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Abstract

Previous research points to the heritability of risk-taking behaviour. However, evidence on how 

genetic dispositions are translated into risky behaviour is scarce. Here, we report a genetically-

informed neuroimaging study of real-world risky behaviour across the domains of drinking, 

smoking, driving, and sexual behaviour, in a European sample from the UK Biobank (N=12,675). 
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We find negative associations between risky behaviour and grey matter volume (GMV) in 

distinct brain regions, including amygdala, ventral striatum, hypothalamus, and dorsolateral 

prefrontal cortex (dlPFC). These effects replicate in an independent sample recruited from the 

same population (N=13,004). Polygenic risk scores for risky behaviour, derived from a genome-

wide association study in an independent sample (N=297,025), are inversely associated with 

GMV in dlPFC, putamen, and hypothalamus. This relation mediates ~2.2% of the association 

between genes and behaviour. Our results highlight distinct heritable neuroanatomical features as 

manifestations of the genetic propensity for risk taking.

Introduction

Taking risks—an essential element of many human experiences and achievements—requires 

balancing uncertain positive and negative outcomes. For instance, exploration, innovation 

and entrepreneurship can yield great benefits, but are also prone to failure1. Conversely, 

excessive risk-taking in markets can have enormous societal costs, such as the generation of 

speculative price bubbles2. Similarly, common behaviours such as smoking, drinking, sexual 
promiscuity, or speeding are considered rewarding by many but might expose individuals 

and those around them to deleterious health, social, and financial consequences. In 2010, the 

combined economic burden in the United States of these risky behaviours was estimated to 

be about $593.3 billion3–6. Although previous findings point to the partial heritability of risk 

tolerance and risky behaviours7 and neuroanatomical measures exhibit high heritability8,9, 

little is known about the brain features involved in translating genetic dispositions into risky 

behavioural phenotypes8.

Recent research using structural brain-imaging data from small, non-representative samples 

(comprising up to a few hundred participants) has identified several neuroanatomical 

associations with risk tolerance10–12. However, this literature is limited by low statistical 

power13,14, and the generalizability of their findings to other populations is questionable. 

Small sample sizes have also limited the ability to control systematically for many factors 

that could confound observed relations between brain features and risky behaviour, such as 

height15 and genetic population structure16,17. Moreover, despite evidence that the effects of 

genetic factors are likely mediated by their influence on the brain and its development7,18, 

neuroscientific and genetic approaches to understanding the biology of risky behaviour have 

largely proceeded in isolation–perhaps due to the lack of large study samples that include 

both genetic and brain imaging measures.

Here, we utilize data obtained in a prospective epidemiological study of ~500,000 

individuals aged 40 to 69 years [the UK Biobank (UKB)19,20] to carry out a pre-registered 

investigation (https://osf.io/qkp4g/, see Supplementary Methods for deviations from the 

analysis plan) of the relationship between individual differences in brain anatomy and 

the propensity to engage in risky behaviour across four domains (N=12,675, for sample 

characteristics see Figure 1 and Extended Data Figure 1). We replicate our findings 

in an independent sample recruited from the same population (N=13,004, for sample 

characteristics see Extended Data Figure 2). Further, we isolate specific differences in 

brain anatomy that are linked to the genetic disposition for risky behaviour— quantified 
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via polygenic risk scores (PRS) derived from a genome-wide association study (GWAS) 

in an independent sample (N = 297,025)—and investigate how these neuroanatomical 

endophenotypes mediate the influence of genetics on the behavioural phenotype.

Results

Grey Matter Volume Associations with Risky Behaviour

Akin to a previous investigation7, we construct a measure of risky behaviour by 

extracting the first principal component from four self-reported measures of drinking, 

smoking, speeding on motorways, and sexual promiscuity (N = 315,855; see Figure 2A, 

Supplementary Methods 1.1and Supplementary Tables 1–2 for descriptive statistics). This 

measure of risky behaviour is genetically correlated with many other traits, including 

cannabis use (rg = 0.72, SE = 0.02), general risk tolerance (rg = 0.56, SE = 0.02), self-

employment (rg = 0.52; SE = 0.30), suicide attempt (rg = 0.47, SE = 0.07), antisocial 

behaviour (rg = 0.45, SE = 0.14), extraversion (rg = 0.34, SE = 0.04), and age at first sexual 

experience (rg = −0.54, SE = 0.02) (Supplementary Methods 1.5 and Supplementary Table 

3). Thus, our measure is partly rooted in genetic differences between people and relates to a 

broad range of relevant events and behaviours.

Our main analysis includes a sample of 12,675 European-ancestry participants from the 

UKB. We first regress our measure of risky behaviour on total (whole-brain) grey matter 

volume (GMV) while controlling for age, birth year, gender, handedness, height, total 

intracranial volume and the first 40 genetic principal components, which account for genetic 

population structure (see Supplementary Methods 1.2). To exclude confounding effects of 

excessive alcohol consumption21, we excluded from the analysis all current or former heavy 

drinkers (see Methods)22,23. We find an inverse association between total GMV and risky 

behaviour (standardized β = −.122; 95% confidence interval (CI) [−.156, −.087]; t(12,561) = 

−6.92; P < 4.86 × 10−12, two-sided).

To identify specific brain regions related to risky behaviour, we perform a whole-brain 

voxel-based morphometry (VBM)24 analysis that regresses our measure of risky behaviour 

separately on GMV in each voxel across the brain, adjusting for the same control variables. 

We identify localized inverse associations between risky behaviour and GMV in distinct 

regions, only some of which were expected based on previous small-scale studies (see 

Figure 2B, Extended Data Figure 3 and Supplementary Table 4). In subcortical areas, 

we identify associations bilaterally in expected areas such as the amygdala and ventral 

striatum (VS), as well as in less expected areas such as the posterior hippocampus, putamen, 

thalamus, hypothalamus, and cerebellum. We also identify bilateral associations between 

risky behaviour and GMV in cortical regions that include the ventral medial prefrontal 

cortex (vmPFC), dorsolateral prefrontal cortex (dlPFC), ventro-anterior insula (aINS) and 

the precentral gyrus. In all of these regions, GMV is negatively associated with the 

propensity to engage in risky behaviours. We find no positive associations between GMV 

and risky behaviour anywhere in the brain.

To quantify effect sizes of the associations between risky behaviour and GMV in 

anatomically-defined brain structures and to investigate the convergence of our findings 
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across MRI processing pipelines25, we conduct a follow-up analysis at the region of 

interest (ROI) level. This analysis primarily relies on the imaging-derived phenotypes 

(IDPs) provided by the UKB brain imaging processing pipeline8,26,27, which used 

parcellations from the Harvard-Oxford cortical and subcortical atlases and the Diedrichsen 

cerebellar atlas. We derived additional IDPs using unbiased masks based on the results 

of the voxel-level analysis (see Supplementary Methods 1.3.3). This analysis identifies 

negative associations between risky behaviour and GMV in 23 anatomical structures, with 

standardized βs between −0.079 and −0.036 (see Figure 2C, Extended Data Figure 4 and 

Supplementary Table 5; for the associations between the IDPs and the individual measures 

that construct our phenotype of Risky Behavior, see Supplementary Table 6), the largest of 

which is in the right ventro-aINS; (β = −0.079; 95% CI [−.103, −.055]; t(12,562) = −6.43; 

Puncorr = 1.34 × 10−10, two-sided).

We carry out several additional analyses to assess the differential contributions of various 

factors to the associations we observe. First, we re-estimate the ROI-level regressions 

with additional controls for various socioeconomic and cognitive outcomes that may be 

linked to both brain anatomy and risky behaviour, either as antecedents or downstream 

consequences. These controls include participants’ years of education and fluid intelligence 

(13-item measure)17, a zip-code level measure of the Townsend social deprivation index28, 

household income and size, and birth location binned into 100 geographical clusters (see 

Supplementary Methods 1.2 and Figure 1). The direction and magnitude of all ROI effects 

are comparable to the main analysis (range of standardized βs between −0.079 and −0.035), 

with the largest effect again located in the right ventro-aINS (β = −0.079; 95% CI [−.104, 

−.055]; t(11,647) = −6.29; Puncorr = 3.3 × 10−10, two-sided). Furthermore, 19 of the 23 ROIs 

(all except the left Cuneal Cortex, left Crus I of the Cerebellum, left Planum Polare and 

the Brain Stem) are statistically significant after correction for multiple comparisons in this 

analysis (see Extended Data Figure 5 and Supplementary Table 5).

Second, we re-estimate our ROI-level regressions with additional controls for current levels 

of drinking (binned into 10 deciles) and smoking (binned into 3 categories). Although 

introducing these controls into the model regresses out variance of interest from the main 

outcome measure, which likely attenuates the effects, this analysis allows us to test whether 

any of the identified associations can reliably be attributed to risky behaviour that is not 

limited to the substance-use domain. In this analysis, we find that all of the effects originally 

identified remain negative in sign, yet are smaller in magnitude (range of standardized 

βs between −0.041 and −0.011; see Supplementary Table 7). Nonetheless, the effects 

in 9 subcortical ROIs (including the Amygdala, Putamen, VS and Cerebellum) remain 

statistically significant after correction for multiple comparisons (see Extended Data Figure 

6), with the strongest association identified in the left Amygdala (β = −0.041; 95% CI 

[−0.059, −0.023]; t(12,551) = −4.4; Puncorr = 1.1 × 10−5, two-sided). Thus, these subcortical 

IDPs are reliably associated with risky behaviour in non-substance use domains.

Replication in an Independent Sample

Several months after the completion of our original analyses (in February 2020; https://

biobank.ndph.ox.ac.uk/showcase/exinfo.cgi?src=timelines), the UKB released brain images 
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of 20,316 additional participants— providing us with an opportunity to replicate our 

findings in an independent dataset that contains the same variables, and participants 

recruited in the same way from the same population29. After applying the same exclusion 

criteria as in our original analysis, our replication sample consists of 13,004 participants, 

roughly the same size as our original sample (see Methods for details and Extended Figure 

1 for sample characteristics). We repeat both the voxel-level and ROI-level analyses in this 

dataset. In the voxel-level analysis, we apply a significance threshold that corresponds to a 

family-wise-error (FWE) rate of 5% in all voxels that showed significance in the original 

analysis (puncorr = 2.956 × 10−04, with tuncorr(12,892) = 3.62, two-sided). We find that 

92.6% of the original voxels (located in 20 of the 21 clusters originally identified, with 

the exception of a cluster in cerebellar lobules I-IV) successfully replicate (see Figure 3). 

Furthermore, the un-thresholded t-map25 of the original dataset strongly correlates with 

the un-thresholded t-map of the replication dataset (r = .767; 95% CI [.766, .768]; P < 

10−10, two-sided). Likewise, our ROI-level analysis successfully replicates 21 of the original 

23 ROI-level findings (puncorr = 3.35 × 10−03, with tuncorr(12,892) = 2.93, two-sided; see 

Supplementary Table 8). The two ROIs that do not replicate are the Cuneal Cortex (left) and 

the cerebellar lobule II (left).

Overlap between Grey Matter Volume Differences and Functional MRI (fMRI) Meta-Analysis

To investigate whether the neuroanatomical associations of real-world risky behaviour 

correspond spatially with the localized activation patterns commonly identified in fMRI 

studies of risky decision-making, we conduct a conjunction analysis to compare our VBM 

results with data obtained from a publicly available meta-analysis of fMRI studies of risky 

behaviour30 (N = 4,717 participants, K = 101 individual studies, see Supplementary Table 

9). The analysis reveals several brain regions whose anatomical associations with risky 

behaviour converge with functional engagement, including the thalamus, amygdala, vmPFC, 

and dlPFC (see Figure 4 and Extended Data Figure 7).

Association of Polygenic Risk Scores for Risky Behaviour with Grey Matter Volume

Finally, we explore whether participants’ genetic disposition for risky behaviour, proxied 

via their polygenic risk scores (PRS), are associated with the neuroanatomical correlates 

of the trait, and test whether these neuroanatomical correlates mediate the relationship 

between genetic predisposition and behaviour. To this end, we first conducted a GWAS in 

an independent sample of UKB participants of European ancestry (N=297,025), exclusive 

of 18,796 genotyped individuals with usable MRI images (main sample) and their relatives. 

From the GWAS, we constructed a PRS that aggregated the effects of 1,176,729 single 

nucleotide polymorphisms (SNPs) on risky behaviour for all of the participants with 

MRI data in our independent target sample (see Supplementary Methods 1.4). The PRS 

predicts ~3% of the variance in risky behaviour in our target sample. Although we find no 

statistically significant evidence to suggest that the PRS are associated with whole-brain 

GMV (standardized β = −.015; 95% CI [-.05 .02]; t(12,561) = −0.82; P > 0.41, two-sided), 

they are inversely associated with GMV in distinct regions, specifically the right dlPFC, 

right putamen and hypothalamus (Figure 5A.; regressions include all standard control 

variables, including total intracranial volume). Thus, GMV in these specific brain areas 

is negatively associated with the genetic disposition for risky behaviour.
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Based on these results, we use the previously extracted GMV of these three ROIs to examine 

whether it mediates the observed gene-behaviour associations. A structural equation model 

including all standard controls reveals that ~2.2% of the association between the PRS and 

risky behaviour is mediated through individual differences in GMV in the three regions 

(indirect path c’; standardized β = 0.004, 95%; CI [.002, .005]; z = 4.83; P = 1.4 × 10−06, 

two-sided) (see Figure 5B and Extended Data Figure 8).

Discussion

We investigate in a genetically-informed neuroimaging study (a) the association between 

GMV and real-world risky behaviour in a large population sample of European ancestry 

(main sample of 12,675 individuals and replication sample of 13,004 individuals), and (b) 

how the genetic disposition for risky behaviour is linked to GMV differences in a network 

of distinct brain areas. Several of the areas whose GMVs are linked to risky behaviour 

in this study have also often been functionally engaged during risky decision-making in 

small-scale fMRI studies that used stylized tasks. For instance, such correlations have been 

observed in the aINS, thalamus, dlPFC, vmPFC and VS31,32. These findings have led to 

proposals that upward and downward risks are encoded by distinct circuits, with upward 

risk mainly represented by areas encoding rewards (VS and vmPFC) and downward risk 

encoded by areas related to avoidance and negative arousal (aINS). Here, we substantiate 

previous functional studies with large-scale evidence that the structural properties of the 

same areas relate to risky behaviour in an ecologically valid setting33 when long-term health 

consequences are at stake.

Our results extend previous findings by showing that the neural foundation of risky 

behaviour is complex. Our analyses identify additional negative associations between risky 

behaviour and GMV in several areas, including the cerebellum, posterior hippocampus, 

hypothalamus, and putamen. While it is not yet clear how structural differences are 

manifested in properties of brain function34, our results suggest that risk taking draws 

on manifold neural processes, not just the representation and integration of upward and 

downward risks in the brain. Specifically, considering previous meta-analyses, the areas 

identified in this study are involved broadly in memory (posterior hippocampus), emotion 

processing (amygdala, ventro-aINS)35, neuroendocrine processes (hypothalamus)36,37, 

reward processing (vmPFC, VS and putamen)38 and executive functions (dlPFC)39. Thus, it 

appears that risky behaviour taps into multiple elements of human cognition, ranging from 

inhibitory control40 to emotion regulation41 and the integration of outcomes and risks42. 

This mirrors previous findings showing that risky behaviour is also a genetically complex 

trait7.

Additionally, our results underscore the long-suspected role of the hypothalamic–pituitary–

adrenal (HPA) axis in regulating risk-related behaviours, in line with hormonal studies that 

link risky behaviour and sensation seeking to stress responsivity36,37,43–45. Furthermore, our 

finding that risky behaviour is linked to the structure of several cerebellar areas confirms the 

under-appreciated importance of the cerebellum for human cognition and decision-making, 

and highlights the need for further research on the specific behavioural contributions of this 

brain area46.
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Of note, it remains an open question the extent to which the differences in GMV that we 

identify can be ascribed to specific heritable micro-anatomical traits, such as neuronal size, 

dendritic or axonal arborisation, or relative count of different cell types47. Moreover, it is 

not yet clear how these individual differences, in turn, influence behaviour. Nonetheless, our 

results provide evidence that neuro-anatomical structure constitutes the micro-foundation for 

neuro-computational mechanisms underlying individual differences in risky behaviours34.

Several of the observed neuroanatomical correlates of risky behaviour are also associated 

with the genetic disposition for the phenotype. Specifically, we find that GMV in the 

hypothalamus, the putamen and the dlPFC share variance with both risky behaviour and its 

polygenic risk score. This finding extends previous studies showing correlational36,42,43 and 

causal evidence37,48 of the involvement of these areas in risky behaviour by indicating that 

a genetic component partly underlies the associations. Although our analyses cannot identify 

the direction of the causal relationships (see Supplementary Discussion for an additional 

discussion of limitations), they show that risky behaviour and its genetic associations share 

variance with distinct GMV features and provide an overarching framework for how the 

genetic dispositions for risky behaviour may be expressed in the corresponding behavioural 

phenotype.

Our results are also in line with the bioinformatic annotation of the largest GWAS on risk 

tolerance to date, conducted in over 1 million individuals7, which implicated specific areas 

in the prefrontal cortex (BA9, BA24), striatum, cerebellum and the amygdala. However, 

bioinformatics tools used for GWAS annotation cannot be considered conclusive, as they 

rely on gene expression patterns in relatively small samples of (post-mortem) human brains 

or non-human samples49. Moreover, they cannot speak to whether changes in a particular 

tissue or cell type have negative or positive effects on the phenotype or how strong the 

effects are. Here, we show an alternative approach to annotating GWAS findings using a 

different type of data (large-scale population samples that include in-vivo brain scans and 

genetic data), relying on different assumptions than those used by bioinformatics tools. Our 

results add new insight by showing that lower GMV in specific brain areas is related to more 

risky behaviour and by implicating brain regions (i.e., putamen, hypothalamus, and dlPFC) 

in addition to those previously annotated. The effect sizes we observe here (standardized β 
< 0.08) are an order of magnitude larger than those found in GWAS on risky behaviour, but 

they nonetheless require very large samples for detection.

Finally, while many features of the brain are heritable, the environment indisputably plays 

an important role in brain development. We therefore see our results not as independent 

from, or of greater importance than, the effects of environmental and developmental factors. 

Rather, our study constitutes one step towards understanding how the complex development 

of human risky behaviour may be constrained by genetic factors.

Methods

Sample Characteristics and Selection Criteria

Main sample.—We use publicly available data from the UKB, which recruited 502,617 

people aged 40 to 69 years from the general population across the United Kingdom19,20. 
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All UKB participants provided written informed consent and the study was granted ethical 

approval by the North West Multi-Centre Ethics committee. Our initial sample consists of 

18,796 individuals with brain scans and genotype data, all of the imaged UKB participants 

as of October 2018. We excluded participants with putative sex chromosome aneuploidy (N 
= 6) or a mismatch between genetic and reported sex (N = 10), participants of non-European 

ancestry (N = 893), and participants who did not pass the UKB quality-control thresholds (N 
= 14), described in Bycroft et al.27. To minimize the potential influence of neurotoxic effects 

due to excessive alcohol intake21,22, we also excluded current heavy drinkers (531 females 

consuming more than 18 drinks per week and 793 males consuming more than 24 drinks 

per week)22,23. To exclude potential former drinkers, we also removed 426 participants who 

indicated that they did not drink alcohol.

All structural T1 MRI images used in the study underwent automated quality control 

by the UKB brain imaging processing pipeline26. We performed two additional quality 

checks using the Computational Anatomy Toolbox (CAT; www.neuro.uni-jena.de/cat/) 

for SPM 12 (www.fil.ion.ucl.ac.uk/spm/software/spm12/). First, we relied on the CAT12 

automated Image and Pre-processing quality assessment, which included quality parameters 

for resolution, noise, and bias of images, 57 of which were automatically excluded and 

not pre-processed due to low image quality. Second, after pre-processing, we utilized 

an automated quality check of sample homogeneity to identify outliers that exhibited 

substantially different GMV patterns than the rest of the sample (see the CAT12 manual 

for details; http://www.neuro.uni-jena.de/cat12/CAT12-Manual.pdf, p. 17ff). In total, we 

excluded 690 individuals with scans of high image inhomogeneity (two standard deviations 

below the mean). Finally, we excluded 2,701 participants with incomplete behavioural data 

of interest or control variables. Our final dataset consists of N = 12,675 individuals.

Replication sample.—The initial replication sample consisted of 20,316 individuals 

with usable brain scans and genotype data, all of the imaged UKB participants as of 

February 2020 who were not included in our main sample. Following the original analysis, 

we excluded participants with putative sex chromosome aneuploidy (N = 7), a mismatch 

between genetic and reported sex (N = 11), non-European ancestry (N = 1,143), heavy 

drinking or abstinence from alcohol (N = 1,376), and those that did not pass the UKB 

quality-control thresholds (N = 31)27. All T1 MRI images used in the study underwent 

the same quality control procedure as in our original sample, resulting in the removal of 

additional 391 individuals. Finally, we excluded participants with incomplete data (N = 

4,353). Our final replication sample consists of N = 13,004. The empirical distributions of 

the variables characterizing our replication analysis are depicted in Extended Data Figure 2.

Measures

Risky Behaviour.—We closely follow Karlsson Linnér et al.7 to derive a measure of risky 

behaviour across domains based on participants’ self-reports of: (1) Number of alcoholic 

drinks per week, (2) Ever having smoked, (3) Number of sexual partners, and (4) Frequency 

of driving faster than the motorway speed limit (see Supplementary Methods 1.1). We 

perform principal component analysis (PCA) on N = 315,855 UKB participants and extract 

the first principal component (PC) of the four measures as the main outcome of interest 
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(referred to as “risky behaviour”). The first PC explains ~37% of the variance in the four 

measures, and it is the only PC that loads positively on all of them. Summary statistics and 

factor loadings of the PCA are available in Supplementary Tables 1 and 2. The code for 

generating the variable of ‘risky behaviour’ is accessible at https://osf.io/qkp4g/.

Control variables.—The full list of control variables and the methods used to generate 

them are available in Supplementary Methods 1.2.

T1 MRI Image Processing.—We use T1-weighted structural brain MRI images in NIFTI 

format provided by the UKB. Images were acquired using 3-T Siemens Skyra scanners, 

with a 32-channel head coil (Siemens, Erlangen, Germany), with the following scanning 

parameters: repetition time = 2000 ms; echo time = 2.1 ms; flip angle = 8°; matrix size = 

256 × 256 mm; voxel size = 1 × 1 × 1 mm; number of slices = 208. A detailed description 

of the methods used to pre-process the images and derive voxel-level and ROI-level IDPs is 

available in Supplementary Methods 1.3.1–1.3.3.

Polygenic Risk Score (PRS) for Risky Behaviour.—To construct a PRS, we first 

re-estimated the GWAS of our main measure described in ref7 after excluding 18,796 

genotyped individuals with usable T1 MRI images and their relatives up to the third 

degree (final GWAS sample: N = 297,025 individuals of European ancestry). The GWAS 

was performed using linear mixed models (LMM), implemented via BOLT-LMM version 

2.3.250. Next, we performed quality control (QC) of the GWAS results using a standardized 

QC protocol, described in detail in ref7. This protocol removes rare and low-quality 

single-nucleotide polymorphisms (SNPs) based on minor allele frequency (MAF) < 0.001, 

imputation quality (INFO) < 0.7, and SNPs that could not be aligned with the Haplotype 

Reference Consortium (HRC) reference panel, among other filters. After QC, a total of 

11,514,220 SNPs remained in the GWAS summary statistics. Thereafter, we calculated a 

PRS for each participant by weighting their genotype across SNPs by the corresponding 

regression coefficients estimated in the GWAS (see Supplementary Methods 1.4 for further 

information).

Analysis

Voxel-based Morphometry (VBM).—We identify associations between risky behaviour 

and localized GMV across the brain using whole-brain voxel-based morphometry (VBM), 

a method that normalizes the anatomical brain images of all participants in one stereotactic 

space24. We regress risky behaviour separately on each voxel of the smoothed GMV images 

(see Supplementary Methods 1.3.1) and the control variables. We correct for multiple 

comparisons by adjusting the FWE rate to α = 0.01 using permutation tests (puncorr = 1.248 

× 10−06, with |tuncorr| = 4.85, two-sided). See Extended Data Figure 3 and Supplementary 

Table 4 for the summary statistics of each cluster and the coordinates of the peak voxel 

within that cluster.

Region of Interest (ROI)-level Analysis.—We compute the associations between risky 

behaviour and 139 IDPs of GMV extracted by the UKB brain imaging processing pipeline26 

using parcellations from the Harvard-Oxford cortical and subcortical atlases and Diedrichsen 
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cerebellar atlas, in addition to 9 IDPs derived using unbiased masks based on the results 

of our voxel-level analysis (see Supplementary Methods 1.3.2 and 1.3.3). We regress 

risky behaviour separately on each IDP and the control variables and correct for multiple 

comparisons by adjusting the FWE rate of α = 0.01 using permutation tests (puncorr = 9.37 × 

10−05, with |tuncorr|= 3.91, two-sided).

Replication of the Voxel-level and ROI-level Analyses.—We repeat the VBM 

analyses in the replication sample for all voxels that showed significance in the original 

sample, correcting for multiple comparisons by adjusting the FWE rate to α = 0.05 (two-

tailed) using permutation tests (puncorr = 2.956 × 10−04, with tuncorr = 3.62). We also 

repeat the ROI-level analysis in all ROIs that showed significance in the original sample, 

and correct for multiple comparisons by adjusting the FWE rate to α = 0.05 (two-tailed) 

using permutation tests (puncorr = 3.35 × 10−03, with tuncorr = 2.93). We define replication 

success as observing a statistically significant effect at the 5% level (corrected for multiple 

hypothesis testing) in the same direction as the original finding51.

Comparison of VBM Results with a Meta-Analysis of Functional MRI (fMRI) 
Studies.—We compare our VBM results with a publicly available meta-analysis of fMRI 

studies provided by Neurosynth30, an online platform for large-scale, automated synthesis 

of fMRI data (https://neurosynth.org/). The meta-analysis was based on the keyword ‘risky’. 

It consisted of K = 101 individual studies with a total of N = 4,717 participants (see 

Supplementary Table 9 for details), and was conducted using a uniformity test (assuming 

that random activations are evenly distributed across all voxels). The meta-analytic statistical 

image was corrected for multiple comparisons by applying a false discovery rate (FDR) of 

.01 (implemented by Neurosynth). The summary of studies included in the meta-analysis 

is available on Supplementary Table 9. The 3D activation map that resulted from the meta-

analysis is available on https://neurosynth.org/analyses/terms/risky/. To compare our VBM 

results (i.e., brain structure) with the meta-analysis of data on brain function, we perform a 

whole-brain voxel-level conjunction analysis of the two (see Extended Data Figure 7) that 

exhibits the spatial overlap of all voxels that are significant in both analyses (Figure 4). 

Thus, both the structure and function of the brain regions identified by this conjunction are 

significantly associated with risky behaviour.

Voxel-based Morphometry (VBM) Analysis of Risky Behaviour PRS.—We repeat 

the VBM analysis in all voxels identified to be associated with risky behaviour, using the 

PRS as the dependent variable. This approach allows the identification of brain regions 

that were likely to mediate the effect of genetic disposition on risky behaviour. The PRS 

was constructed using GWAS results from an independent sample, to ensure that the effect 

size estimates in this analysis are not inflated due to overfitting. We account for multiple 

comparisons using a permutation test with an FWE rate of pFWE < 0.05. This part of the 

analysis was not pre-registered.

Mediation Analysis.—We conduct mediation analyses (implemented in STATA 14) to test 

whether GMV differences in the brain regions whose GMVs are associated with the PRS 

of risky behaviour (right dlPFC, right putamen and hypothalamus) mediate the association 
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between the PRS and risky behaviour. We first extract GMV from these three ROIs using the 

same unbiased masks as in the ROI-level analysis (see Supplementary Methods 1.3.3). Then, 

we estimate a structural equation model (SEM) to quantify the effect of the PRS on risky 

behaviour mediated via GMV differences in these ROIs. All SEM equations include the 

aforementioned standard control variables (listed in Supplementary Methods 1.2). We carry 

out an additional robustness check by estimating an SEM that assumes one single path (i.e., 

the sum of all ROIs), which yields the same pattern of results (see Extended Data Figure 8).

Family-Wise-Error Correction using Permutation Tests.—To account for multiple 

hypothesis testing, we determine the appropriate FWE corrected p-value threshold with 

a permutation test procedure in each of our analyses52. To this end, we generated 1,000 

datasets with randomly permuted phenotypes (i.e., breaking the link between the outcome 

and explanatory variables), estimated regression models for all IDPs per analysis, and 

recorded the lowest p-value of each run to generate an empirical distribution of the test 

statistic under the null hypothesis. To obtain the FWE rate of any given alpha, we use the nth 

= α × 1000 lowest p-value from the 1,000 permutation runs as the FWE corrected p-value 

threshold.

Pre-registration of Analysis Plan and Unplanned Deviations.—We pre-registered 

our analysis plan on Open Science Framework (OSF, https://osf.io/qkp4g/, registered Dec. 

2018). Our pre-registered plan specified the construction of the dependent variable, the 

control variables, the inclusion criteria and quality controls, the VBM analyses and the main 

ROI-level analyses. We summarize all deviations from the analysis plan in Supplementary 

Methods 2.
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Extended Data

Extended Data Fig. 1: 
Bivariate correlations between variables used in the main study sample (N = 12,675).
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Extended Data Fig. 2: 
Empirical distributions of variables in the replication sample (N = 13,004).
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Extended Data Fig. 3: 
Effect sizes (standardized betas) of associations between risky behaviour and grey matter 

volume (GMV) in voxel clusters showing significant associations at P < .01 (FWE-

corrected) (N = 12,675).
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Extended Data Fig. 4: 
Effect sizes (standardized betas) of association between risky behaviour and IDPs of grey 

matter volume (GMV) showing significant associations at P<0.01 level (FWE-corrected) (N 

= 12,675).

Extended Data Fig. 5: 
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Associations (p-values) between risky behaviour and 148 ROI-level imaging-derived 

phenotypes (IDPs) of grey matter volume (GMV), controlling for cognitive and 

socioeconomic outcomes (N = 11,864).

Extended Data Fig. 6: 
Associations (p-values) between risky behaviour and 148 ROI-level imaging-derived 

phenotypes (IDPs) of grey matter volume (GMV), controlling for current drinking levels 

(binned in deciles) and smoking levels (binned in 3 categories) in addition to all standard 

controls (N = 12,675).

Extended Data Fig. 7: 
Meta-analysis of functional MRI studies of risky behaviours, provided by Neurosynth (N = 

4,717 participants and K = 101 studies).
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Extended Data Fig. 8: 
Mediation analysis of the association between PRS and risky behaviour with GMV in 

dlPFC, putamen and hypothalamus (N = 12,675).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. |. 
Main Sample Characteristics (N=12,675). (A) Geographical birth location clusters of the 

study’s participants. Each star represents the birthplace of a participant (non-jittered). 

Colours denote 100 geographical clusters, calculated using a k-means clustering algorithm 

with k = 100 and 10,000 iterations after random seeding. (B) Empirical distributions of 

variables in the main study sample.
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Figure 2. |. 
Association between Risky Behaviour and Imaging-Derived Phenotypes (IDPs) of Grey 

Matter Volume (GMV). (A) Loadings for the first principal component are extracted from 

four self-reported measures of risky behaviour in the drinking, smoking, driving and sexual 
domains (N = 315,855) (see Figure 1 for descriptive statistics). We use this first principal 

component as a measure of risky behaviour. (B) Voxel-level GMV negatively associated 

with risky behaviour (N = 12,675). We observe associations in subcortical areas, including 

thalamus, posterior hippocampus, amygdala, putamen, ventral striatum and cerebellum. 

Associations with cortical areas include posterior middle temporal gyrus, precentral gyrus, 

dlPFC, anterior insula and vmPFC. (C) Associations between risky behaviour and GMV in 

148 regions of interest (ROIs)` (N = 12,675). The grey dotted line shows the FWE corrected 

threshold of P = 0.01 (see Methods for details).
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Figure 3 |. 
Voxel-level Grey Matter Volumes (GMV) associated with risky behaviour in the replication 

sample (N = 13,004). 92.6% of the voxels identified in our original analysis (located in 20 

out of 21 original clusters identified, marked in purple) successfully replicate (corrected for 

multiple testing at the 5% level using a permutation test). Non replicated voxels are located 

in the cerebellar lobules I-IV (marked in blue).
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Figure 4 |. 
Conjunction between the Grey Matter Volume (GMV) differences associated with risky 

behaviour identified in the current study and the results of a meta-analysis of 101 fMRI 

studies, based on the keyword “risky”. This analysis identifies overlapping voxels in the 

thalamus, amygdala, vmPFC and dlPFC (see Methods for details).
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Figure 5. |. 
Association of Polygenic Risk Scores (PRS) for Risky Behaviour and Grey Matter Volume 

(GMV). (A) We constructed a PRS of risky behaviour from a GWAS in an independent 

sample (N=297,025) and investigated its associations with GMV in brain voxels that we 

identified as linked to risky behaviour. The PRS negatively correlates with GMV in the 

right dlPFC, putamen and hypothalamus. (B) GMV differences in hypothalamus (path 1, 

designated as a1 and b1), right putamen (path 2, designated as a2 and b2) and right dlPFC 

(path 3, designated as a3 and b3) mediate ~2.2% of the association between the PRS and 

risky behaviour. Arrows depict the direction of the structural equation modelling and do not 

imply causality (N = 12,675).
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