowed for stochasticity, as well as periodic growth cycles and 
cheat density dependence, led to oscillations across growth cycles 
(Mizuuchi et al., 2022; Vetsigian, 2017). Brown and Taddei (2007) 
found a different mechanism of oscillation through durable 
public goods which remains exploitable for several generations. 
Because the dynamics of public goods is slower than cheat pro-
portion, there is a delay in the consequence of current players’ 
strategies, which results in cyclic dynamics. Similarly, Weitz et al. 
(2016) predict oscillations for another different reason. In their 
model, cheats initially have an advantage, but degrade the envi-
ronment, till a switch point is reached at which point coopera-
tors have an advantage. As cooperators become more common, 
the environment improves, until the switch at which cheats are 
again favored. This leads to oscillations because a switch point 
is assumed, which swaps which strategy has an advantage—as 
opposed to the more gradual functions in our scenario 1, which 
allowed an equilibrium to be reached.

Our model can help explain the variation in cheat–coopera-
tor dynamics that have been observed across previous empiri-
cal studies. First, oscillations have been observed in a long-term 
experimental evolution study of synthesized cooperative and 
cheat (defective) RNA replicators (Furubayashi et al., 2020; 
Mizuuchi et al., 2022). This system appears to fit the assumptions 
of our scenario 3, where we would predict oscillating dynamics 
across periodic growth cycles. In their experiment, a periodic 
population bottleneck was imposed, both types of replicators can 
reproduce during coinfection, and the limiting factor for repro-
duction is the population size of host bacterial cells. Second, 
oscillations between cooperators and cheats (defective interfer-
ing particles) are common when culturing viruses (Frensing et 
al., 2013; Grabau & Holland, 1982; Huang, 1973; Palma & Huang, 

1974; Roux et al., 1991; Tapia et al., 2019; von Magnus, 1951). This 
culturing of viruses involves growth cycles with cheat density 
dependence, and so is analogous to our scenario 2. Several theo-
retical models have examined these dynamics within predator–
prey framework (Bangham & Kirkwood, 1990; Frank, 2000; Heldt 
et al., 2013; Kirkwood & Bangham, 1994; Shirogane et al., 2021). 
Predator–prey equations approximate defective interfering par-
ticles because there can be a very high benefit to cheating (high 
h), such that cheats can effectively eliminate (eat) cooperators 
when they coinfect a cell (Leeks et al., 2021). These models pro-
vide another mechanism for oscillating dynamics under a more 
specific biological setting. Third, oscillations of cheat proportion 
have also been observed in natural populations of the bacteria 
Bacillus thuringiensis, where the life cycle is consistent with our 
scenario 2: There is appreciable density dependence and winter 
imposes a periodic population bottleneck each year (Raymond 
et al., 2012).

There are also several experimental evolution studies in bac-
teria and viruses, where cyclical oscillations were not observed 
(Diggle et al., 2007; Frost et al., 2018; Griffin et al., 2004; Meir et 
al., 2020; Özkaya et al., 2018; Pollitt et al., 2014; Rumbaugh et 
al., 2012; Turner & Chao, 1999). The dynamics by which stable 
equilibria were reached in those cases suggest that cheat den-
sity dependence was not strong enough to change which strategy 
had the higher fitness, after the periodic bottleneck. One possible 
explanation for this is that the strength of density dependence 
can be lower in the well-mixed liquid populations that are rou-
tinely used in such experiments (Kümmerli et al., 2009; Ross‐
Gillespie et al., 2009). This and other possibilities could be tested 
experimentally (see below). Even with periodic population bot-
tlenecks and cheat density dependence, our model only predicts 
cyclic oscillations under certain parameter conditions—not at all 
times.

Our model suggests numerous experimental designs that 
could be used to test how different factors influence cheat–
cooperator dynamics. Considering oscillations within growth 
cycles, the degree of population bottleneck or strength of density 
dependence could be reduced, to test whether this eliminates 
cycles (Figure 6A–E). For example, by diluting populations less 
each growth cycle, or by adding less nutrients, to restrict growth 
to low population densities. Another possibility is to parametrize 
the strength of density dependence, to test whether it is low or 
lower in studies where cyclic oscillations have not been observed. 
An even more extreme manipulation would be to compare pop-
ulations in chemostats, to populations with periodic growth 

Table 1. The list of published theory papers.

Paper Focus Oscillate? Experiment? Equivalent 

Eco-evolutionary models

  Sanchez and Gore 
(2013)

Cooperation dynamics Yes (within cycle) Yes Density dependence + growth 
cycle

  Yurtsev et al. (2013) Cooperation dynamics under antibiotic 
stress

Yes (within cycle) Yes Density dependence + growth 
cycle

  Vetsigian (2017) Coexistence of strains with different toxin 
production and resistance

Yes No Density dependence + growth 
cycle + stochasticity

  Mizuuchi et al. (2022) Cooperation dynamics Yes Yes Density dependence + growth 
cycle + stochasticity

Replicator dynamics
  Brown and Taddei 

(2007)
Cooperation dynamics with durable public 
goods

Yes No N/A

  Weitz et al. (2016)
Cooperation dynamics with game–
environment feedback

Yes No N/A
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cycles. As for oscillation across periodic growth cycles, the degree 
of stochasticity could be reduced to examine whether it elimi-
nates oscillations (Figure 6F–H). For instance, by increasing the 
total volume of medium, or by providing more nutrients, to let 
the population grow to a larger size. Our results predict oscilla-
tion would diminish when stochasticity is lower. Nevertheless, 
our plan would require enough data points to allow time series 
tools (e.g., harmonic regression, discrete Fourier transformation, 
and equivalent autoregressive tools) to distinguish periodic oscil-
lation from pure noise. Our model could also be applied to data 
from macro-organisms, which experience growth cycles through 
seasonality.

The theoretical framework developed in this article is flex-
ible and can be easily extended to consider other biological 
scenarios. For instance, spatial structure can lead to the coex-
istence of cheats and cooperator (Nowak & May, 1992)—this 
could be incorporated by assuming explicit spatial arrange-
ments between each patch or subpopulation (with social 
groups located next to one another). Spatial structure could 
help generate oscillations because individuals cannot disperse 
to distant patches, and so some cooperators will be less likely to 
encounter and hence be exploited by cheats. This is analogous 

to the stochastic scenario that we investigated in our individu-
al-based simulation (Figures 4 and 5 and Supplementary Figure 
18). Spatial structure provides an even more extreme case of 
low mixing. Another possibility is temporal variation in envi-
ronmental quality, which can be implemented by varying car-
rying capacity through time. One benefit of using the current 
framework is that competitive Lotka–Volterra equations relax 
the assumptions of constant population size and constant 
degree of generation overlap. Relaxing these two assumptions 
has been found to support the selection of specialist against 
generalist (Gilchrist, 1995; Liu et al., 2019) and the coexistence 
between competing strains (Huang et al., 2015; Liu et al., 2021). 
Nevertheless, competitive Lotka–Volterra equations always 
predict coexistence of strategies when there is no external dis-
turbance, such as noise, growth cycles, or temporal change (sce-
nario 1). Future work could examine scenarios where this is not 
the case.

Our model could also be modified to examine other types of 
interaction (Jones et al., 2009; Lion, 2018). We examined a rela-
tively simple cheat–cooperator system. One possible extension 
is to consider symbiotic or pathogenic bacteria, where being a 
cheat or cooperator has a large influence on the interaction with 

Figure 6. Possible experimental designs for testing the role of different factors in leading to oscillations. (A–E) Changing dilution ratio may create 
chances for relative fitness of cheats to cross horizontal line of equal fitness (e.g., dashed line in D), and let the direction of selection alternate within 
each growth cycle. The direction of selection would only change when the relative fitness of cheats crosses unity (dashed line), so that selection 
sometimes favors cooperators and other times favor cheats. (F–H) Increasing population size could result in a decrease in stochasticity and stop 
oscillation. Created with BioRender.com.
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their host and could therefore even alter the host dynamics. 
This could be examined with a three-level host-cooperator-cheat 
model. Another possibility is multipartite viruses, where the 
genome is split into different segments, which can be transmit-
ted separately, and where the different segments can be comple-
mentary or mutually dependent (Leeks et al., 2021, 2023; Lowen, 
2018). The stability of this interaction could be compromised by 
oscillations in frequency, and so it would be extremely useful 
to examine what conditions prevent oscillations. Still, another 
possibility is to consider the coevolution of multiple social traits, 
such as rock–paper–scissors dynamics (Inglis et al., 2016; Kerr et 
al., 2002). In all these cases, it would be useful to examine the 
effects of population bottlenecks in structured or unstructured 
population.
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Supplementary material is available online at Evolution Letters.
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