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Abstract: Acute pancreatitis (AP] is one of the most common acute abdominal conditions,

and its incidence has been increasing for years. Approximately 15-20% of patients develop
severe AP (SAP), which is complicated by critical inflammatory injury and intestinal
dysfunction. AP-associated inflammation can lead to the gut barrier and function damage,
causing dysbacteriosis and facilitating intestinal microbiota migration. Pancreatic exocrine
deficiency and decreased levels of antimicrobial peptides in AP can also lead to abnormal
growth of intestinal bacteria. Meanwhile, intestinal microbiota migration influences the
pancreatic microenvironment and affects the severity of AP, which, in turn, exacerbates the
systemic inflammatory response. Thus, the interaction between the gut microbiota (GM) and
the inflammatory response may be a key pathogenic feature of SAP. Treating either of these
factors or breaking their interaction may offer some benefits for SAP treatment. In this review,
we discuss the mechanisms of interaction of the GM and inflammation in AP and factors that
can deteriorate or even cure both, including some traditional Chinese medicine treatments, to

provide new methods for studying AP pathogenesis and developing therapies.
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Introduction

Multiple organ dysfunction may occur during the
early phase of severe acute pancreatitis (SAP),
resulting in a high fatality rate. However, over
time, the patient enters a second stage, which
accompanies the infection and is another cause of
the high mortality rate of SAP.! Studies have
shown that most pancreatic and extra-pancreatic
organ infections are caused by the translocation
of intestinal bacteria; such infections result in
pancreatic necrosis and sepsis, causing late death
in patients with SAP.2 The gut microbiota (GM)
is mutualistic with the human body under certain
steady states; some gut bacteria can ferment die-
tary fiber to form short-chain fatty acids (SCFAs),
which are then absorbed by the host.?> The intes-
tinal mucosa can also maintain the stability of the
intestinal environment through its barrier func-
tion. Once this stability is disrupted by a persis-
tent inflammatory response in SAP, this can lead

to intestinal mucosal damage and a change in the
status of the intestinal microbiota.* Studies have
also indicated that various types of intestinal
microbiota participate in different pathological
conditions, including pancreatic diseases.> The
role of the intestinal microbiota in the progression
of SAP has gradually been clarified in previous
studies.

We have searched articles or other types of manu-
scripts related to the regulatory mechanism of the
intestinal microbiota, inflammation, and patho-
genesis of SAP or acute pancreatitis (AP) in
PubMed and the China National Knowledge
Infrastructure, to describe the interactions
between the GM and inflammatory responses in
AP. We have identified some new methods of AP
pathogenesis and the development of therapies.
All of our findings are described in the following
chapters.
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The influence of intestinal flora changes on the
occurrence and development of AP

Intestinal flora migration influences the pancreatic
microenvironment in AP. Impairment in microcir-
culation and blood volume reduction during AP
can lead to ischemia and reperfusion damage in
the intestinal mucosa, causing loss of intestinal
barrier integrity and intestinal bacterial transloca-
tion and causing local and systemic infections.6-8
Fewer antimicrobials secreted by the pancreas in
AP can also lead to bacterial overgrowth in the
small intestine, which further disrupts the balance
of the intestinal microbiota.® The imbalance of
the intestinal microbiota or mucosal damage can
increase intestinal permeability, causing the trans-
location of bacteria from the gut to the blood or
nearby tissues, such as the pancreas, increasing
the risk of pancreatic infection and aggravating
inflammation.1% A study has found more than one
type of bacterial DNA in the peripheral blood of
patients with AP, and these DNA molecules are
mainly derived from conditional pathogenic bac-
teria from the gut, such as Escherichia coli, Shigella
flexneri, Acinetobacter lwoffir, Bacillus coagulans,
and Enterobacter faecalis.'! Thus, the transfer of
bacteria from the gut to the blood may cause
infection of necrotic parts of the pancreas.

Recent studies have revealed that nucleotide-
binding oligomerization domain 1 (NOD1), an
intracellular innate immune receptor, plays a crit-
ical role in host defense functions and inflamma-
tion. This is because NODI1 can detect small
peptide components derived from bacterial wall
peptidoglycan and can be excited by intestinal
bacteria.!? On the other hand, NODI1 has been
reported to activate innate responses and produce
nuclear factor-kappa B (NF-kB) and type 1 inter-
feron-inducing pancreatitis and contribute to the
development of pancreatitis.!>14 Thus, NODI1
may be an intermediate regulatory factor of intes-
tinal microbiota interaction with AP.

Previously, the microbial composition of the
infected areas of pancreatic necrosis was mainly
gram-negative bacteria from the gastrointestinal
tract (GIT), such as Enterobacteriaceae. However,
recently, Staphylococcus and Enterococcus have
become dominant bacteria owing to the wide-
spread use of prophylactic antibiotics.!>
Meanwhile, the prophylactic use of antibiotics
does not reduce the risk of infection, and patients

with a higher risk of infection in regional pancre-
atic necrosis are those who have previously
received antibiotics.117

Intestinal microbiota attenuates the severity of
AP A normal intestinal microbiota constitutes
the intestinal mucosal biological barrier that
affects intestinal peristalsis, regulates host immu-
nity, and strengthens the epithelial barrier.18
Studies have shown that intestinal mucosal bar-
rier damage in patients with AP is closely associ-
ated with the imbalance of the intestinal
microbiota, for example, increased abundances
of the intestinal pathogenic bacteria Shigella and
Enterococcus and decreased abundances of the
beneficial bacteria Lactobacillus and Blautia.9-2!
Deng showed that the bacterial translocation
rates of E. coli and Bifidobacterium and the patho-
logical damage score of intestinal tissue were sig-
nificantly higher in the intestines of SAP rats
than in those of the control group, suggesting
that the intestinal barrier function of SAP rats
was impaired, resulting in an intestinal microbi-
ota disorder.22 Moreover, the Acute Physiology
and Chronic Health Evaluation (APACHE)-II
score, the length of the hospital stay, complica-
tions such as infections and the incidence of mul-
tiple organ dysfunction syndrome were
significantly higher in patients with SAP with a
GM imbalance than in individuals with intestinal
microbiota ratios similar to those of healthy
individuals.®

It has been reported that inter-intestinal probiot-
ics mitigated AP severity by inhibiting the activa-
tion of the NOD-like receptor family 3 (NLRP3)
inflammasome in the gut,?3:24¢ which might be the
mechanism of regulating the intestinal microbi-
ota to reduce the degree of SAP. E. coli has been
reported to induce intestinal mucosal barrier
damage and aggravate AP through the activation
of the toll-like receptor 4 (TLR4), myeloid dif-
ferentiation factor 88 (MyD88), and p38 mito-
gen-activated protein kinase (MAPK) signaling
pathways.2%26 Therefore, MAPK inhibitors and
TLR4-dependent Phosphoinositide 3-kinase
(PI3K), V-akt murine thymoma viral oncogene
homolog (AKT), and NF-kB inflammatory sign-
aling pathway inhibitors are important in correct-
ing GM imbalance and mitigating inflammatory
responses.2”28 SCFAs, a metabolite of intestinal
bacteria, can not only provide growth energy for
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intestinal mucosal cells but also regulate intesti-
nal pH, maintain the integrity of tight junction
proteins between intestinal mucosal epithelial
cells, improve intestinal mucosal barrier func-
tion, and significantly reduce the severity of
SAP.21:2429 On the other hand, Bacteroides,
Escherichia—Shigella and Enterococcus, are the
major intestinal microbes in AP, and different
levels of AP are associated with different intesti-
nal microbiota disorders.2 In mild acute pancre-
atitis (MAP), Finegoldia exhibited the most
significant increase, and Brucella was the species
of intestinal microbiota that showed the largest
decrease. Moderately severe acute pancreatitis
(MSAP) patients had the most significant
increase in Anaerococcus and the most significant
decrease in Eubacterium hallii. The potential bio-
markers of MAP are Finegoldia, E. hallii, and
Lachnospiraceae. E. hallii and Anaerococcus are
potential diagnostic biomarkers for MSAP (Table
1). According to reports, Firmicutes increase
while Bacteroidetes decrease in acute patients’
intestines. Enterococcus in Firmicutes can adhere
to host cells, invade them, and traverse the epi-
thelial barrier. This can lead to infection and sys-
temic inflammation. Bacteroidetes are capable of
producing SCFAs, which have anti-inflamma-
tory effects and help maintain the integrity of the
intestinal barrier, thereby protecting it. Certain
pathogenic bacteria within Bacteroidetes, such as
E. coli and Shigella, can disrupt the intestinal
mucosal barrier, resulting in severe colonic
inflammation. Therefore, the imbalance between
Firmicutes and Bacteroidetes can aggravate the
pathogenetic condition of AP.20 SAP was associ-
ated with the most significant increase in the
abundance of Enterococcus and the greatest
decrease in the abundance of E. halliz.3° The
expression of proinflammatory factors such as
interleukin (IL)-1, IL-6, and tumor necrosis
factor-o. (TNF-a) in the serum of SAP patients
was positively correlated with the intestinal aero-
bic bacteria level but negatively correlated with
the level of anaerobic bacteria such as
Bifidobacterium.® Perhaps modulating the gut
flora can reduce the body’s inflammatory
response and reduce AP severity.
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transforming lactate into SCFAs, which contribute
to a decrease in mucin synthesis and destroy the

tight junctions, finally leading to increased gut
permeability; alter the intestinal barrier function,

which results in bacterial overgrowth and

several toxins; possess high numbers of antibiotic
impaired immunity.

Promote anti-inflammatory properties, such as
the production of SCFAs when digesting plant
resistance genes and are risk factors for
autoimmunity. High-protein and high-fat diets

increase the abundance of Bacteroides.

intestinal mucosa to produce cytokines and
Cause a thinning of the mucus layer by

polysaccharides; promotes intestinal epithelial
cell proliferation, mucosal repair, and anti-
inflammatory responses by inducing IL-10 and
regulating T-cell responses in the intestine.
Aggravate inflammation by stimulating the

Effect on GM Mechanism

of intestinal
microbiota
of intestinal
pathogens)

and
overgrowth

(migration

Negative
Negative

Effect on AP
Aggravation
Aggravation;
infectious
pancreatic

necrosis

Change in
bacteria
Beneficial
and
decreased
Harmful and
increased

Phylum/family
Firmicutes/
Ruminococcaceae
Bacteroidetes/
Bacteroidaceae

Faecalibacterium

prausnitzii
Bacteroides

The influence of AP on intestinal flora changes

Acute pancreatitis-associated gut barrier and func-
tional damage facilitate intestinal flora migra-
tion. Intestinal barrier dysfunction was found in
both animal models and clinical patients with

Table 1. Effects of alteration of bacteria on AP and GM and their mechanisms.

Grade of AP Bacteria

MAP
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AP.7”> The mechanism of intestinal microbiota
migration in AP is as follows: intestinal barrier
damage and a variety of gastrointestinal polypep-
tide secretions can destroy Cajal mesenchymal
cells,’0 decrease gastrointestinal movement,”” and
impair intestinal motility,”® resulting in the over-
growth of intestinal bacteria in AP.7° Early fasting
in patients with AP can cause intestinal ischemia—
reperfusion injury, which can lead to intestinal
mucosal microcirculation disorders and abnor-
mal release of inflammatory factors and reactive
oxygen species (ROS). These substances can
cause the oxidative stress response in the intesti-
nal mucosa,8® the apoptosis of intestinal epithelial
cells, and increased permeability of intestinal cap-
illaries,81-82 ultimately leading to intestinal barrier
function disorders and increased intestinal per-
meability.83:8¢ The intestinal immune barrier
function is compromised in patients with ADP,8>
and the level of secretory immunoglobulin A is
decreased,8® which allows bacteria to pass through
the intestinal barrier more easily. In addition to
these three effects, long-term fasting and the
obstruction of the lower bile duct in patients with
SAP can result in a significant decrease in bile
secretion or ineffective secretion into the intes-
tine.”> Deoxycholic acid in the bile can selectively
inhibit gram-positive bacilli (Bacillus, Clostridium,
Lactobacillus, and Streptococcus pneumoniae). The
reduction in bile secretion impairs the normal
balance of the intestinal microbiota, resulting in
the activation of an oxidative stress response and
intestinal epithelial cell apoptosis, thus increasing
bacterial migration.8?

Effects of secretion of cell damage factors on intes-
tinal flora in AP. Intestinal barrier dysfunction is
the most common complication of SAP. Previous
clinical studies have shown that elevated serum
levels of many inflammatory cytokines in SAP,
including TNF-o,8¢ IL-1,88 IL-6,%° neutrophil
elastase (NE), and myeloperoxidase (MPO),% are
associated with intestinal barrier dysfunction.
One of the main cytokines associated with AP is
TNF-a, a proinflammatory cytokine, which is
found to have elevated levels both locally, in the
intestine, and systemically in patients with intesti-
nal barrier dysfunction.®l:92 An increase in the
TNF-a levels can lead to inflammation in the
intestinal mucosa and to intestinal epithelial cell
apoptosis,®39¢ which can lead to intestinal epithe-
lial mechanical barrier damage and facilitate bac-
terial displacement.®> In addition to direct injury,
TNF-a can initiate a positive feedback loop that

induces the secretion of other cytokines, such as
IL-1 and IL-6, to further injure the intestinal
mucosa.’® An increase in the IL-1 levels in AP
and the risk associated with IL.-1 and the IL-1
receptor (IL-1R) in the pathogenesis of pancreati-
tis have been reported.?” IL-1R-deficient mice
pretreated with an IL-1R antagonist recombinant
human interleukin-1-receptor antagonist (rhIL-
1Ra) experience milder pancreatitis after cerulein
induction. The activation of IL.-1 can also stim-
ulate the local mucosal immune response and
cause mucosal injury by stimulating T-cell prolif-
eration and neutrophil entry to the site of injury
or infection through the binding of IL-13 and
IL-1R.9%9 Serum IL-6 is another reliable indica-
tor of AP severity that can predict both organ fail-
ure and SAP.19 The production of IL-6 can
activate several different pathways in the adaptive
immune system, thereby exacerbating inflamma-
tion and negatively affecting barrier function.!0!
Tan er al.® also found that serum IL-6 levels in
patients with AP were positively correlated with
the abundance of Enterobacter and Enterococcus in
the intestinal microbiota and negatively corre-
lated with the abundance of XI groups of Bifido-
bacterium and Clostridium. In pancreatic tissue
from a mouse model of SAP, neutrophil extracel-
lular traps (NETSs) decorated with MPO and NE
were shown to aggravate tissue damage.192 Many
lethal complications of SAP have been shown to
be closely related to NETSs. According to previous
reports, NETs can disrupt the balance of the
intestinal microbiota, cause intestinal epithelial
cell damage, and even induce apoptosis, leading
to gut barrier damage, increased intestinal muco-
sal permeability, elevated endotoxin secretion,
and imbalances in the GM.90-103-105

Pancreatic exocrine deficiency affects the compo-
sition and diversity of GM in AP, Patients with AP
exhibit complications such as pancreatic exocrine
impairment (PEI) and acinar cell dysfunction,
which significantly impact changes in intestinal
microbiota composition,!%® and the secretion of
many enzymes, such as lactate and bile acids,
declines to a certain level.1%7 In animal models of
PEIL the intestinal microbes E. coli, Lactobacillus,
and Bifidobacterium were increased, and the levels
of Fusobacterium and Clostridium hiranonis were
decreased, inducing a significant difference in the
dysbiosis index between affected animals and
healthy individuals.198 Stool samples from PEI
patients were analyzed and showed that pancre-
atic elastase levels significantly correlated with
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intestinal flora diversity compared with those of
normal individuals, and significant differences
were found in the abundances of 22 taxa, such as
an increase in Pseudomonas spp. and a decrease in
Bacillus spp.19¢These results revealed that changes
in pancreatic fluid secretion were also signifi-
cantly correlated with flora diversity.

Antimicrobial peptide changes in AP-affected
intestinal flora. Antimicrobial peptides (AMPs)
are oligopeptides that are arranged linearly or cir-
cularly and are composed of amino acid residues
of different lengths (up to 100). AMPs usually
form L-amino acids through secondary structures
containing alpha helices, beta sheets, or both.10°
These biomolecules exhibit diverse biological
activities against gram-positive and gram-negative
bacteria, viruses, fungi, protozoa, and even
tumors.!1® The Data Repository of AMPs
(DRAMP) database includes over 4800 peptides
that are antiproteins!'!! and contribute to the
maintenance of intestinal bacterial homeostasis
and intestinal barrier function.!'> AMPs such as
the cathelicidin-related AMP (CRAMP) have
been reported to be secreted by pancreatic acinar

Table 2. AMP changes in AP-affected intestinal microbiota.

cells, and reduced secretion of pancreatic AMPs
can lead to the abnormal growth of intestinal bac-
teria and the disruption of the intestinal microbi-
ota balance. Moreover, CRAMP deficiency
worsens pancreatic inflammation.!!3 Decreased
expression of ileal terminal AMPs was found in
necrotizing pancreatitis.!!* Hypertriglyceridemia
(HTGQG) affects the expression of AMPs, including
a-defensin, lysozyme, phospholipase A2, and
regenerating islet-derived protein 3a (Reg3A),!1>
in Paneth cells, which may exacerbate HTG-
related acute necrotizing pancreatitis in intestinal
barrier dysfunction. Pancreatic cells secrete a
variety of AMPs to regulate the structure of the
intestinal microbiota.l’® Lysozyme and o-
defensins have activities against gram-negative
and gram-positive bacteria, and some experts
believe that fecal levels of a-defensins are a sur-
rogate marker for gut microbial homeostasis.!17:118
On the other hand, Reg3A, which has powerful
bactericidal activity, can antagonize gram-positive
bacteriall%120 by limiting the number of mucosal-
adherent bacteria to separate the GM from the
epithelium and reduce bacterial translocation!2!
(Table 2).

AMPs Characteristics Mechanism Associated with AP Associated with GM References
CRAMP Reduced The Orail Ca?* channel, Increased mortality Gastrointestinal Ahuja et al.,"®
which is needed in pancreatic  in AP inflammation, intestinal Deng et al.’3
exocytosis, can suppress the bacterial overgrowth or
inflammation-associated dysbiosis, and systemic
alteration of intestinal infection; impaired
bacteria immunomodulatory effects
Regllly and Reduced The GM metabolites SCFAs Serious pancreatic Increased intestinal Zhao et al.1%
B-defensins (including butyrate) activate damage and systemic  inflammatory responses;
mTOR in IECs and promote inflammation decreased SCFA-induced
|IEC Regllly and B-defensins in AMP production
a GPR43-dependent manner
Regllly and Reduced The GM metabolites SCFAs Serious pancreatic Inhibition of intestinal Zhao et al. "4
B-defensins (including butyrate) activate damage and systemic  immune regulation and
STAT3 in IECs and promote inflammation intestinal organoid stemness
IEC Regllly and B-defensins in proliferation; decreased
a GPR43-dependent manner AMP secretion
Regllly and Reduced Microbiota can directly affect ~ Serious pancreatic Decreased AMP secretion Zhao et al.,"%
Regllp AMP production by interfering damage and systemic Menendez et al.,'??

with TLR-TLR ligand
interactions

inflammation

Brandl et al.,'23
Vaishnava et al.'?4

(Continued)]
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Table 2. (Continued)

AMPs Characteristics Mechanism Associated with AP Associated with GM References
C-type lectins of Reduced Bactericidal activity by binding  Serious pancreatic Antibacterial effects Wong''2,
the Reglll family membrane phospholipids and damage and systemic  against enteric pathogens; Mukherjee
killing bacteria by forming inflammation promoting mutualism with etal,"? Cash
a hexameric membrane- (bactericidal for the resident microbiota in etal'?
permeabilizing oligomeric gram-positive but not  orthergasia
pore for gram-negative
bacteria)
o-Defensinand  Reduced Intestinal microbiota Serious pancreatic Increased intestinal Huang et al.,'®
lysozyme dysbiosis and decreased damage and systemic  proinflammatory cytokine Clevers and
levels of AMPs in Paneth inflammation (TNF-a, IL-1B, and IL-17A) Bevins,"7 Eriguchi
cells may participate in the levels in plasma and tissue; et al.,''® Salzman
pathogenesis of intestinal weakened resistance against et al.,'?®> Satoh
barrier dysfunction enteric pathogens; dysbiosis et al.%
of intestinal microbiota
structure and aggravated
intestinal barrier dysfunction
AMPs secreted Reduced Increase in the concentration  Serious pancreatic Dysbiosis of intestinal Satoh et al., 126

by Paneth cells
granule secretion

of cytosolic Ca?* accompanies

damage and systemic
inflammation

microbiota and aggravated

responding to bacteria or
bacterial products, such as

lipopolysaccharide

Ayabe et al.?7

intestinal barrier dysfunction

AMP, antimicrobial peptide; AP, acute pancreatitis; CRAMP, cathelicidin antimicrobial peptide; GM, gut microbiota; GPR, G protein-coupled

receptor; IEC, intestinal epithelial cell; IL, interleukin; MAP, mild acute pancreatitis; MSAP, moderate severe acute pancreatitis; mTOR, mammalian
target of rapamycin; Reg, regenerating islet-derived protein; SAP, severe acute pancreatitis; SCFA, short-chain fatty acid; STAT3, signal transducer
and activator of transcription 3; TLR, toll-like receptor; TNF-a, tumor necrosis factor-a.

Risk factors that influence the GM and AP
Trillions of microbes live in the gut, and this com-
munity plays a vital role in the regulation of both
intestinal and pancreatic functions. The underly-
ing common causes of AP, such as biliary obstruc-
tion, alcohol misuse, HT'G, and a high-fat/sugar
diet, may also cause changes in the intestinal
flora.128 These risk factors affect both AP and the
intestinal microflora; thus, interactions between
the intestinal microflora and the occurrence of AP
can be inferred.

Obesity and hyperlipidemia. Obesity typically
presents with low-level systemic inflammation,
such as increased leukocyte counts and TNF-a,
IL-6, and C-reactive protein levels!2%130; further-
more, it is characterized by increased secretion of
biomarkers by adipocytes and is associated with
AP. Moreover, macrophages in adipose tissue
have been reported to participate in inflammation
in obesity via the secretion of proinflammatory
cytokines, such as TNF-o and IL-6,!3! both of
which have been proven to affect AP and GM.

Obesity can also unmask primary HTG due to
genetic causes and is a risk factor for secondary

HTG, which is associated with pancreatitis.!32.133
At present, HTG-induced AP (HTG-AP) has
become the second leading cause of AP.134
Indeed, the proportion of Bacteroides in the
intestines of lean mice was found to be higher
than that in obese mice after administration of the
same diet, while the opposite was true for thick-
walled Bacteroides.!35> Rats fed a high-fat diet
showed significant increases in serum low-density
lipoprotein, total cholesterol, and triacylglycerol,
as well as changes in Bifidobacteria, Lactobacilli,
Enterococci, Enterobacteria, and Anaphylactic bac-
teria in the intestinal flora.!?% In an animal model
of hyperlipidemic necrotizing pancreatitis,
researchers also found intestinal microflora imbal-
ances and decreased AMPs in Paneth cells, fur-
ther confirming that hyperlipidemia can affect the
severity of AP and the intestinal microflora.!!>
Unsaturated fatty acids (UFAs) might be an
important factor that can affect both AP and GM
in obesity and hyperlipidemia, and these factors
are mainly transmitted via the lipolysis of circu-
lating triglycerides.!3” The insolubility of UFAs in
the aqueous environment of the blood can cause
microthrombi formation in the pancreatic vascu-
lature, leading to ischemia and pancreatic
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Pancreatic vasculature

UFAs

microthrombi

ii. The UFAs can cause
microthrombi

iii. UFAs are normally bound by calcium,
resulting in their saponification and
inactivation in necrotic fat tissue,
ultimately increasing severity of AP and
demolish intestinal epithelium.

1. Adipose tissue itself and
macrophages in it can lead to
increase level of pro-inflammation
cytokines, like TNF-a and TL-6.

Intestinal mucosa
inflammatory injure

Apoptosis of intestinal
epithelial cells

Intestinal flora change

Figure 1. The negative effect of obesity and hypertriglyceridemia both on AP and GM.

(i) The adipose tissue itself and macrophages in it can lead to increase level of pro-inflammation cytokines, like TNF-a and IL-6. These cytokines
cause intestinal mucosa inflammatory injury, apoptosis of intestinal epithelial cells, and intestinal flora alteration. (ii) In the obesity or hyperlipidemia,
the UFAs transmitted from lipolysis of circulating triglycerides can cause microthrombi formation in the pancreatic vasculature resulting in ischemia
and pancreatic infarction. (iii) UFAs are normally bound by calcium, resulting in their saponification and inactivation in necrotic fat tissue, ultimately

increasing severity of AP and demolish intestinal epithelium.
AP, acute pancreatitis; GM, gut microbiota.

infarction. As polar molecules, UFAs usually
bind with calcium, resulting in their saponifica-
tion and inactivation in necrotic fat tissue.!38
Unbound UFAs can increase the serum levels of
TNF-a and other inflammatory cytokines,!3°
thereby worsening AP and leading to inflamma-
tion of the intestinal mucosa and intestinal epi-
thelial cell apoptosis®3:94 (Figure 1).

In addition to the harmful effects of obesity and
hyperlipidemia on the GM, recent studies have
shown that the intestinal flora is one of the impor-
tant environmental factors affecting the occur-
rence and development of obesity. The intestinal
flora can induce adipocytokine gene expression
by affecting intestinal epithelial cell fasting, lead-
ing to the increased production of triacylglycerols
in the body and causing lipid metabolism disor-
ders and the development of obesity.!40
Furthermore, disturbances in the intestinal flora
in obese mice may lead to abnormal

lipid metabolism, energy metabolism, adipokine
synthesis, and cell death, leading to the secretion
of a large number of proinflammatory cytokines
into the blood and resulting in the exacerbation of
pancreatitis.!!> Some studies indicated that intake
of probiotic preparations could affect serum cho-
lesterol and high-density lipoprotein levels and
indirectly lower blood lipids, suggesting that the
establishment of normal intestinal flora can help
balance lipid metabolism.!13

Alcohol. In recent years, due to changes in diet
and increases in alcohol consumption, heavy
drinking has become a risk factor for AP, and this
condition easily progresses to SAP.141 The toxicity
of ethanol is mediated by ethanol itself or its oxi-
dative and nonoxidative metabolism. Oxidative
ethanol metabolism potentiates cholecystokinin-
induced depolarization by sensitizing pancreatic
mitochondria to Ca?*-induced mitochondrial
permeability transition pore (MPTP) activation,
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resulting in mitochondrial dysfunction in pancre-
atic acini and necrosis in the pancreas.!42 Although
the main ethanol metabolism n vivo is oxidation,
a smaller part undergoes nonoxidative metabo-
lism.143:144 Incubation of isolated pancreatic aci-
nar cells with fatty acid ethyl esters, one of the
nonoxidative ethanol metabolites 7z vivo, induced
mitochondrial depolarization, depletion of cellu-
lar adenosine triphosphate,'4> and sustained ele-
vations of intracellular Ca2?* levels ultimately
associated with cellular dysfunction and cell
death.'46 Both alcohol and its metabolites can
activate digestive enzymes early in pancreatic aci-
nar tissue, resulting in pancreatic tissue autodi-
gestive injury, and activate pancreatic stellate
cells, leading to fibrosis of the pancreas.!43

On the other hand, alcohol has been shown to
have a negative impact on the intestinal flora of
healthy people, such as decreasing the biodiver-
sity of the intestinal flora and affecting the overall
composition of the microbial community.!%
Disturbances in the intestinal flora may cause dis-
orders of glycolipid energy metabolism and other
potential functional pathway changes in the
body.!%” Alcohol can lead to changes in the com-
position of the GIT microbiota and metabolic
function, contributing to the well-established
association between alcohol-induced oxidative
stress and intestinal hyperpermeability to luminal
bacterial products.146-148 Exposure to ethanol can
increase the release of enterogenous gram-nega-
tive bacteria-derived lipopolysaccharide (LPS),
leading to macrophage activation and the secre-
tion of cytokines, including TNF-a, IL-1f, and
11.-6.1%% TL.-22 is mainly involved in maintaining
the integrity of the epithelial barrier and linking
intestinal immune activation with epithelial repair
and barrier protection.!5%151 Under inflammatory
conditions, IL.-22 can be activated through the
IL-23-Janus kinase/signal transducer and activa-
tor of transcription signaling pathway, resulting in
the production of AMPs.!52 Ethanol metabolism
in vivo produces acetaldehyde and ROS, which
can activate NF-«B and ultimately stimulate the
immune response,!>3 decrease intestinal expres-
sion of IL-22, and alter gut epithelial integrity,
causing an increase in intestinal permeability and
bacterial translocation!>* (Figure 2).

High glucose and insulin resistance. Pancreatic
damage, pancreatitis, imbalances in the GM, and
blood sugar imbalances may be interrelated.!48
AP exhibits hyperglycemia in the early stage,!55

which can persist as secondary diabetes even after
pancreatitis has been resolved.!5 Chronic hyper-
glycemia may cause oxidative stress, mitochon-
drial damage, the production of advanced
glycation end products (AGEs), and the expres-
sion of the receptor for AGEs (RAGE), leading to
tissue injury.!57

Researchers have shown that hyperglycemia
enhances mitochondrial oxidative stress by
increasing ROS production, which is a key step in
the pathogenesis of AP,158 and mediates lipid per-
oxidation by increasing cytosolic Ca2*, 159160
Furthermore, increased intracellular Ca2* is also
required for premature protease activation, which
is an early step in the induction of AP.158 Elevated
glucose levels begin to form covalent conjugates
with plasma proteins through a nonenzymatic
process called AGE formation.!®! In combination
with AGEs, RAGE promotes the development of
pancreatitis in part by mediating uninduced
nucleosome activation and proinflammatory
mediator release via the absence in melanoma 2
(AIM?2) inflammasome activation and proinflam-
matory mediator release in macrophages in an
animal model of AP.1%2 Under glycoxidative
stress, stimulated macrophages can induce oxida-
tive stress and NF-kB activation through activa-
tion of the PR2lras and MAPK signaling
pathways.163 Active NF-«B induces the produc-
tion of TNF-a, which, in turn, leads to enhanced
ROS production and more severe damage to tis-
sues.!64 In addition, hyperglycemia was shown to
compromise the integrity of the intestinal barrier
through glucose transporter 2 (GLUT2)-
dependent reprograming of the intestinal epithe-
lial cell transcriptome and disruption of tight and
adherence junctions, leading to intestinal flora
disorders.105:166 The GM composition of patients
and animals with elevated blood glucose was also
significantly different from that of normal
controls, 167168

Insulin resistance, which is a kind of metabolic
dysfunction associated with type 2 diabetes mel-
litus, is another critical factor that affects both AP
and the GM.1%° Observational studies have shown
an increased risk of AP among people with dis-
eases linked to insulin resistance.!70-172 Various
factors and hormones, such as NF-xB, TNF-a,
amylin, leptin, and IL-6, have recently been
shown to be increased in patients with insulin
resistance, and those factors have been demon-
strated to cause AP and intestinal flora
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Figure 2. The mechanism and negative effect of ethanol metabolism on AP and GM.

The toxicity of ethanol is mediated by ethanol itself though its oxidative or nonoxidative metabolism. Exposure to ethanol
can increase release of enterogenous gram-negative bacteria-derived LPS leading to macrophages activation and cytokines
secretion, including TNF-a, IL-6, etc. and inhibit intestinal expression of IL-22, finally damaging intestinal flora balance and
intestinal mucosa integrity. Oxidative metabolism of ethanol produces acetaldehyde and ROS which could activate NF-kB,
inhibit intestinal expression of IL-22, and also activate trypsin causing pancreatic tissue autodigestive injury. Nonoxidative
metabolism of ethanol induced mitochondrial depolarization to Ca2+-induced MPTP activation, resulting in pancreatic

mitochondrial dysfunction and trypsin activation.
AP, acute pancreatitis; GM, gut microbiota.

disorders.!73-177 In addition, insulin resistance
often causes hyperinsulinemia, which can inhibit
mucus secretion by promoting fatty acid synthase,
to break the integrity of the intestinal barrier,
leading to GMs. 195:178 Furthermore, insulin resist-
ance has been regarded as a novel risk factor for
post-endoscopic retrograde cholangiopancreatog-
raphy pancreatitis!’® and an independent prog-
nostic factor in patients with AP.180

Intestinal microbes can also increase insulin
resistance by influencing host energy metabolism
and the integrity of the intestinal barrier; thus,
inflammatory mediators can be transmitted into
circulation.!8!

Curative substances influence both AP and GM
AP often leads to flora disorder, but some protective
cytokines play key roles; for example, IL-22 and

IL-23 attenuate intestinal flora disorders.!52182183
Propolis has recently been reported to reduce the
serum levels of proinflammatory cytokines (TNF-a,
IL-1B, and IL-6) and increase IL-22 levels, thereby
reducing pancreatic neutrophil infiltration and
maintaining the intestinal flora in AP rats.!8* Store-
operated calcium entry (SOCE) modulators,!8
such as Pyrtriazoles, and the Orai Ca2" channel
inhibitor CM4620, which can reduce endoplasmic
reticulum calcium influx, target both parenchymal
and immune cells to reduce inflammation in experi-
mental AP.186 By inhibiting immune cells, SOCE
inhibitors can treat imbalances in the GM. Okra
pectin could relieve the inflammatory response by
inhibiting the expression of proinflammatory medi-
ators, preventing intestinal barrier injury, and regu-
lating the intestinal microbiota by upregulating
AMPs and occludin in an AP model.'87 Probiotics
have been reported to significantly attenuate patho-
logical injury of the pancreas and reduce the

journals.sagepub.com/home/tag


https://journals.sagepub.com/home/tag

L Wu, J Hu et al.

incidence of complications, such as infection, in
patients with AP.188 However, the elevated levels of
lactic acid produced by bacterial overgrowth in the
small bowel and fermentation of carbohydrates
significantly contributed to the high death rate.
When considering substituting supplementation
for individuals with AP, it is necessary to assess the
time, type, appropriate, effective doses of probiot-
ics, and prevent bacterial overgrowth,20:189190
Some traditional Chinese medicine (TCM) treat-
ments also have effects on both AP and the GM.
Saponin A, a monomer of total saikosaponins
extracted from Bupleuri Radix, has strong antioxi-
dant properties and can affect the composition of
GM by increasing the relative abundance of
Lactobacillus and Prevotella species to decrease the
development of SAP in rat models.!°! Picroside II

is one of the main effective components extracted
from Picrorhiza scrophulariiflora Pennell that can
improve the intestinal microbiota by inactivating
oxidant and inflammatory signals to improve intes-
tinal barrier injury in an SAP rat model.2® Some
studies have reported that berberine can not only
repair the gut barrier structure to decrease GM
diversity but also reduce blood glucose levels and
attenuate insulin resistance; moreover, berberine is
regarded as a potential therapeutic agent for
AP.192-194 Meng ez al. used acupuncture and moxi-
bustion to stimulate ST36 points to treat SAP based
on conventional treatments and found that adjuvant
acupuncture treatment could reduce the permeabil-
ity of intestinal mucosa capillaries, alleviate intesti-
nal dysfunction, and promote recovery in patients!®>
(Tables 3 and 4).

Table 3. Curative substances influencing both AP and GM.

Substance Effect on AP Effect on GM Mechanism References
IL-22 Relieves Promotes epithelial Activation of inflammation, mediated Sonnenberg
inflammation and repair and barrier  through the JAK/STAT signaling pathway, et al.,'50.151 L
tissue injury protection results in the production of AMPs, finally et al.,'5? Zheng
repairing barrier damage or controlling et al.,"% Zindl
pathogenic bacterial expansion etal.V?7
IL-23 Relieves Promotes epithelial Promotes IL-22 production Ngo et al.,'8 Shih
inflammation and repair and barrier et al.'8
tissue injury protection
Propolis Reduces neutrophil Reduces intestinal ~ Reduces the serum levels of Al-Hariri et al.'8
infiltration in the inflammation proinflammatory cytokines (TNF-q, IL-1p,
pancreas and IL-6) and increases that of IL-22
SOCE modulators
Pyrtriazole Reduce Treat an imbalance Reduce calcium influx in the endoplasmic  Riva et al.,'®

inflammation in the

of the GM

CM4620 pancreas
Okra pectin Reduces Prevents
inflammation in the intestinal barrier
pancreas inflammatory
injury and
regulates intestinal
microbiota
Choline Choline deficiency ~ Choline deficiency

is related to
exocrine pancreatic
insufficiency

is associated
with bacterial
overgrowth in the
small intestine

reticulum

Relieves inflammatory responses and
intestinal barrier injury and regulates
intestinal microbiota by inhibiting the
expression of proinflammatory mediators
or upregulating AMPs and occludin

Choline is a tightly regulated

tissue component in the form of
phosphatidylcholine and sphingomyelin in
all membranes and many secretions

Waldron et al.18

Xiong et al.187

Bernhard'?

AMP, antimicrobial peptide; AP, acute pancreatitis; GM, gut microbiota; IL, interleukin; SOCE, store-operated calcium entry; JAK, Janus kinase;
STAT, signal transducer and activator of transcription; TNF-o, tumor necrosis factor-a.
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Table 4. Promising prebiotic agent for the treatment of SAP.

Substance Effect on AP Effect on GM Mechanism References

SCFAs Anti-inflammatory  Protecting SCFAs produced by gut microbiome  van den Berg et al.,?'
effects on intestinal barrier, and has a protective effect Jia et al.,? Pan et al.,”?
protecting against ~ decreasing against pathogen proliferation, Patel et al.,'%° Wang
severe AP- bacterial inflammatory response, and et al.,19%20 Zhang

Six different
strains of probiotic
prophylaxis
mixture

Glutathione
biosynthesis by
multispecies
probiotics

Probiotics
capsules (such
as a mixture of
Bacillus subtilis
and Enterococcus
faecium)

Chitosan
oligosaccharides
(Cos)

Bifidobacterium
spp. (B. animalis)
metabolite lactate

associated lung
injury

More multiorgan
failure-related
deaths

Reducing
pancreatic
oxidative stress

Reducing
pancreatic injury

COS decrease
inflammatory
infiltration and
oxidative stress

Reducing
pancreatic
and systemic
inflammation

translocation

More bowel
ischemia

Reducing oxidative
stress in the ileum

Reducing bacterial
translocation and
increasing food
tolerance

Remodeling
gut dysbiosis
by increasing
probiotics
Akkermansia
and eliminating
pathogenic
bacteria
Escherichia-
Shigella and
Enterococcus

B. animalis
metabolite

lactate is the
energy source

for intestinal
epithelial cells and
inhibits bacterial
translocation

intestinal barrier injury

Combination of probiotics had no
beneficial effect on the occurrence
of infectious complications and
been damaged to bowel wall
because of inflammatory injury
and enteral feeding aggravating
intestinal mucosal ischemia

This probiotics mixture increases
the biosynthesis of glutathione and
reduces oxidative stress both in
pancreas and ileum

Gut microbiome plays important
role in the pathogenesis of AP.
Probiotics improve intestinal
microecology and food tolerance,
decrease the inflammation

Lighting oxidative stress, reducing
proinflammatory cytokine, and
balancing intestinal homeostasis

B. animalis colonization and

B. animalis metabolite lactate
administration could relieve
macrophage-associated local and
systemic inflammation through its
metabolite lactate-related TLR4/
MyD88- and NLRP3/Caspase1-
dependent pathway

et al.207

Bongaerts and
Severijnen,'® Besselink
et al.,?02 Rahman

et al.,?03 Besselink

et gl.204

Lutgendorff et al.,205.206

Hooijmans et al.,'8 Zhu

et al.,?” Tian et al.208

Mei et al.20?

Li et al.210

AP, acute pancreatitis; COS, chitosan oligosaccharides; SCFA, short-chain fatty acid; TLR, toll-like receptor.

Future research prospects

SAP is a severe inflammatory disease of the pan-
creas and results in a high mortality rate when
accompanied by multiple organ dysfunction or
secondary infection.?!! Studies have shown that
most pancreatic and extra-pancreatic organ

infections originate in the intestine and induce
inflammatory responses, which are major causes of
‘secondary attack’ and increased late death of
patients with SAP.212 Changes in the GM play an
important role in intestinal homeostasis and aggra-
vate the inflammatory response under intestinal
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flora dysfunction in AP.%> The migration and pro-
portion of intestinal flora influence the develop-
ment and severity of AP. However, the molecular
mechanism and signaling pathways associated with
changes in the intestinal flora in AP are still
unclear.?!? The dominant intestinal microbiota
speciesin MAP, MSAP, and SAP were Bacteroides,
Escherichia—Shigella, and Enterococcus, respec-
tively.2? A majority of diseases are accompanied by
changes in the microbiota, and whether there is a
way to detect GM species could be helpful in pre-
dicting or diagnosing SAP.214

Obesity and hyperlipidemia are regarded as
chronic and systemic inflammatory states induced
by adipocytes, which secrete a variety of proin-
flammatory cytokines and act as reservoirs of
inflammatory factors.23> When obesity and hyper-
lipidemia cause AP and an intestinal microbiota
imbalance,!15 the intestinal microbiota also causes
disordered lipid metabolism and the development
of obesity by mediating adipocytokine gene
expression, leading to a vicious cycle.14? Pancreatic
endocrine cells participate in the regulation of
blood glucose metabolism. Hyperglycemia exac-
erbates mitochondrial oxidative stress, increases
intracellular Ca2+ levels, and ultimately pro-
motes the progression of AP.158:160 Patients with
AP generally have insulin resistance,80%:8386 and
gut microbes have been reported to increase insu-
lin resistance.!8! Insulin resistance also causes AP
and intestinal microbiota disorders.8%:215:216
Glucose and lipids are sources of energy metabo-
lism and are also factors associated with meta-
bolic diseases. The specific GM species in AP
combined with the metabolic disorders associated
with glucose and lipids need further study. The
effect of probiotics on the treatment of AP com-
bined with metabolic disorders associated with
glucose and lipids might be worth studying.31-161

There is currently no specific treatment for AP.
The intestinal flora attenuates the severity of AP,
and personalized probiotic intervention is consid-
ered a future trend.2!” The timepoint, dose, and
effectiveness of probiotics used for the treatment
of AP are worthwhile of further experiments and
clinical studies. In addition, the safety issue of
probiotic therapy cannot be ignored.2!®8 TCM,
with multiple approaches including decoctions,
powders, acupuncture, and moxibustion, has
been reported to improve inflammatory or meta-
bolic disorders.?19-222 Whether treatments com-
bining probiotics and TCM could be beneficial

for SAP patients or whether the curative factors
mentioned above may be used to prevent pancre-
atitis are unclear, and few studies have focused on
this issue.

In conclusion, the interaction between the GM
and inflammatory responses provides a new
understanding of AP disease progression and
treatment. Further studies on the interaction of
GM and inflammatory responses in AP are
needed.
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