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Abstract 

Protein thermost abilit y is import ant in man y areas of biotechnology, including enzyme engineering and protein-h ybrid optoelectronics. Ev er- 
growing protein databases and information on st abilit y at different temperatures allow the training of machine learning models to predict whether 
proteins are thermophilic. In silico predictions could reduce costs and accelerate the de v elopment process b y guiding researchers to more 
promising candidates. Existing models for predicting protein thermophilicity rely mainly on features derived from physicochemical properties. 
Recently, modern protein language models that directly use sequence information have demonstrated superior performance in several tasks. 
In this study, we evaluate the usefulness of protein language model embeddings for thermophilicity prediction with ProLaTherm , a Pro tein 
La nguage model-based Therm ophilicity predictor. ProLaTherm significantly outperforms all feature-, sequence- and literature-based comparison 
partners on multiple e v aluation metrics. In terms of the Matthew’s correlation coefficient, ProLaTherm outperforms the second-best competitor 
by 18.1% in a nested cross-validation setup. Using proteins from species not o v erlapping with species from the training data, ProLaTherm 
outperforms all competitors by at least 9.7%. On these data, it misclassified only one nonthermophilic protein as thermophilic. Furthermore, it 
correctly identified 97.4% of all thermophilic proteins in our test set with an optimal growth temperature above 70 ◦C. 
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he thermostability of proteins is an essential property in
any biotechnological fields, such as enzyme design or
rotein-hybrid optoelectronics. While enzymes operating at
igh temperatures can potentially accelerate chemical reac-
ions ( 1–3 ) , the goal of protein-hybrid optoelectronics is to re-
lace nonsustainable components with biogenic ones without
osing device performance at operating temperatures above
0 

◦C ( 4–7 ) . It is therefore essential to accurately identify po-
entially thermostable proteins from naturally occurring or ar-
ificially engineered samples. To reduce the enormous search
pace and to guide researchers to potentially promising candi-
ates, machine learning ( ML ) methods can be used to predict
hether a protein is thermophilic or mesophilic. 
Zhang and Fang ( 8 ) published one of the first ML stud-

es to discriminate between thermophilic and mesophilic pro-
eins, with a feedforward neural network performing best.
ere, thermophilic proteins refer to proteins from organ-

sms with an optimal growth temperature ( OGT ) > 50 

◦C, and
esophilic proteins come from organisms with an OGT be-

ween 20 and 40 

◦C. A year later, they published one of the
rst benchmark datasets for thermophilicity prediction ( 9 ) ,
or which they reported a validation accuracy of 87.4% for
 support vector machine ( SVM ) with a radial basis function
ernel and 86.6% for a boosting-based LogitBoost classifier.
romiha and Suresh ( 10 ) reduced redundancy within the data
f ( 9 ) by applying CD-HIT ( 11 ) with a threshold of 40%
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global sequence identity. They achieved a comparable perfor-
mance for several ML-based methods, with slight advantages
for an SVM, logistic regression and a neural network. Their
results are consistent with the work of Lin and Chen ( 12 ) .
On a newly collected dataset, Lin and Chen showed a valida-
tion accuracy of 93.3% for ThermoPred , a predictor based
on an SVM with a radial basis function kernel, slightly outper-
forming Random Forest and logistic regression. Several subse-
quent research papers also present SVMs with linear and non-
linear kernels as the best-performing models, often enhanced
with additional feature engineering and selection ( 13–19 ) . In a
more recent publication, Charoenkwan et al. ( 20 ) introduced
SCMTPP , a thermophilicity prediction model based on a scor-
ing card method. On a unified dataset based on published
data from ( 9 , 12 , 15 ) , SCMTPP achieved a validation accuracy
of 88.3% and outperformed ThermoPred by 0.5% on a test
set containing 20% of the data with an accuracy of 86.5%.
For iThermo , Ahmed et al. ( 21 ) used an analysis of variance-
based feature selection and a three-layer multilayer percep-
tron ( MLP ) as a predictor. Similarly to SCMTPP , they out-
performed ThermoPred on a newly collected dataset. SAP-
PHIRE ( 22 ) is a stacked ensemble learner based on six classi-
fication models, i.e. XGBoost, SVM with a linear and a radial
basis function kernel, logistic regression, Random Forest and
a partial least squares regression ( PLS ) -based classifier. Each
prediction model was trained on 12 different feature sets us-
ing the same unified dataset as for SCMTPP . Furthermore, a
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genetic algorithm was trained to select 12 of the 72 predic-
tions for a PLS-based meta-predictor. With an accuracy of
94.2%, SAPPHIRE outperforms SCMTPP ( 86.5% ) on the test
data used in ( 20 ) . Recently, DeepTP , a deep learning-based
model that uses both the amino acid sequence directly and
physicochemical features, has been published. The sequence
information is processed by a convolutional network to ex-
tract local features and a bidirectional long short-term mem-
ory ( LSTM ) network to account for long-range dependen-
cies. After a self-attention layer, the output is concatenated
with the normalized physicochemical features to serve as in-
put for an MLP classification head. The authors report that
DeepTP outperforms SAPPHIRE , SCMTPP and iThermo on
a newly collected test set ( 23 ) . BertThermo retrieves features
directly from protein sequences using a large pretrained lan-
guage model, namely ProtBert-BFD ( 24 ) . Then, they fur-
ther process the sequences using the synthetic minority over-
sampling technique to address data imbalance, and select fea-
tures with a light gradient boosting machine. Finally, they ap-
ply logistic regression to generate predictions ( 25 ) . 

Although several studies suggest good predictive perfor-
mance in discriminating thermophilic from nonthermophilic
proteins, most of these studies report evaluation metrics only
on validation data in a cross-validation setup or on randomly
selected rather than species-specific test data. The importance
of data collection and careful stratification of protein data for
the generalization abilities of predictive models has been re-
viewed in detail in ( 26 ) . In this study, the authors discussed
two types of circularity that can lead to overly optimistic pre-
diction results and reduced generalization ability of tools de-
signed to predict the pathogenicity of missense variants. While
the first type of circularity describes potential biases due to
overlapping training and test data, the second type describes
potential biases due to different variants of the same protein
occurring in the training and in the evaluation of pathogenic-
ity prediction tools. Similar biases can occur in thermophilic-
ity prediction when different proteins from the same species
occur in both the training and test data. For this reason, not
only nested cross-validation metrics should be reported, but
also evaluations on an independent test set containing only
species that do not overlap with the species in the training
data. 

With respect to encoding protein sequences, i.e. represent-
ing the information they contain as numerical values such
that subsequent prediction models can process them, vari-
ous options exist, without yielding a superior approach so far
( 27 ,28 ) . Most published thermophilicity prediction methods
rely on feature engineering, e.g. by determining physicochem-
ical properties. They do not directly use the protein sequence
itself, e.g. via language models, which can lead to a loss of
information. Recently, prediction methods using protein lan-
guage models have been shown to have superior performance
in several downstream tasks, such as the prediction of sec-
ondary structures, signal peptides or the binding of proteins
to ligands ( 24 ,29–38 ) . 

In this work, we present a novel Pro tein La nguage model-
based Therm ophilicity predictor ( ProLaTherm ) . To evalu-
ate the usefulness of protein language model embeddings for
this prediction task, we benchmark ProLaTherm against sev-
eral feature- and sequence-based comparison partners, includ-
ing modern transformer-based architectures, as well as several
prediction models from the literature. In contrast to the ex-
isting literature, we evaluate the performance not only in a
nested cross-validation setup but also using test data contain- 
ing only proteins from species that were not present during 
training. In this way, we ensure that the generalization ability 
of the models is estimated as unbiased as possible. In addition,
we publish a new benchmark dataset for thermophilicity pre- 
diction tasks, which is based on a significant update of existing 
and newly collected data. 

Materials and methods 

In the following, we first describe the data collection. Next, we 
outline the architecture of ProLaTherm , its comparison part- 
ners and the hyperparameter optimization. Finally, we sum- 
marize the preprocessing steps and experimental settings of 
this study. 

Data 

In this study, we consider three commonly used benchmark 

datasets for protein thermophilicity prediction as well as 
newly collected data. Zhang and Fang ( 9 ) provided a dataset 
with 9422 UniProt identifiers and 9363 corresponding amino 

acid sequences from 16 thermophilic and 16 mesophilic or- 
ganisms. To avoid potentially outdated identifiers and se- 
quences, we checked the provided data against a recent 
UniProt release ( 2022_04, published October 2022 ) ( 39 ) . Us- 
ing the identifiers provided, we obtained data for 7684 of 
the 9422 proteins. For the remaining ones, for which Zhang 
and Fang ( 9 ) provided amino acid sequences, we used the 
NCBI protein BLAST ( 40 ) to obtain the corresponding current 
identifiers. We further checked the BLAST selected identifiers 
against UniProt’s historical data to ensure that they matched 

the original proteins. Finally, we obtained 9412 proteins with 

their corresponding UniProt identifiers, of which 3724 and 

5688 are thermophilic and mesophilic, respectively. 
Another commonly used dataset for thermophilicity pre- 

diction was constructed by Lin and Chen ( 12 ) . To ensure that 
nonthermophilic proteins denature in the temperature ranges 
of thermophilic proteins, the authors chose 60 

◦C as the lower 
limit for thermophilic organisms and 30 

◦C as the upper limit 
for nonthermophilic ones. Their publicly available data con- 
tain 915 thermophilic and 793 nonthermophilic proteins, but 
with custom identifiers. To retrieve the corresponding UniProt 
identifiers for all provided sequences, we used NCBI’s protein 

BLAST and updated the data accordingly. 
We also included data collected by Ahmed et al. ( 21 ) , con- 

sisting of 1368 thermophilic and 1443 nonthermophilic pro- 
teins based on the thresholds of ( 12 ) . Again, we checked all 
provided protein identifiers and sequences by downloading 
the latest versions from UniProt. For 55 proteins, for which 

we did not find a UniProt entry using the provided identifier,
we used the NCBI protein BLAST and UniProt historical data 
as described above. 

In addition, we collected a new dataset containing ther- 
mophilic and nonthermophilic proteins for a more diverse set 
of species. For this purpose, we selected suitable prokaryotic 
species from the TEMPURA database of growth temperatures 
( 41 ) and extracted the corresponding proteins from UniProt.
Following ( 12 ) , we selected an OGT of 60 

◦C as the lower limit 
and 30 

◦C as the upper limit for thermophilic and nonther- 
mophilic species, respectively. 

For this study, we merged all three updated datasets from 

the literature with our newly collected data. This results in 
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roviding an enhanced and up-to-date benchmark dataset,
hich ensures updateability by including UniProt identifiers

n contrast to existing ones ( 42 ) . Furthermore, the inclusion
f new data from a diverse set of species allows us to as-
ess the generalization ability of the prediction models on un-
een species. In the following, we refer to the data consist-
ng of mesophilic proteins from ( 9 ) and nonthermophilic pro-
eins from ( 12 ,21 ) , and our newly collected data as nonther-
ophilic. Similarly to ( 12 ,21 ) , we removed all proteins that
ere predicted or inferred by homology and kept only se-
uences consisting of the 20 proteinogenic amino acids. Ex-
luding duplicates based on the UniProt identifier, this resulted
n a final dataset containing a total of 2864 thermophilic
nd 4545 nonthermophilic proteins, collected from 91 and
73 species, respectively. From these data, 947 thermophilic
roteins ( belonging to 56 species ) and 2245 nonthermophilic
roteins ( belonging to 85 species ) come from our newly col-

ected data. A list of all species with the number of pro-
ein sequences can be found in Supplementary Tables S2–S4.
ll data including meta-information are publicly available at
ttps:// github.com/ grimmlab/ ProLaTherm . 

rediction models 

n the following, we first describe the protein language model-
ased thermophilicity predictor ProLaTherm . With respect
o the subsequent comparison partners, we distinguish based
n the processing of the input protein sequences. First, we con-
ider feature-based models that rely on manually engineered
eatures, such as physicochemical properties. Second, we in-
lude hybrid sequence-based models that use amino acid fea-
ures to learn sequence embeddings. Third, we consider ap-
roaches that are purely sequence-based, similarly to Pro-
aTherm , but in contrast train sequence embeddings from
cratch. Finally, we outline the hyperparameter optimization. 

roLaTherm 

et ρ be a protein sequence consisting of l ρ amino acids
 1 , . . . , a l ρ with a j ∈ {A, C, D, E, F, G, H, I, K, L, M, N, P, Q,
, S, T, V , W , Y}. Denote by y ∈ {0, 1} the label of the protein

equence ρ, with 1 indicating a thermophilic protein. In a first
tep, all amino acids a j are ordinal encoded to a ′ j ∈ { 1 , . . . , 20 }
nd a sequence embedding � ∈ R 

l ρ×d with d = 1024 is gen-
rated using a lookup embedding { 1 , . . . , 20 } → R 

d . The se-
uence embedding � is further processed by the encoder of the
rotT5XLUniRef50 model to retrieve the protein language
odel embedding �∗ ∈ R 

l ρ×d : 

�∗ = ProtT5XLUniRef50_Encoder ( �) . 

or the feature extractor ProtT5XLUniRef50 , the encoder
art of a T5-3B model ( 43 ), a transformer-based model con-
isting of 24 layers with a 32-head self-attention, is integrated.
rotT5XLUniRef50 was pretrained for protein sequence re-
onstruction in a self-supervised setup by Elnaggar et al. ( 24 )
n UniRef50 ( 44 ). We utilize latent representations from this
retrained protein language model, as it has been shown that
hese are able to capture meaningful biophysical features ( 24 ).
hus, these cross-domain embeddings could improve the gen-
ralization abilities of a protein thermophilicity classifier. To
btain an input vector for the feedforward head classifier,
e apply an average pooling on the protein language model

mbedding �∗ over the sequence length l ρ , resulting in a d -
imensional vector μ∗ ∈ R 

d . With the transposed k th row vec-
tor of �∗ denoted as ( φ∗
k ) 

T , the average pooling along l ρ is
defined as 

μ∗ = 

1 

l ρ

l ρ∑ 

k =1 

( φ∗
k ) 

T . 

The head classifier starts with a fully connected layer with
a rectified linear unit (ReLU) as nonlinear activation func-
tion and reduces the dimensionality d of μ∗ to d / 2 = 512.
This is followed by batch normalization ( 45 ) and a fully con-
nected output layer yielding logits of the final predictions. An
overview of ProLaTherm is summarized in Figure 1 . 

The head classifier was trained in a supervised fashion min-
imizing the cross-entropy loss L between the label y i of the i th
protein in a batch of size n b and a predicted probability for
thermophilicity p i given as 

L = − 1 

n b 

n b ∑ 

i =1 

y i log (p i ) + (1 − y i ) log (1 − p i ) . 

The Adam optimizer was used for model training while treat-
ing the learning rate as a hyperparameter and reducing it on a
plateau of the validation loss ( 46 ). For regularization, we ap-
ply dropout before the average pooling and the output layer
( 47 ) and use early stopping; i.e. the optimization process is
terminated if the loss on a validation set does not improve for
a certain period. Further details on the hyperparameter op-
timization are outlined later in this section. An overview of
all hyperparameters and ranges is shown in Supplementary
Table S5. 

Feature-based comparison partners 
To benchmark ProLaTherm , we include five feature-based
classifiers, ranging from classical ML models over ensemble
learners to a neural network-based architecture. These mod-
els rely on manual feature engineering, which summarizes in-
formation from the protein sequences, such as physicochem-
ical properties. These features are described in more detail in
the ‘Experimental settings’ section, Supplementary Methods
and Supplementary Table S1. An overview of all optimized
hyperparameters and ranges can be found in Supplementary
Table S6. 

As a first comparison partner, we use Elastic Net, a logistic
regression model with a penalty term using a weighted sum of
the L1 and the L2 norms ( 48 ). This regularization combines
the automatic feature selection effect of the L1 norm with the
weight distribution among correlated features due to the L2
norm. The strength of the regularization term and the ratio
between the L1 and the L2 norms are optimized during the
hyperparameter search. As summarized in the ‘Introduction’
section, SVMs ( 49 ) have shown good performance in several
thermophilicity prediction studies. Therefore, we also include
an SVM in our study. An essential component of an SVM is
the kernel function, for which we consider a linear and a ra-
dial basis function as well as a polynomial kernel. Besides the
choice of the kernel function, the strength of the regularization
term, which penalizes complex models, and kernel-related pa-
rameters are tuned in the hyperparameter search. 

We also include the two ensemble learners: Random For-
est and XGBoost. Random Forest uses bagging, i.e. aggregat-
ing the predictions of weak learners trained on random sub-
samples of the training data ( 50 ). In contrast, XGBoost uses

https://github.com/grimmlab/ProLaTherm
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Figure 1. Ov ervie w of ProLaTherm . After deriving sequence embeddings from the protein sequence, w e retrie v e protein language model embeddings 
by using the encoder part of ProtT5XLUniRef50 . These are further average pooled along the sequence length to be processed by the head classifier. 
The head classifier consists of a fully connected layer with rectified linear activation, followed by batch normalization and a fully connected output layer. 
We further apply dropout before the average pooling and output layer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

gradient boosting, which greedily adds prediction models fo-
cusing on misclassifications of the current ensemble ( 51 ). 

In addition, we implement an MLP, for which the num-
ber of layers and neurons in each layer is optimized during
the hyperparameter search. We add batch normalization and
dropout after each fully connected layer and a fully connected
output layer. For the nonlinear activation function, we choose
between a ReLU and a hyperbolic tangent. Similarly to Pro-
LaTherm , we minimize the cross-entropy loss and employ the
Adam optimizer with an optimized learning rate and a learn-
ing rate scheduling ( 46 ). 

Hybrid sequence-based comparison partners 
LSTM_BasicDesc and Bi-LSTM_BasicDesc can be thought
of as hybrid sequence-based models that use features of the
amino acids for the input embeddings. We encode each amino
acid with normalized values of physicochemical properties,
i.e. weight, charge, polarity , aromaticity , hydrophobicity and
van der Waals volume. Our goal is to integrate physico-
chemical properties as additional input information, which
we neglect in the case of purely sequence-based embeddings
learned from scratch. The six basic descriptors lead to a
low-dimensional embedding compared to the other sequence-
based approaches. To potentially enhance the input of the
LSTM network part, we therefore increase the dimensionality
of the latent representation using fully connected layers with
nonlinear activation and dropout. These hybrid latent repre-
sentations are further processed by an LSTM and Bi-LSTM,
respectively. Both LSTM_BasicDesc and Bi-LSTM_BasicDesc
are designed with an optimized number of LSTM layers in-
cluding a dropout mechanism, with the Bi-LSTM employing
a bidirectional architecture. Then, the last hidden state from
the LSTM network is extracted and further processed by the
same head classifier architecture as for ProLaTherm . Both
methods are trained using the Adam optimizer minimizing the
cross-entropy loss, with the learning rate considered as a hy-
perparameter and a learning rate scheduling based on the val-
idation loss. Early stopping is applied to avoid overfitting. 

Purely sequence-based comparison partners 
Furthermore, we consider five comparison partners that, sim-
ilarly to ProLaTherm , directly use the protein sequence as
input. In contrast to ProLaTherm , we do not use a pre-
trained feature extractor, but train the sequence embeddings
from scratch, without physicochemical information. Hyper-
parameters and ranges for all sequence-based comparison
partners are given in Supplementary Tables S7 and S8. For
MLP_Embedding, LSTM and Bi-LSTM, we use an ordinal
encoding followed by an embedding layer to transform the
amino acid sequence into a sequence of real-valued vectors
( 52 ,53 ). Regarding MLP_Embedding, we apply the same ar- 
chitecture as for the head classifier of ProLaTherm , but 
choose whether to include the first fully connected layer 
during hyperparameter optimization. The LSTM and Bi- 
LSTM employ the same architecture as LSTM_BasicDesc and 

Bi-LSTM_BasicDesc, respectively. An optimized number of 
LSTM layers including a dropout mechanism, with the Bi- 
LSTM employing a bidirectional architecture, is followed by 
the head classifier architecture of ProLaTherm using the last 
hidden state of the recurrent network part. 

With vanilla-Transformer and BigBird, we add 

two transformer-based architectures, similarly to 

ProtT5XLUniRef50 ( 54 ,55 ). For both, we again use 
an ordinal encoding and embedding layer to transform 

the amino acid sequence. Multi-head self-attention, a key 
element of a transformer-based architecture, is permutation 

equivariant. Hence, we preserve the positional information 

with an additional positional embedding layer. The sum of 
the outputs of both embedding layers serves as the input 
of vanilla-Transformer and BigBird. For computational 
efficiency in terms of runtime and memory, we employ an av- 
erage pooling layer reducing the sequence length prior to the 
transformer layers in vanilla-Transformer. As BigBird uses a 
sparse attention mechanism scaling linearly with the sequence 
length instead of quadratically, the average pooling is not 
needed. Hence, comparing the results of vanilla-Transformer 
and BigBird can be used to evaluate whether using the full 
sequence length as input of the transformer-based layers is 
beneficial. vanilla-Transformer and BigBird consist of an 

optimized number of transformer layers, each comprising 
multiple self-attention heads, with the number of heads 
considered as a hyperparameter (see Supplementary Table 
S8). The transformer layers of both prediction models follow 

a pre-layer normalization design, with layer normalization 

followed by a multi-head self-attention and a feedforward 

layer, as well as skip connections around the self-attention 

and feedforward parts ( 56 ). However, vanilla-Transformer 
and BigBird differ regarding the self-attention mechanism.
For vanilla-Transformer, we employ the regular self-attention 

calculation with each sequence element attending to all 
others. BigBird instead applies an approximation, where 
each sequence element only attends to a subset of the other 
sequence elements, realized via local and global tokens. Simi- 
larly to ProLaTherm , we apply an average pooling along the 
sequence length on the output of the last transformer layer 
in both cases. Finally, we use the head classifier design of 
ProLaTherm . 

All sequence-based models are trained from scratch to min- 
imize the cross-entropy loss using the Adam optimizer with 

an optimized learning rate and a learning rate reduction on a 
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Table 1. Number of thermophilic and nonthermophilic proteins per 
dataset 

Dataset # Thermo. # Nonthermo. 

Total collected data 2864 4545 
Nested cross-validation data 1699 3440 
Species-specific cross-validation data 1539 3258 
Test set 1 345 224 
Test set 2 203 192 

The rows show the number of proteins in the entire dataset and the data 
used in our two experimental setups after the respective preprocessing steps. 
The nested cross-validation data refer to all proteins used for training and 
testing in our nested cross-validation experiment. The species-specific cross- 
validation data, test set 1 and test set 2 are part of the species-specific exper- 
iment. The former was used for training and validation, whereas the latter 
two are the two sets with distinct species not present in the species-specific 
cross-validation data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

alidation loss plateau. In addition to dropout, we apply early
topping for regularization. 

omparison partners from the literature 
or a comparison with state-of-the-art protein thermophilicity
rediction models from the literature, we include six publicly
vailable predictors, i.e. ThermoPred ( 12 ), SCMTPP ( 20 ),
Thermo ( 21 ), SAPPHIRE ( 22 ), DeepTP ( 23 ) and Bert-
hermo ( 25 ), which we summarized in the ‘Introduction’
ection. 

yperparameter optimization 

or hyperparameter optimization, we apply state-of-the-art
ayesian optimization ( 57 ) using the Python package Op-
una ( 58 ). Bayesian optimization attempts to guide the search
oward more promising parameter candidates based on the
erformance of already tested parameter sets. Defining an ob-
ective value based on validation data enables the formula-
ion of a probabilistic model mapping from parameter candi-
ates to a probability of an objective value. This probabilistic
odel then allows the selection of promising parameter set-

ings for subsequent trials. In comparison to grid or random
earch ( 59 ), Bayesian optimization is computationally more
xpensive in terms of suggesting hyperparameter values but
otentially converges earlier as the parameter choice might
e superior ( 60 ). We perform 200 optimization trials for each
odel. Furthermore, we stop nonpromising trials if intermedi-

te results, i.e. the performance on cross-validation folds, are
orse than the 80th percentile of previous runs at the same

tep. 

xperimental settings 

ata preparation 

n our study, we consider two different experimental setups: (i)
o assess the generalization ability of the used models based on
n unbiased empirical performance estimate, we use a nested
ross-validation on the complete dataset; and (ii) to evaluate
hether the used models tend to only predict the species or are
ctually able to predict thermophilicity, we conduct a cross-
alidation with an additional species-specific test set. For this
est set, we only use protein sequences from species that are
ot present during the training. The results on this test set
hen allow to evaluate whether a prediction model generalizes
cross species. For both experimental setups, we use our new
enchmark dataset described above. 
For the nested cross-validation, we first removed all pro-

eins shorter than the 5th percentile or longer than the 95th
ercentile from the benchmark dataset. In accordance with
 10 ,12 ), we then used CD-HIT ( 11 ) with a threshold of 40%
lobal sequence identity to filter out highly similar sequences.
his preprocessing step led to a dataset consisting of 1699

hermophilic and 3440 nonthermophilic proteins. We then
plit this dataset into three outer folds and five inner folds.
ue to the class imbalance, we applied class-stratified splits

o ensure a similar class distribution. 
To construct a test set containing only proteins from species

ot present during training, we selected data of species that
nly occur in our newly generated dataset. By doing so, we
lso ensure that there is no overlap between this species-
pecific test set and the benchmark datasets from the litera-
ure, which were used to train the comparison partners from
he literature. We again filtered based on the sequence length
as described above and used CD-HIT with a 40% cutoff on the
sequences of the remaining species. Hence, we obtained 1539
thermophilic and 3258 nonthermophilic proteins for training
and validation, which we split in a class-stratified 5-fold cross-
validation. The independent test set, subsequently called test
set 1 , contains 345 and 224 proteins from 51 thermophilic
and 75 nonthermophilic species, respectively. Beyond that, we
further analyze whether the generalization of the prediction
models across species is influenced by the evolutionary re-
lationship between the test and training data. For this pur-
pose, we used BLAST to identify protein sequences in test
set 1 that are evolutionary less related to the training data.
We only considered proteins with an identity < 50%, result-
ing in test set 2 containing 203 thermophilic and 192 non-
thermophilic out of 345 and 224 protein sequences, respec-
tively. A summary containing the number of proteins in each
dataset is shown in Table 1 . Besides the raw data, we pro-
vide files containing all data splits as well as meta-information
with respect to each sample in our GitHub repository: https:
// github.com/ grimmlab/ ProLaTherm/ tree/ main/ data . 

The training data of the comparison partners from the lit-
erature overlap partly with the published datasets that we up-
dated for our new benchmark dataset, which might not al-
low an unbiased comparison with our nested cross-validation
experiment. To ensure a fair comparison, we evaluate these
comparison partners using the independent test data ( test set
1 and test set 2 ), which consist of newly collected protein se-
quences. For DeepTP , we excluded the results on 25 protein
sequences from evaluation metric calculation due to an over-
lap with their training data, whereas there is no overlap for
the other comparison partners. 

Feature engineering for feature-based competitors 
For the feature-based comparison partners, we derived a to-
tal of 599 features, describing physicochemical and struc-
tural properties of the protein sequences. To compute those
features, we used the Python package iFeatureOmega
( 61 ,62 ). An overview of all included descriptors can be found
in Table 2 , while we refer to Supplementary Section S1 for
detailed explanations of the different features. 

Evaluation 

For evaluation, we consider the commonly used metrics accu-
racy, precision, recall, specificity, balanced accuracy (BACC),
F 1-score and Matthew’s correlation coefficient (MCC) ( 63 ).
For n s samples, tp true positives (both the label and the
prediction are thermophilic), tn true negatives (both the label

https://github.com/grimmlab/ProLaTherm/tree/main/data
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Table 2. Ov ervie w of all included features 

Descriptor group Descriptor # Features 

Basic descriptors Weight 1 
Charge 3 
Polarity 2 
Aromaticity 1 
Mean hydrophobicity 1 
Mean van der Waals 
volume 

1 

Residue composition Amino acid composition 20 
Dipeptide composition 400 

Physicochemical Composition 21 
properties Transition 21 

Distribution 105 
Sequence order effects Pseudo amino acid 

composition 
23 

Descriptors are clustered in four groups given in the first column. The num- 
ber of features for each descriptor is shown in the last column, summing up to 
599 features in total. Detailed explanations for all descriptors can be found 
in Supplementary Data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and the prediction are nonthermophilic), fp false positives (the
label is nonthermophilic but the prediction is thermophilic)
and fn false negatives (the label is thermophilic but the predic-
tion is nonthermophilic), these metrics are defined as follows:

accuracy = 

tp + tn 

n s 
, 

precision = 

tp 

tp + fp 

, 

recall = 

tp 

tp + fn 

, 

specificity = 

tn 

tn + fp 

, 

BACC = 

1 

2 

( recall + specificity ) , 

F 1 - score = 

2 × precision × recall 
precision + recall 

, 

MCC = 

tp × tn − fp × fn √ 

( tp + fp )( tp + fn )( tn + fp )( tn + fn ) 
. 

Since the MCC is a robust evaluation metric, e.g. in case of
class imbalance, we take the MCC as our main criterion. In
contrast to the other four metrics that lie in the range [0, 1],
the MCC returns a value between −1 and 1 with 1 reflecting
perfect predictions, 0 uniformly random predictions and −1
a totally disagreeing predictor. Precision gives the ratio of the
actual thermophilic proteins among the instances that were
predicted to be thermophilic, whereas recall shows the ratio of
the thermophilic proteins that the prediction model correctly
recognized. From a practical perspective, both measures are
important. A low precision could lead to unnecessarily spend-
ing lab resources on nonthermophilic proteins, and a low re-
call would result in discarding actual thermophilic proteins.
We further consider receiver operating characteristic (ROC)
curves, which plot the true positive rate against the false pos-
itive rate. 

For both the nested cross-validation and the experiment
with the independent test sets containing nonoverlapping
species, we use the MCC averaged across the five inner folds
as the objective value of the Bayesian optimization and the
MCC on each fold as intermediate results for a potential prun- 
ing. At the end of each 5-fold inner cross-validation, we se- 
lect the best hyperparameter setting and retrain the prediction 

model on the training and validation data. Finally, we test each 

prediction model on independent data—either on one of the 
outer folds in case of the nested cross-validation or on the 
test set containing nonoverlapping species. All optimizations 
were performed in Python 3.8 . The source code and data 
are available at https:// github.com/ grimmlab/ ProLaTherm . 

Results and discussion 

Result summary 

As described in the ‘Experimental settings’ section, we con- 
sider two different experimental setups: (i) a 3-fold nested 

cross-validation with five inner folds on the whole dataset 
and (ii) a 5-fold cross-validation with a hold-out test set con- 
taining only species that do not occur within the training 
data. Regarding the prediction models, we can distinguish 

between three different settings: (i) feature-based models re- 
lying on manually engineered features; (ii) hybrid sequence- 
based models using amino acid properties to learn a hybrid 

sequence embedding; and (iii) purely sequence-based models,
either learning sequence embeddings from scratch or, in case of 
ProLaTherm , leveraging embeddings from a pretrained pro- 
tein language model. Detailed results of the whole hyperpa- 
rameter optimizations for all models and both experiments 
can be found in our GitHub repository: https://github.com/ 
grimmlab/ProLaTherm . 

In Table 3 , we summarize the results of the nested cross- 
validation experiment for different evaluation metrics. The 
protein language model-based classifier ProLaTherm shows 
superior performance with respect to all evaluation met- 
rics. Regarding MCC, ProLaTherm outperforms all com- 
parison partners with an improvement of at least 18.1%.
Feature-based classifiers (except for Random Forest) per- 
form similarly and tend to have slightly better predictive 
performance than sequence-based prediction models. Among 
the sequence-based comparison partners, transformer-based 

models (vanilla-Transformer and BigBird) and a hybrid model 
consisting of a Bi-LSTM using basic amino acid descriptors 
(Bi-LSTM_BasicDesc) perform best and almost as good as 
models relying on manual feature engineering. As both hy- 
brid models (LSTM_BasicDesc and Bi-LSTM_BasicDesc) per- 
form better than their purely sequence-based counterparts 
(LSTM and Bi-LSTM), integrating physicochemical properties 
to learn the embeddings seemed to be beneficial. 

In the second experiment, we evaluate the generalization 

abilities on an independent test set consisting of distinct 
species not present during training ( test set 1 and test set 2 ).
On these data, we also include state-of-the-art thermophilicity 
prediction models from the literature, i.e. ThermoPred ( 12 ),
SCMTPP ( 20 ), iThermo ( 21 ), SAPPHIRE ( 22 ), DeepTP ( 23 ) 
and BertThermo ( 25 ), since we can ensure a fair comparison 

as outlined in the ‘Experimental settings’ section. Results for 
all prediction models and evaluation metrics, both on test set 
1 and on test set 2 , can be found in Table 4 . We further sum-
marize both test results in terms of MCC in Figure 2 for easier 
readability. For a comparison of cross-validation results and 

the performance on test set 1 , we refer to Supplementary Table 
S9. Regarding test set 1 , we observe that ProLaTherm again 

outperforms all comparison partners, except for DeepTP on 

https://github.com/grimmlab/ProLaTherm
https://github.com/grimmlab/ProLaTherm
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Table 3. Ov ervie w of the test results on the nested cross-validation using the full dataset 

Prediction model Accuracy F 1-score Precision Recall Specificity BACC MCC 

Feature-based models 
Elastic Net 0.900 ± 0.002 0.842 ± 0.006 0.881 ± 0.015 0.808 ± 0.022 0.946 ± 0.009 0.877 ± 0.007 0.771 ± 0.006 
SVM 0.900 ± 0.001 0.843 ± 0.003 0.880 ± 0.012 0.809 ± 0.014 0.945 ± 0.007 0.877 ± 0.004 0.771 ± 0.002 
Random Forest 0.867 ± 0.005 0.768 ± 0.010 0.904 ± 0.004 0.667 ± 0.013 0.965 ± 0.001 0.816 ± 0.007 0.692 ± 0.012 
XGBoost 0.908 ± 0.005 0.855 ± 0.008 0.896 ± 0.013 0.818 ± 0.019 0.953 ± 0.007 0.885 ± 0.007 0.790 ± 0.011 
MLP 0.902 ± 0.003 0.843 ± 0.007 0.896 ± 0.006 0.796 ± 0.018 0.954 ± 0.004 0.875 ± 0.007 0.775 ± 0.008 

Hybrid sequence-based models 
LSTM_BasicDesc 0.877 ± 0.006 0.795 ± 0.022 0.891 ± 0.040 0.723 ± 0.064 0.954 ± 0.023 0.838 ± 0.021 0.719 ± 0.014 
Bi- 
LSTM_BasicDesc 

0.891 ± 0.001 0.829 ± 0.004 0.860 ± 0.009 0.802 ± 0.014 0.935 ± 0.006 0.868 ± 0.004 0.751 ± 0.004 

Purely sequence-based models 
MLP_Embedding 0.871 ± 0.019 0.803 ± 0.013 0.824 ± 0.078 0.795 ± 0.056 0.908 ± 0.055 0.852 ± 0.006 0.713 ± 0.030 
LSTM 0.866 ± 0.021 0.768 ± 0.064 0.890 ± 0.073 0.697 ± 0.132 0.949 ± 0.040 0.823 ± 0.048 0.697 ± 0.045 
Bi-LSTM 0.871 ± 0.014 0.798 ± 0.024 0.842 ± 0.079 0.775 ± 0.094 0.919 ± 0.056 0.847 ± 0.023 0.713 ± 0.023 
vanilla- 
Transformer 

0.883 ± 0.009 0.802 ± 0.020 0.913 ± 0.020 0.716 ± 0.039 0.966 ± 0.009 0.841 ± 0.016 0.732 ± 0.021 

BigBird 0.884 ± 0.004 0.811 ± 0.004 0.876 ± 0.023 0.756 ± 0.017 0.947 ± 0.013 0.851 ± 0.003 0.732 ± 0.008 
ProLaTherm 0.970 ± 0.004 0.955 ± 0.005 0.963 ± 0.015 0.947 ± 0.005 0.982 ± 0.008 0.964 ± 0.002 0.933 ± 0.008 

Each cell shows the mean and standard deviation across the three outer folds for the given evaluation metric and prediction model. The prediction models are grouped 
as feature-based as well as hybrid and purely sequence-based. The best result for each evaluation metric is highlighted in bold. ProLaTherm outperforms all comparison 
partners. 

Table 4. Ov ervie w of the test results with no o v erlap betw een the species in the test and cross-v alidation data 

Prediction model Accuracy F 1-score Precision Recall Specificity BACC MCC 

Feature-based models 
Elastic Net 0.814 [0.808] 0.822 [0.776] 0.976 [0.964] 0.710 [0.650] 0.973 [0.974] 0.842 [0.812] 0.672 [0.655] 
SVM 0.817 [0.808] 0.827 [0.780] 0.969 [0.944] 0.722 [0.665] 0.964 [0.958] 0.843 [0.812] 0.673 [0.648] 
Random Forest 0.712 [0.716] 0.695 [0.632] 0.969 [0.950] 0.542 [0.473] 0.973 [0.974] 0.758 [0.723] 0.532 [0.512] 
XGBoost 0.840 [0.823] 0.852 [0.798] 0.974 [0.965] 0.757 [0.680] 0.969 [0.974] 0.863 [0.827] 0.710 [0.680] 
MLP 0.844 [0.823] 0.856 [0.799] 0.971 [0.959] 0.765 [0.685] 0.964 [0.969] 0.865 [0.827] 0.714 [0.678] 

Hybrid sequence-based models 
LSTM_BasicDesc 0.837 [0.818] 0.854 [0.803] 0.934 [0.902] 0.786 [0.724] 0.915 [0.917] 0.850 [0.820] 0.685 [0.651] 
Bi- 
LSTM_BasicDesc 

0.779 [0.767] 0.781 [0.716] 0.974 [0.959] 0.652 [0.571] 0.973 [0.974] 0.813 [0.773] 0.622 [0.591] 

Purely sequence-based models 
MLP_Embedding 0.819 [0.813] 0.827 [0.781] 0.984 [0.978] 0.713 [0.650] 0.982 [0.984] 0.848 [0.817] 0.684 [0.669] 
LSTM 0.837 [0.810] 0.851 [0.790] 0.953 [0.916] 0.768 [0.695] 0.942 [0.932] 0.855 [0.813] 0.694 [0.642] 
Bi-LSTM 0.807 [0.795] 0.818 [0.767] 0.950 [0.924] 0.719 [0.655] 0.942 [0.943] 0.830 [0.799] 0.648 [0.621] 
vanilla- 
Transformer 

0.803 [0.797] 0.812 [0.765] 0.964 [0.949] 0.701 [0.640] 0.960 [0.964] 0.831 [0.802] 0.651 [0.634] 

BigBird 0.814 [0.808] 0.821 [0.774] 0.984 [0.977] 0.704 [0.640] 0.982 [0.984] 0.843 [0.812] 0.677 [0.661] 
ProLaTherm 0.919 [ 0.909 ] 0.929 [ 0.903 ] 0.997 [ 0.994 ] 0.870 [0.828] 0.996 [ 0.995 ] 0.933 [ 0.911 ] 0.847 [ 0.831 ] 

Comparison partners from the literature 
ThermoPred ( 12 ) 0.817 [0.803] 0.840 [0.796] 0.895 [0.849] 0.791 [0.749] 0.857 [0.859] 0.824 [0.804] 0.635 [0.611] 
SCMTPP ( 20 ) 0.807 [0.782] 0.821 [0.756] 0.937 [0.893] 0.730 [0.655] 0.924 [0.917] 0.827 [0.786] 0.641 [0.590] 
iThermo ( 21 ) 0.819 [0.800] 0.842 [0.796] 0.893 [0.837] 0.797 [0.759] 0.853 [0.844] 0.825 [0.801] 0.637 [0.604] 
SAPPHIRE ( 22 ) 0.870 [0.846] 0.884 [0.831] 0.966 [0.949] 0.814 [0.739] 0.955 [0.958] 0.885 [0.849] 0.752 [0.711] 
DeepTP a ( 23 ) 0.888 [0.880] 0.903 [0.875] 0.925 [0.892] 0.882 [ 0.858 ] 0.897 [0.901] 0.889 [0.879] 0.772 [0.760] 
BertThermo ( 25 ) 0.880 [0.853] 0.898 [0.852] 0.931 [0.884] 0.867 [0.823] 0.902 [0.885] 0.884 [0.854] 0.757 [0.708] 

For each prediction model, we show the given evaluation metric on full test set ( test set 1 ) as well as on the samples that are evolutionary less related to the training data 
( test set 2 ) in square brackets. The prediction models are grouped as feature-based as well as hybrid and purely sequence-based. We further show comparison partners 
from the literature. The best result for each evaluation metric is highlighted in bold. 
a Twenty-five proteins excluded from evaluation metric calculation due to overlap with the comparison partner’s training data. 
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ecall. DeepTP shows a tendency toward predicting a protein
o be thermophilic, as indicated by a high recall and a compa-
ably low precision. In contrast to the nested cross-validation,
e do not see clear advantages for the feature-based over the

equence-based classifiers, even though MLP and XGBoost
re ranked after ProLaTherm , DeepTP and SAPPHIRE for
CC. Furthermore, the two hybrid models are outperformed

y LSTM and Bi-LSTM in terms of MCC. For all prediction
odels, we observe a drop in predictive performance (except

or precision) between validation data and the test set con-
aining only species seen for the first time (see Supplementary
able S9). This is not surprising, since generalizing predictions
o proteins from unknown species is a seemingly more diffi-
ult task. With respect to MCC, the drop in performance is
between 9.3% for MLP_Embedding and 24.1% for Random
Forest. Also for ProLaTherm , we observe a drop of 10.8%.
Nevertheless, ProLaTherm still outperforms all other mod-
els, including classifiers from the literature, by at least 9.7%
( DeepTP ). The ROC curves for ProLaTherm and DeepTP ,
the second-best competitor on the unseen species, confirm a
superior performance of ProLaTherm , as shown in Figure 3 .
The remaining prediction models from the literature, except
for SAPPHIRE , DeepTP and BertThermo , perform worse
than several of the feature- and sequence-based models in
terms of MCC. 

In order to further investigate the generalizability across all
models, we reduced the test data by filtering out evolution-
arily closer related proteins ( test set 2 ; see the ‘Experimental
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Figure 2. Ov ervie w of the test results with no o v erlap betw een the species in the test and cross-validation data: For each prediction model, we show the 
MCC on the full test set ( test set 1 ) as well as on the samples that are evolutionary less related to the training data ( test set 2 ). The prediction models 
are grouped as feature-based as well as hybrid and purely sequence-based. We further show comparison partners from the literature. The best result for 
both test sets is marked by a horizontal dotted line. Furthermore, the percentage change in MCC on test set 2 is given for each prediction model. For 
DeepTP , 25 proteins were excluded from the evaluation metric calculation due to overlap with the comparison partner’s training data. For a full o v ervie w 

of the results with respect to all e v aluation metrics, we refer to Table 4 , and to Supplementary Table S9 for a comparison of validation and test results. 

Figure 3. ROC curves of ProLaTherm and DeepTP . For ProLaTherm , 
w e sho w the tw o R OC curv es, one f or the nested cross-v alidation 
experiment and one for the independent test set containing only species 
that do not occur in the training data ( test set 1 ). Further, we show the 
R OC curv e of DeepTP , the second-best perf orming prediction model in 
terms of MCC. 

 

 

 

 

 

 

 

 

 

 

 

Table 5. Performance of ProLaTherm on the test set with nono v erlap- 
ping species for different sequence lengths 

Seq. length # Thermo. # Nonthermo. fp fn MCC 

Total 345 (308) 224 1 45 (19) 0.847 (0.926) 
[82, 208] 81 (72) 39 0 11 (5) 0.821 (0.908) 
[209, 334] 110 (96) 67 1 19 (7) 0.789 (0.902) 
[335, 460] 87 (81) 69 0 11 (5) 0.868 (0.935) 
[461, 586] 43 (38) 38 0 4 (2) 0.906 (0.949) 
[587, 712] 24 (21) 11 0 0 (0) 1.000 (1.000) 

In each row, we show the number of thermophilic and nonthermophilic 
proteins, the number of false positives (fp) and false negatives (fn), and the 
MCC for the given range of the sequence length. In parentheses, we addi- 
tionally show numbers without considering the species G. kaustophilus , for 
which the majority of false negatives occur. 

 

 

settings’ section). Again, we detect a performance drop for al-
most all evaluation metrics and prediction models if we only
consider proteins in our test set that are evolutionary less re-
lated to the training data (see Figure 2 and Table 4 ). Never-
theless, ProLaTherm still performs best with an MCC de-
creasing from 0.847 to 0.831 (relative drop of 1.9), whereas
the second-best competitor DeepTP decreases from 0.772 to
0.760 (relative drop of 1.6%). Hence, ProLaTherm has a
9.3% better MCC than DeepTP , indicating a strong perfor-
mance even for more challenging data. 

Prediction analyses of ProLaTherm 

In the following, we further analyze the prediction results of
the top-performing model ProLaTherm on test set 1 contain-
ing species not included during training. In Table 5 , we can 

observe that ProLaTherm yields 1 false positive and 45 false 
negatives, which also results in a higher precision than recall 
of 0.997 and 0.870, respectively. The single nonthermophilic 
protein predicted to be thermophilic by ProLaTherm is also 

misclassified by the best feature-based and sequence-based 

classifiers MLP and LSTM, respectively. The test data contain 

a total of 51 thermophilic species. We observe false negative 
predictions for 13 of these 51 species, but with 26 out of 45 

false negative predictions, the majority of misclassifications 
occur for Geobacillus kaustophilus . This species, for which we 
have 37 protein sequences, also leads to the highest amount 
of false negatives for DeepTP (15), LSTM (24) and MLP (28).
A potential reason for the high number of false negatives on 

G. kaustophilus can be found in Supplementary Table S10,
in which we show the BLAST sequence identity of the ther- 
mophilic proteins with the best hit among the training data 
averaged across the species. Except for species with only one 
protein, G. kaustophilus has by far the highest mean identity 
with the nonthermophilic training data. 

In Table 5 , we further assess a potential relationship be- 
tween the amino acid sequence length and the prediction 



NAR Genomics and Bioinformatics , 2023, Vol. 5, No. 4 9 

Table 6. Performance of ProLaTherm on the thermophilic species of 
the test set with nono v erlapping species for different OGTs 

OGT ( ◦C) # Species # Proteins tp fn 

[60, 70) 15 78 40 38 
[70, 80) 11 48 44 4 
[80, 90) 19 181 179 2 
90+ 6 38 37 1 

In each row, we show the number of species and proteins as well as the 
number of true positives and false negatives for the given range of the OGT. 
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erformance. For that purpose, we bin all proteins based on
heir sequence length into four equal-sized ranges and evaluate
isclassifications, i.e. the number of false positives and false
egatives, as well as the MCC. The MCC tends to increase for

onger sequences, except for the range [209, 334] for which a
ingle false positive leads to a decrease in the numerator of
he MCC. If we do not consider G. kaustophilus , for which
he majority of false negatives occur, the MCC still increases
symptotically with the sequence length. One reason for this
mproving performance might be that longer sequences pro-
ide more information for the protein language model to
apture. 

We further evaluate a potential relationship between mis-
lassifications and the OGT, which we used to determine ther-
ophilic species (minimum OGT of 60 

◦C), shown in Table
 . We observe that nearly half of the proteins in the first
GT range from 60 to 70 

◦C were wrongly classified as non-
hermophilic. Compared with the other three ranges with a
aximum ratio of false negatives of 8.3%, this is by far the
ighest value. For species with an OGT over 70 

◦C, the false
egative rate reduces from 13.0% to 2.6%. The OGT of
. kaustophilus is at the lower threshold to be labeled ther-
ophilic. Nevertheless, even without considering this species,

he misclassification rate in the range [60, 70) would still be
9.3%. 

iscussion 

n summary, the protein language model-based thermophilic-
ty predictor ProLaTherm shows superior performance, both
n a nested cross-validation setup and on an independent test
et including only species not present in the training data.
roLaTherm outperforms the second-best competitor XG-
oost by 18.1% regarding the mean test MCC on the nested
ross-validation. The current state-of-the-art method DeepTP
 23 ) is outperformed by ProLaTherm with 9.7% using the
pecies-specific test set ( test set 1 ). However, in general we
bserve a drop in predictive performance across all models
hen applied on the species-specific test set. When consid-

ring evolutionarily distantly related protein sequences ( test
et 2 ), ProLaTherm only shows a minor drop in perfor-
ance compared to others. Interestingly, on test set 1 , Pro-
aTherm yields only 1 false positive with a false positive rate
f 0.4% but 45 false negatives resulting in a false negative rate
f 13.0%. Thirty-eight of the 45 false negatives stem from
pecies with an OGT between 60 and 70 

◦C. Hence, Pro-
aTherm performs better on thermophilic proteins with a
igher OGT over 70 

◦C, with a false negative rate of 2.6%.
ore importantly, most of the false negative predictions are

aused by 26 proteins from the species G. kaustophilus . The
eason for this could be that the thermophilic species G.
austophilus with an OGT of 62.5 

◦C shows the highest mean
identity with nonthermophilic protein sequences from the
training data, when excluding species with only one protein
sequence. DeepTP achieves the second-best performance on
the independent test set. This confirms the authors’ study
reporting a better performance compared with other pro-
tein thermophilicity prediction methods ( 23 ). In accordance
with existing literature that shows superior performance on
various protein-related prediction tasks for models leverag-
ing protein language models ( 24 ,29–38 ), ProLaTherm per-
forms best. In recent scientific publications, methods using
embeddings from protein language models show a competi-
tive performance for secondary and tertiary structure predic-
tion without requiring multiple sequence alignment informa-
tion while being computationally less demanding in the in-
ference stage. Without access to labeled data during pretrain-
ing, the employed ProtT5XLUniRef50 was able to capture
long-range inter-residue distances ( 24 ,64 ). Beyond that, it is
known that amino acid interactions present in secondary and
tertiary structures influence protein thermostability ( 65 ,66 ).
Thus, it seems reasonable that ProLaTherm shows a superior
performance. 

The overall good predictive performance of ProLaTherm
has important implications for many biotechnological do-
mains. Because of ProLaTherm ’s high precision, laboratory
scientists can allocate their scarce resources more efficiently
to the most promising candidates. Beyond that, ProLaTherm
also achieves the second-highest recall among all tools, with
a further improved prediction performance for proteins with
higher OGTs. This high recall ensures that actually ther-
mophilic candidates are not mistakenly excluded for further
evaluation. To support biotechnological research, it is highly
interesting to extend our work with the aim of predicting a
protein’s melting temperature due to inserted point mutations.

Besides a practical assessment of ProLaTherm in a lab
setup, further evaluating the influencing factors for its pre-
dictions is important for future research, as this could lead
to indications for artificially engineered proteins. Existing ex-
plainability approaches for transformer-based models such as
attention rollout provide information on the importance of
each amino acid in a sequence, i.e. the primary structure ( 67 ).
However, as outlined, secondary and tertiary structures con-
tain important information regarding thermostability. Thus,
connecting the attention rollout scores on the primary struc-
ture with secondary and tertiary information is highly relevant
for future research. 

Conclusion 

In this paper, we present ProLaTherm , a novel protein
language model-based thermophilicity prediction model. We
benchmark ProLaTherm against feature-, sequence- and
literature-based comparison partners on a newly generated
dataset. Our experiments show that ProLaTherm outper-
forms existing methods on several evaluation metrics, both
in a nested cross-validation setup and on a test set containing
species that do not occur in training. With respect to MCC,
ProLaTherm surpasses the second-best competitor by 18.1%
in a nested cross-validation setup. Using proteins from species
not overlapping with species in the training data, the pro-
tein language model-based method outperforms all competi-
tors by at least 9.7%. Furthermore, we detect an even fur-
ther improved prediction performance with a false negative
rate of 2.6% for proteins with an OGT above 70 

◦C. Hence,
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embeddings from pretrained protein language models seem to
be beneficial for this prediction task. 
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zenodo.8354167 . 

Supplementary data 

Supplementary Data are available at NARGAB Online. 

Funding 

This work was supported by the Technical University of Mu-
nich within the Open Access Publishing Funding Programme.

Conflict of interest statement 

None declared. 

References 

1. Yu, H. , Yan, Y. , Zhang, C. and Dalby, P.A. (2017) Two strategies to 
engineer flexible loops for improved enzyme thermostability. Sci. 
Rep., 7 , 41212.

2. Rigoldi, F. , Donini, S. , Redaelli, A. , Parisini, E. and Gautieri, A. (2018)
Review: Engineering of thermostable enzymes for industrial 
applications. APL Bioeng., 2 , 011501.

3. Xu, Z. , Xue, Y .-P . , Zou, S.-P. and Zheng, Y.-G. (2020) Chapter 5: 
Enzyme engineering strategies to confer thermostability. In: 
Advances in Enzyme Catalysis and Technologies . Elsevier, 
Amsterdam, pp. 67–89.

4. Fernández-Luna, V. , Coto, P.B. and Costa, R.D. (2018) When 
fluorescent proteins meet white light-emitting diodes. Angew. 
Chem. Int. Ed. Engl., 57 , 8826–8836.

5. Fresta, E. , Fernández-Luna, V. , Coto, P.B. and Costa, R.D. (2018) 
Merging biology and solid-state lighting: recent advances in 
light-emitting diodes based on biological materials. Adv. Funct. 
Mater., 28 , 1707011.

6. Kong, D. , Zhang, K. , T ian, J. , Y in, L. and Sheng, X. (2022) 
Biocompatible and biodegradable light-emitting materials and 
devices. Adv. Mater. Technol., 7 , 2100006.

7. Sadeghi, S. , Eren, G.O. and Nizamoglu, S. (2021) Strategies for 
improving performance, lifetime, and stability in light-emitting 
diodes using liquid medium. Chem. Phys. Rev., 2 , 041302.

8. Zhang, G. and Fang, B. (2006) Discrimination of thermophilic and 
mesophilic proteins via pattern recognition methods. Process 
Biochem., 41 , 552–556.

9. Zhang, G. and Fang, B. (2007) LogitBoost classifier for 
discriminating thermophilic and mesophilic proteins. J. 
Biotechnol., 127 , 417–424.

10. Gromiha, M.M. and Suresh, M.X. (2008) Discrimination of 
mesophilic and thermophilic proteins using machine learning 
algorithms. Proteins , 70 , 1274–1279.

11. Fu, L. , Niu, B. , Zhu, Z. , Wu, S. and Li, W. (2012) CD-HIT: accelerated
for clustering the next-generation sequencing data. Bioinformatics ,
28 , 3150–3152.

12. Lin, H. and Chen, W. (2011) Prediction of thermophilic proteins 
using feature selection technique. J. Microbiol. Methods , 84 , 

67–70.
13. Wang, D. , Yang, L. , Fu, Z. and Xia, J. (2011) Prediction of 
thermophilic protein with pseudo amino acid composition: an 
approach from combined feature selection and reduction. Prot. 
Peptide Lett., 18 , 684–689.

14. Nakariyakul, S. , Liu, Z.-P. and Chen, L. (2012) Detecting 
thermophilic proteins through selecting amino acid and dipeptide 
composition features. Amino Acids , 42 , 1947–1953.

15. Fan, G.-L. , Liu, Y.-L. and Wang, H. (2016) Identification of 
thermophilic proteins by incorporating evolutionary and acid 
dissociation information into Chou’s general pseudo amino acid 
composition. J. Theor. Biol., 407 , 138–142.

16. Feng, C. , Ma, Z. , Yang, D. , Li, X. , Zhang, J. and Li, Y. (2020) A 

method for prediction of thermophilic protein based on reduced 
amino acids and mixed features. Front. Bioeng. Biotechnol., 8 , 285.

17. Guo, Z. , Wang, P. , Liu, Z. and Zhao, Y. (2020) Discrimination of 
thermophilic proteins and non-thermophilic proteins using feature 
dimension reduction. Front. Bioeng. Biotechnol., 8 , 584807.

18. Tang, H. , Cao, R.-Z. , Wang, W. , Liu, T.-S. , Wang, L.-M. and He, C.-M.
(2017) A two-step discriminated method to identify thermophilic 
proteins. Int. J. Biomath., 10 , 1750050.

19. Meng, C. , Ju, Y. and Shi, H. (2022) TMPpred: a support vector 
machine-based thermophilic protein identifier. Anal. Biochem., 
645 , 114625.

20. Charoenkwan, P. , Chotpatiwetchkul, W. , Lee, V.S. , Nantasenamat, C. 
and Shoombuatong,W. (2021) A novel sequence-based predictor 
for identifying and characterizing thermophilic proteins using 
estimated propensity scores of dipeptides. Sci. Rep., 11 , 23782.

21. Ahmed, Z. , Zulfiqar, H. , Khan, A.A. , Gul, I. , Dao, F .-Y . , Zhang, Z.-Y. , 
Yu, X.-L. and Tang, L. (2022) iThermo: a sequence-based model for 
identifying thermophilic proteins using a multi-feature fusion 
strategy. Front. Microbiol., 13 , 790063.

22. Charoenkwan, P. , Schaduangrat, N. , Moni, M.A. , Lió, P. , 
Manavalan, B. and Shoombuatong, W. (2022) SAPPHIRE: a 
stacking-based ensemble learning framework for accurate 
prediction of thermophilic proteins. Comput. Biol. Med., 146 , 
105704.

23. Zhao, J. , Yan, W. and Yang, Y. (2023) DeepTP: a deep learning 
model for thermophilic protein prediction. Int. J. Mol. Sci., 24 , 
2217.

24. Elnaggar, A. , Heinzinger, M. , Dallago, C. , Rehawi, G. , Yu, W. , 
Jones, L. , Gibbs, T. , Feher, T. , Angerer, C. , Steinegger, M. , et al. (2022)
ProtTrans: towards understanding the language of life through 
self-supervised learning. IEEE Trans. Pattern Anal. Mach. Intell., 
44 , 7112–7127.

25. Pei, H. , Li, J. , Ma, S. , Jiang, J. , Li, M. , Zou, Q. and Lv, Z. (2023) 
Identification of thermophilic proteins based on sequence-based 
bidirectional representations from transformer-embedding 
features. Appl. Sci., 13 , 2858.

26. Grimm, D.G. , Azencott, C.-A. , Aicheler, F. , Gieraths, U. , 
MacArthur, D.G. , Samocha, K.E. , Cooper, D.N. , Stenson, P.D. , 
Daly, M.J. , Smoller, J.W. , et al. (2015) The evaluation of tools used 
to predict the impact of missense variants is hindered by two types 
of circularity. Hum. Mutat., 36 , 513–523.

27. Spänig, S. and Heider, D. (2019) Encodings and models for 
antimicrobial peptide classification for multi-resistant pathogens. 
BioData Mining , 12 , 7.

28. Spänig, S. , Mohsen, S. , Hattab, G. , Hauschild, A.-C. and Heider, D. 
(2021) A large-scale comparative study on peptide encodings for 
biomedical classification. NAR Genom. Bioinform. , 3 , lqab039. 

29. Teufel, F. , Almagro Armenteros, J .J . , Johansen, A.R. , Gíslason, M.H. , 
Pihl, S.I. , Tsirigos, K.D. , Winther, O. , Brunak, S. , von Heijne, G. and 
Nielsen,H. (2022) SignalP 6.0 predicts all five types of signal 
peptides using protein language models. Nat. Biotechnol., 40 , 
1023–1025.

30. Marquet, C. , Heinzinger, M. , Olenyi, T. , Dallago, C. , Erckert, K. , 
Bernhofer, M. , Nechaev, D. and Rost, B. (2022) Embeddings from 

protein language models predict conservation and variant effects. 
Hum. Genet., 141 , 1629–1647.

https://github.com/grimmlab/ProLaTherm
https://doi.org/10.5281/zenodo.8354167
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqad087#supplementary-data


NAR Genomics and Bioinformatics , 2023, Vol. 5, No. 4 11 

3

3

3  

3

3

3

3

3

3

4
 

4
 

4

4

4
 

4

4

4

4

4

 

 

 

R
©

T

d

1. Littmann, M. , Heinzinger, M. , Dallago, C. , Weissenow, K. and 
Rost,B. (2021) Protein embeddings and deep learning predict 
binding residues for various ligand classes. Sci. Rep., 11 , 23916.

2. Stärk, H. , Dallago, C. , Heinzinger, M. and Rost, B. (2021) Light 
attention predicts protein location from the language of life. 
Bioinform. Adv., 1 , vbab035.

3. Rives, A. , Meier, J. , Sercu, T. , Goyal, S. , Lin, Z. , Liu, J. , Guo, D. , Ott, M. ,
Zitnick, C.L. , Ma, J. , et al. (2021) Biological structure and function 
emerge from scaling unsupervised learning to 250 million protein 
sequences. Proc. Natl Acad. Sci. U.S.A., 118 , e2016239118.

4. Bepler, T. and Berger, B. (2021) Learning the protein language: 
evolution, structure, and function. Cell Syst., 12 , 654–669.

5. Brandes, N. , Ofer, D. , Peleg, Y. , Rappoport, N. and Linial, M. (2022) 
ProteinBERT: a universal deep-learning model of protein sequence 
and function. Bioinformatics , 38 , 2102–2110.

6. Sturmfels, P. , V ig, J. , Madani, A. and Rajani, N.F. (2020) Profile 
prediction: an alignment-based pre-training task for protein 
sequence models. arXiv doi: https:// arxiv.org/ abs/ 2012.00195 , 01 
December 2020, preprint: not peer reviewed.

7. Wu, R. , Ding, F. , Wang, R. , Shen, R. , Zhang, X. , Luo, S. , Su, C. , Wu, Z. , 
Xie, Q. , Berger, B. , et al. (2022) High-resolution de novo structure 
prediction from primary sequence. bioRxiv doi: 
https:// doi.org/ 10.1101/ 2022.07.21.500999 , 22 July 2022, 
preprint: not peer reviewed.

8. Rao, R.M. , Liu, J. , Verkuil, R. , Meier, J. , Canny, J. , Abbeel, P. , Sercu, T. 
and Rives,A. (2021) MSA transformer. In: Meila,M. and Zhang,T. 
(eds.) Proceedings of the 38th International Conference on 
Machine Learning . PMLR, Vol. 139 , pp. 8844–8856.

9. UniProt Consortium (2023) UniProt: the Universal Protein 
Knowledgebase in 2023. Nucleic Acids Res. , 51 , D523–D531. 

0. Altschul, S.F. , Madden, T.L. , Schäffer, A.A. , Zhang, J. , Zhang, Z. , 
Miller, W. and Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST:
a new generation of protein database search programs. Nucleic 
Acids Res., 25 , 3389–3402.

1. Sato, Y. , Okano, K. , Kimura, H. and Honda, K. (2020) TEMPURA: 
database of growth TEMPeratures of usual and RAre prokaryotes.
Microbes Environ., 35 , ME20074.

2. Charoenkwan, P. , Schaduangrat, N. , Hasan, M.M. , Moni, M.A. , 
Lió, P. and Shoombuatong, W. (2022) Empirical comparison and 
analysis of machine learning-based predictors for predicting and 
analyzing of thermophilic proteins. EXCLI J. , 21 , 554–570. 

3. Raffel, C. , Shazeer, N. , Roberts, A. , Lee, K. , Narang, S. , Matena, M. , 
Zhou, Y. , Li, W. and Liu, P.J. (2020) Exploring the limits of transfer 
learning with a unified text-to-text transformer. J. Mach. Learn. 
Res., 21 , 5485–5551.

4. Suzek, B.E. , Wang, Y. , Huang, H. , McGarvey, P.B. , Wu, C.H. and 
UniProt ConsortiumUniProt Consortium (2014) UniRef clusters: a
comprehensive and scalable alternative for improving sequence 
similarity searches. Bioinformatics , 31 , 926–932.

5. Ioffe, S. and Szegedy, C. (2015) Batch normalization: accelerating 
deep network training by reducing internal covariate shift. In: 
Proceedings of the 32nd International Conference on 
International Conference on Machine Learning (ICML’15) . Vol. 
37 , pp. 448–456.

6. Kingma, D.P. and Ba, L.J. (2015) Adam: a method for stochastic 
optimization. arXiv doi: http:// export.arxiv.org/ abs/ 1412.6980 , 22 
December 2014, preprint: not peer reviewed.

7. Srivastava, N. , Hinton, G. , Krizhevsky, A. , Sutskever, I. and 
Salakhutdinov,R. (2014) Dropout: a simple way to prevent neural 
networks from overfitting. J. Mach. Learn. Res., 15 , 1929–1958.

8. Zou, H. and Hastie, T. (2005) Regularization and variable selection 
via the Elastic Net. J. R. Stat. Soc. Ser. B , 67 , 301–320.

9. Cortes, C. and Vapnik, V. (1995) Support-vector networks. Mach. 
Learn., 20 , 273–297.
eceived: April 14, 2023. Revised: July 14, 2023. Editorial Decision: September 8, 2023. Accepted: Se

The Author(s) 2023. Published by Oxford University Press on behalf of NAR Genomics and Bioinf

his is an Open Access article distributed under the terms of the Creative Commons Attribution Lice

istribution, and reproduction in any medium, provided the original work is properly cited. 
50. Breiman,L. (2001) Random forests. Mach. Learn. , 45 , 5–32. 
51. Chen, T. and Guestrin, C. (2016) XGBoost. In: Proceedings of the 

22nd ACM SIGKDD International Conference on Knowledge 
Discovery and Data Mining . ACM, NY, pp. 785–794.

52. Hochreiter, S. and Schmidhuber, J. (1997) Long short-term 

memory. Neural Comput., 9 , 1735–1780.
53. Graves, A. , Fernández, S. and Schmidhuber, J. (2005) Bidirectional 

LSTM networks for improved phoneme classification and 
recognition. In: Artificial Neural Netw or ks . Springer, Berlin, Vol. 
3697 , pp. 799–804.

54. Vaswani, A. , Shazeer, N. , Parmar, N. , Uszkoreit, J. , Jones, L. , 
Gomez, A.N. , Kaiser, Ł. and Polosukhin, I. (2017) Attention is all 
you need. In: Advances in Neural Information Processing Systems . 
Curran Associates, Inc., Vol. 30 .

55. Zaheer, M. , Guruganesh, G. , Dubey, K.A. , Ainslie, J. , Alberti, C. , 
Ontanon, S. , Pham, P. , Ravula, A. , Wang, Q. , Yang, L. , et al. (2020) 
BigBird: transformers for longer sequences. In: Advances in Neural
Information Processing Systems 33 . Curran Associates, Inc., Vol. 
33 .

56. Xiong, R. , Yang, Y. , He, D. , Zheng, K. , Zheng, S. , Xing, C. , Zhang, H. , 
Lan, Y. , Wang, L. and Liu, T.-Y. (2020) On layer normalization in 
the transformer architecture. In: Proceedings of the 37th 
International Conference on Machine Learning .

57. Snoek, J. , Larochelle, H. and Adams, R.P. (2012) Practical Bayesian 
optimization of machine learning algorithms. In: Advances in 
Neural Information Processing Systems . Curran Associates, Inc, 
Vol. 25 .

58. Akiba, T. , Sano, S. , Yanase, T. , Ohta, T. and Koyama, M. (2019) 
Optuna: a next-generation hyperparameter optimization 
framework. In: Proceedings of the 25th ACM SIGKDD 

International Conference on Knowledge Discovery and Data 
Mining .

59. Bergstra, J. and Bengio, Y. (2012) Random search for 
hyper-parameter optimization. J. Mach. Learn. Res., 13 , 281–305.

60. Turner, R. , Eriksson, D. , McCourt, M. , Kiili, J. , Laaksonen, E. , Xu, Z. 
and Guyon,I. (2021) Bayesian optimization is superior to random 

search for machine learning hyperparameter tuning: analysis of the
black-box optimization challenge 2020. In: Proceedings of the 
NeurIPS 2020 Competition and Demonstration Track . pp. 3–26.

61. Chen, Z. , Liu, X. , Zhao, P. , Li, C. , Wang, Y. , Li, F. , Akutsu, T. , Bain, C. , 
Gasser, R.B. , Li, J. , et al. (2022) iFeatureOmega: an integrative 
platform for engineering, visualization and analysis of features 
from molecular sequences, structural and ligand data sets. Nucleic 
Acids Res., 50 , W434–W447.

62. Chen, Z. , Zhao, P. , Li, F. , Leier, A. , Marquez-Lago, T .T . , Wang, Y. , 
Webb, G.I. , Smith, A.I. , Daly, R.J. , Chou, K.-C. , et al. (2018) 
iFeature: a Python package and web server for features extraction 
and selection from protein and peptide sequences. Bioinformatics , 
34 , 2499–2502.

63. Matthews,B.W. (1975) Comparison of the predicted and observed 
secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta
Protein Struct., 405 , 442–451.

64. Weissenow, K. , Heinzinger, M. and Rost, B. (2022) Protein 
language-model embeddings for fast, accurate, and alignment-free 
protein structure prediction. Structure , 30 , 1169–1177.

65. Kumar, S. , Tsai, C.-J. and Nussinov, R. (2000) Factors enhancing 
protein thermostability. Protein Eng. Des. Sel. , 13 , 179–191. 

66. Pucci, F. and Rooman, M. (2017) Physical and molecular bases of 
protein thermal stability and cold adaptation. Curr. Opin. Struct. 
Biol., 42 , 117–128 

67. Abnar, S. and Zuidema, W. (2020) Quantifying attention flow in 
transformers. In: Proceedings of the 58th Annual Meeting of the 
Association for Computational Linguistics . Association for 
Computational Linguistics, pp. 4190–4197.
ptember 18, 2023 

ormatics. 

nse (http: // creativecommons.org / licenses / by / 4.0 / ), which permits unrestricted reuse, 

https://arxiv.org/abs/2012.00195
https://doi.org/10.1101/2022.07.21.500999
http://export.arxiv.org/abs/1412.6980

	Introduction
	Materials and methods
	Results and discussion
	Conclusion
	Data availability
	Supplementary data
	Funding
	Conflict of interest statement
	References

