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Abstract

Background: Alzheimer's disease (AD) is a common neurodegenerative disorder.

Disulfidptosis is a newly discovered form of programmed cell death that holds

promise as a therapeutic strategy for various disorders. However, the functional

roles of disulfidptosis‐related genes (DRGs) in AD remain unknown.

Methods: Microarray data and clinical information from patients with AD and

healthy controls were downloaded from the Gene Expression Omnibus database.

A thorough examination of DRG expression and immune characteristics in both

groups was performed. Based on the identified DRGs, we performed an

unsupervised clustering analysis to categorize the AD samples into various

disulfidptosis‐related molecular clusters. Weighted gene co‐expression network

analysis was performed to select hub genes specific to disulfidptosis‐related AD

clusters. The performances of various machine learning models were compared to

determine the optimal predictive model. The predictive ability of the optimal

model was assessed using nomogram analysis and five external datasets.

Results: Eight DRGs showed differential expression between the AD and

control samples. Two different molecular clusters were identified. The

immune cell infiltration analysis revealed distinct differences in the immune

microenvironment of the two clusters. The support vector machine model

showed the highest performance, and a panel of five signature genes was

identified, which showed excellent performance on the external validation

datasets. The nomogram analysis also showed high accuracy in predicting AD.

Conclusion: We identified disulfidptosis‐related molecular clusters in AD and

established a novel risk model to assess the likelihood of developing AD. These

findings revealed a complex association between disulfidptosis and AD, which

may aid in identifying potential therapeutic targets for this debilitating disorder.
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1 | INTRODUCTION

Alzheimer's disease (AD) is the foremost cause of dementia
and is becoming one of the most lethal and burdensome
diseases.1,2 The most common clinical manifestation of AD
is slowly progressing amnesia, which reflects the pathology
of early neurofibrillary tangles in the medial temporal lobe,
eventually evolving into multidomain dementia dominated
by amnestic predominance.3 Genetic factors account for
60%–80% of the risk of AD, and more than 40 genetic risk
loci associated with AD have been identified, among which
apolipoprotein E alleles exhibit the strongest correlation with
this disease.1,4 Only a few medical treatments have been
approved for AD, and these mainly focus on managing
symptoms rather than altering the disease course.5,6

Although research on potential disease‐modifying therapies
has mainly focused on detecting the disease clinically, there
is evidence that pathology related to AD begins several years
before this stage.7 In the preclinical phase, pharmacological
therapy may be beneficial before the onset of neuro-
degenerative processes. However, growing evidence has
shown that AD is a heterogeneous disease caused by
multiple pathophysiological mechanisms, and predicting its
progression is challenging.8 Therefore, there is no “one size
fits all” intervention, and individualized treatment choices
are recommended.9 Taken together, it is crucial to identify
dependable diagnostic markers for early AD detection and
devise novel molecular stratification methods aimed at
directing precision medicine.

The abnormal accumulation of disulfides in cells causes
disulfide stress, which may result in high levels of cellular
toxicity.10,11 Recently, a disulfide‐triggered modality of
regulated cell death was reported, which was termed
“disulfidptosis.”12 Different from other programmed cell
death processes, disulfidptosis is mediated by the sensitivity
of the actin cytoskeleton to disulfide stress,12 which suggests
a promising strategy for treating various diseases. The
functional roles of programmed cell death‐related genes in
AD development have been previously reported. For
instance, genes related to cuproptosis,13,14 pyroptosis,15

and ferroptosis16,17 have been used to construct prediction
models for AD. However, as the underlying mechanism of
disulfidptosis has been discovered, the potential link
between disulfidptosis‐related genes (DRGs) and AD
remains unclear. Currently, studies on disulfidptosis have
mainly focused on cancers.18–20 A recent study has reported
that the dysregulation of actin cytoskeletal dynamics is
associated with the pathology of AD.21 The accumulation of
disulfide bonds and the mechanism of disulfidptosis may
damage the actin cytoskeleton, suggesting a potential
relationship between disulfidptosis and AD.

In recent years, the field of machine learning has
witnessed widespread application in predicting biomarkers

and offering fresh insights into the pathogenesis of diseases
owing to its excellent performance in clinical diagnosis.22‐25

Several studies have used machine learning to classify
individuals at risk of progressing to AD.26‐30 Therefore, in
this study, we aimed to identify molecular clusters related to
disulfidptosis and establish a novel risk model to assess the
likelihood of developing AD based on machine learning.
With this objective, we investigated the expression patterns
of DRGs in AD and control samples. We then categorized
patients with AD into two disulfidptosis‐related clusters
based on DRG expression patterns and evaluated immune
cell differences. By performing weighted gene co‐expression
network analysis (WGCNA), we identified hub genes specific
to the disulfidptosis‐related AD clusters. Subsequently, a
prediction model was formulated using multiple machine‐
learning algorithms. The performance of the optimal model
was validated using nomogram analysis and five external
datasets. These results provide valuable insights into the
diagnosis and molecular stratification of AD.

2 | MATERIALS AND METHODS

2.1 | Data collection

Microarray data and clinical characteristics of both AD and
control samples were obtained from the Gene Expression
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/
geo/). Raw data were normalized to eliminate batch effects.
We used the GSE33000 dataset as a training cohort.
Additionally, five different validation cohorts, namely
GSE5281, GSE36980, GSE48350, GSE122063, and
GSE132903, were selected to verify the accuracy of our
results. Table 1 presents the clinical characteristics of these
datasets.

2.2 | Identification of differentially
expressed DRGs

We obtained 10 DRGs for this study from the literature
(Supporting Information: Table S1).12 The expression data of
DRGs in the AD and control samples from the training set
were extracted, and differential expression analysis was
performed using the “limma” package. DRGs with p<0.05
were considered differentially expressed.

2.3 | Immune cell infiltration and
correlation analyses

The relative abundance of 22 types of infiltrating immune
cells in each sample was calculated using the CIBERSORT
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algorithm. We compared the enrichment levels of infiltrating
immune cells between the AD and control samples to
investigate the potential association between AD and
immunity. We further assessed the correlation between
differentially expressed DRGs and infiltrating immune cells
by performing Spearman's correlation analysis. Data analysis
and visualization were performed using the “e1071,”
“reshape2,” “ggpubr,” “tidyverse,” and “ggplot2” packages.

2.4 | Identification and evaluation of
disulfidptosis‐related clusters in AD

Based on the expression of the identified differentially
expressed DRGs, an unsupervised clustering analysis was
performed to categorize the AD samples in the training
cohort into various clusters using the “ConsensusCluster-
Plus” package. We comprehensively evaluated the optimal
number of clusters by analyzing the consensus matrixs,
cumulative distribution function (CDF) curves, and consen-
sus scores. Principal component analysis (PCA) was
performed to depict the distribution of the identified clusters
visually. A differential expression analysis was performed to
evaluate differences in the expression of DRGs among the
various clusters. Additionally, an immune cell infiltration
analysis was performed to examine the characteristics of
immune cell infiltration among the different clusters.
Moreover, gene set variation analysis (GSVA) was per-
formed to elucidate the differentially expressed pathways
and biological mechanisms among the different
disulfidptosis‐related clusters. Statistical analyses and data
visualization were performed using various packages,
including “pheatmap,” “reshape2,” “ggpubr,” “ggplot2,”
“GSEABase,” and “GSVA.”

2.5 | WGCNA

Genes that are commonly arranged in a co‐expression
network where they frequently connect with other genes to

occupy a core position in modules exhibiting high modular
identity are called hub genes.31 WGCNA is a systematic
molecular biology method that identifies correlation patterns
among genes in microarray samples and pinpoints hub
genes without subjectivity.32 Herein, we used the WGCNA
approach on the training cohort and disulfidptosis‐related
clusters to identify hub genes between the AD and control
samples as well as between clusters 1 and 2. A scale‐free
topology model was used to determine the optimal soft
threshold by integrating goodness of fit with mean
connectivity. Subsequently, multiple modules were identified
in an unsupervised manner and their adjacencies and
similarities were estimated using a topological overlap
measure and average hierarchical clustering. The topologi-
cally similar modules were combined into a new cluster.
Pearson's correlation analysis was performed to examine the
associations between the module genes and clinical features,
and the highest correlating module was selected. The
module genes were further evaluated based on module
membership (MM) and gene significance (GS). Candidate
genes meeting the criteria of MM>0.6 and GS>0.5
between the AD and control samples and between clusters
1 and 2 were identified. Finally, hub genes were identified as
those that overlapped between the candidate genes from
both sets. Data analysis and visualization were performed
using the “limma,” “WGCNA,” and “VennDiagram”
packages.

2.6 | Development of the optimal
prediction model

Multiple machine‐learning algorithms were applied to
develop a prediction model based on the identified hub
genes. Random forest (RF) is a regression tree approach that
uses predictor randomization and bootstrap aggregation to
achieve a high degree of predictive accuracy.33 The support
vector machine (SVM) algorithm can predict labels from
one or more feature vectors by creating a decision boundary
between two categories.34 The generalized linear model

TABLE 1 Characteristics of the studied datasets.

GEO series Control samples AD samples Age ≤ 80 Age > 80 Male Female Data type

GSE5281 74 87 96 65 103 58 Validation cohort

GSE33000 157 310 298 169 258 209 Training cohort

GSE48350 173 80 142 111 124 129 Validation cohort

GSE122063 44 56 36 64 32 68 Validation cohort

GSE132903 98 97 49 146 99 96 Validation cohort

GSE36980 47 33 29 51 37 43 Validation cohort

Abbreviation: AD, Alzheimer's disease.
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(GLM) is an extension of the classic linear model that has
been widely used in statistics for parameter estimation.35

The extreme gradient boosting (XGB) algorithm has certain
algorithmic optimizations and important features.36 Corre-
sponding prediction models were constructed using the
aforementioned algorithms. Subsequently, the feature
importance and residual distributions of the models were
analyzed. Receiver operating characteristic (ROC) curves
were used to predict the specificity and accuracy of these
models for AD diagnosis. Combined with the above
predictive performance, an optimal machine learning model
was obtained, and the top five feature variables in the model
were identified as the optimal panel of signature genes. The
analysis results were visualized using the “caret,” “DALEX,”
“ggplot2,” “randomForest,” “kernlab,” “pROC,” and
“xgboost” packages.

2.7 | Nomogram construction

A nomogram was constructed based on the model to
forecast disease risk. Nomogram analysis was performed
to assess the predictive ability of the model. The results
were visualized using the “rms” and “rmda” packages.

2.8 | Validation of the gene prediction
model

The ability of the model to distinguish between patients
with AD and controls was assessed in five validation
cohorts: GSE5281, GSE36980, GSE48350, GSE122063,
and GSE132903 by performing ROC curve analysis. The
“pROC” package was used to visualize the results.

2.9 | Statistical analyses

Data were analyzed using the R software (version 4.1.3).
Student's t test was used to detect the significance of
differences between the AD and control samples. Two‐
sided p< 0.05 was considered statistically significant.

3 | RESULTS

3.1 | Identification of differentially
expressed DRGs

Figure 1 shows a flowchart explaining the identification
and immune characteristics of disulfidptosis‐related
molecular clusters as well as the construction and
validation of the predictive model for AD. A total of

eight DRGs were differentially expressed between the AD
and control samples (Figure 2A,B). SLC7A11, SLC3A2,
and GYS1 were upregulated, whereas OXSM, NUBPL,
NDUFA11, NCKAP1, and LRPPRC were downregulated
in the AD samples. Furthermore, the identified genes
exhibited strong synergistic or antagonistic effects, and
the interactions and interrelationships between these
genes were visualized (Figure 2C,D).

3.2 | Immune cell infiltration and
correlation analyses

The CIBERSORT algorithm was used to measure the
relative abundance of 22 types of infiltrating immune
cells in both AD and control samples (Figure 3A).
Subsequently, immune cell infiltration analysis showed
significant differences in 12 of 22 types of immune cells
between the AD and control samples (Figure 3B),
implying a potential role of immunological dysfunction
in the pathogenesis and progression of AD. There was a
significant correlation between differentially expressed
DRGs and infiltrating immune cells (Figure 3C), sug-
gesting that these genes may exert a profound effect on
the immune infiltration status of patients with AD.

3.3 | Identification and evaluation of
disulfidptosis‐related clusters in AD

An unsupervised clustering analysis was performed to
classify the AD samples in the training cohort based on the
identified differentially expressed DRGs, leading to the
establishment of disulfidptosis‐related clusters for AD.
The cluster matrix was the most consistent when k=2,
as confirmed by the consistent CDF curves and high
consensus scores for each subtype (Figure 4A–D). There-
fore, we identified two optimal clusters: cluster 1 (n=139)
and cluster 2 (n=171). Additionally, PCA showed a clear
differentiation between the previously mentioned clusters,
suggesting the efficacy of unsupervised clustering for the
AD samples (Figure 4E).

To investigate the molecular characteristics associ-
ated with disulfidptosis‐related clusters, we evaluated the
expression of the eight DRGs in clusters 1 and 2. Cluster
1 showed the upregulated expression of OXSM, NUBPL,
NCKAP1, and LRPPRC, whereas cluster 2 showed the
upregulated expression of SLC7A11, SLC3A2, NDUFA11,
and GYS1 (Figure 5A,B). Additionally, the immune cell
infiltration analysis revealed distinct differences in the
immune microenvironment of the two clusters related
to disulfidptosis (Figure 5C,D). Moreover, the GSVA
revealed that cluster 1 was significantly associated with
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FIGURE 1 Flow diagram of the study. AD,
Alzheimer's disease; DRG, disulfidptosis‐related
gene; GLM, generalized linear model; RF,
random forest; SVM, support vector machine;
WGCNA, weighted gene co‐expression network
analysis; XGB, extreme gradient boosting.
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immune‐related pathways, including cytokine–cytokine
receptor interaction, leukocyte transendothelial migra-
tion, and B‐cell receptor signaling pathway. In contrast,
cluster 2 was mainly related to metabolic pathways such
as alanine, aspartate, and glutamate metabolism, taurine
and hypotaurine metabolism, and cysteine and methio-
nine metabolism (Figure 5E). Additionally, the GSVA
demonstrated that cluster 1 exhibited significant associa-
tions with regulation of phosphate transport, positive
regulation of cytokine production, and mannosidase
activity. On the other hand, cluster 2 displayed predomi-
nant connections with RNA cap‐binding complex,
ornithine decarboxylase regulator activity, and poly-
amine transmembrane transport regulation (Figure 5F).

3.4 | WGCNA

WGCNA was first performed on the training cohort to
screen for hub genes related to AD and control samples.
A soft threshold of 20 was determined, and the

constructed network closely resembled a real biological
network state, as evidenced by its adherence to a power‐
law distribution (Supporting Infomation: Figure S1A).
Hierarchical clustering analysis was performed, and the
resulting clustering segments were merged to obtain
seven modules (Supporting Infomation: Figure S1B,C).
Among them, the blue module showed the strongest
correlation between the AD and control samples (cor = .7,
p= 5e−70; Supporting Infomation: Figure S1D). Addition-
ally, we established a strong correlation between GS and
MM (cor = .91, p= 3.4e−169). Based on the predetermined
criteria, we identified 703 AD‐related genes in the blue
module for subsequent analyses (Supporting Infomation:
Figure S1E).

We then repeated the WGCNA approach on the
disulfidptosis‐related clusters to identify hub genes
associated with clusters 1 and 2 using a soft threshold
of 5 (Supporting Infomation: Figure S2A). Hierarchical
clustering analysis was performed, and the resulting
clustering segments were merged to obtain nine modules
(Supporting Infomation: Figure S2B,C). Among them,

FIGURE 2 Identification of differentially expressed disulfidptosis‐related genes (DRGs). (A) Boxplot of differentially expressed DRGs
between Alzheimer's disease (AD) and control samples; (B) heatmap of differentially expressed DRGs between AD and control samples;
(C) correlation plot of differentially expressed DRGs; (D) gene relationship network diagram of differentially expressed DRGs.
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the blue module showed the strongest correlation
between clusters 1 and 2 (cor = .71, p= 1e−48; Supporting
Infomation: Figure S2D), and a close correlation between
GS and MM (cor = .91, p= 2.3e−147) was also established.

Using the predetermined criteria, 148 cluster‐specific genes
were identified in the blue module (Supporting Infomation:
Figure S2E). Finally, 58 overlapping genes were identified
as hub genes specific to the disulfidptosis‐related AD

FIGURE 3 Immune cell infiltration
and correlation analyses. (A) Relative
abundance of 22 types of infiltrating
immune cells in Alzheimer's disease (AD)
and control samples. (B) Boxplot of
immune‐related cells between AD and
control samples. (C) Heatmap of
correlations between differentially
expressed disulfidptosis‐related genes and
immune‐related cells.
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clusters, based on the intersection of the 703 AD‐related
genes from the training cohort and the 148 cluster‐specific
genes from the disulfidptosis‐related clusters (Supporting
Infomation: Figure S2F).

3.5 | Development of the optimal
prediction model

Based on the identified 58 hub genes, multiple machine‐
learning models were constructed according to the
corresponding algorithms. Among them, the prediction
model established by SVM exhibited the relatively lowest
residuals (Figure 6A,B). Next, the top 10 important
feature variables of each model were ranked according to
the root mean square error (Figure 6C). Furthermore, the

SVM model showed the highest area under the curve
(AUC) value (RF, AUC= 0.922; SVM, AUC= 0.941;
XGB, AUC= 0.909; GLM, AUC= 0.883, Figure 6D).
Finally, combined with the above predictive perform-
ance, the prediction model established by the SVM
algorithm exhibited superior diagnostic value for AD
compared to the other algorithms used in this study. The
following top five important feature variables in the SVM
model were identified as the optimal panel of signature
genes: FXYD5, NRXN3, SERTAD3, AEBP1, and PAK1.

3.6 | Nomogram construction

A nomogram was constructed to predict the risk of
developing AD (Figure 7A). The calibration curve

FIGURE 4 Identification of disulfidptosis‐related clusters in Alzheimer's disease. (A) Consensus clustering matrix for k= 2. (B–D)
Representative cumulative distribution function curves. (E) Principal component analysis distribution of disulfidptosis‐related clusters.
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FIGURE 5 Evaluation of disulfidptosis‐related clusters in Alzheimer's disease. (A) Boxplot of differentially expressed disulfidptosis‐
related genes (DRGs) between disulfidptosis‐related clusters; (B) heatmap of differentially expressed DRGs between disulfidptosis‐related
clusters; (C) relative abundance of 22 types of infiltrating immune cells in disulfidptosis‐related clusters; (D) boxplot of immune‐related cells
between disulfidptosis‐related clusters; (E) gene set variation analysis (GSVA) on the differentially expressed pathways among
disulfidptosis‐related clusters; (F) GSVA on the differentially expressed biological mechanisms among disulfidptosis‐related clusters.
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FIGURE 6 Development of the optimal prediction model. (A) Cumulative residual distribution of each machine‐learning model;
(B) residuals of each machine‐learning model; (C) important feature variables of each machine‐learning model; (D) receiver operating
characteristic curves of machine‐learning models in the training cohort.
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indicated optimal concordance between the practical
observation and the predicted risk probability
(Figure 7B). The decision curve analysis showed that
the constructed nomogram achieved a satisfactory
benefit for clinical decision‐making (Figure 7C). These
results indicate the good performance of the nomogram
model in AD diagnosis.

3.7 | Validation of the prediction model

The five‐gene model was validated using five external
datasets containing AD and control samples. The ROC
curves demonstrated satisfactory model performance,
with AUC values of 0.861, 0.837, 0.752, 0.771, and 0.857
for the GSE122063, GSE132903, GSE48350, GSE5281,
and GSE36980 datasets, respectively (Figure 8A–E).

These results suggest that our diagnostic model has a
high value in the diagnosis of AD.

4 | DISCUSSION

AD is a common neurodegenerative disease that has been
widely studied globally. Although some progress has been
made, the existing therapies are unsatisfactory because of
the lack of adequate biomarkers and the heterogeneity of
this disease. The identification of disulfidptosis‐related
clusters in the present study provides novel molecular
stratification methods for improving individualized thera-
peutic strategies for patients with AD. Moreover, the
successful construction of a prediction model based on
these molecular clusters could further assist in clinical
decision‐making regarding AD diagnosis.

FIGURE 7 Nomogram construction. (A) Nomogram for predicting Alzheimer's disease risk; (B) calibration curve; (C) decision curve
analysis.
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FIGURE 8 Validation of the gene prediction model. Receiver operating characteristic curves of the prediction model in the GSE122063
(A), GSE132903 (B), GSE48350 (C), GSE5281 (D), and GSE36980 (E) datasets. AUC, area under the curve; CI, confidence interval.
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We conducted a comprehensive analysis of the
expression patterns of DRGs between the AD and control
samples. Eight of 10 DRGs showed differential expres-
sion and exerted significant synergistic or antagonistic
effects, indicating the crucial function of DRGs in the
development and progression of AD. We then performed
an unsupervised clustering analysis to categorize the AD
samples into various disulfidptosis‐related molecular
clusters using the expression landscapes of the DRGs.
Two separate disulfidptosis‐related clusters were identi-
fied. The GSVA results showed that cluster 1 was
significantly associated with immune‐related pathways.
Additionally, the CIBERSORT algorithm revealed signif-
icant differences in 12 of 22 types of immune cells
between the AD and control samples, suggesting the
potential role of immune cells in the development of AD.
Mounting evidence suggests that the pathogenesis of AD
is not confined to the neuronal compartment, but instead
actively involves immune mechanisms in the brain.37‐40

When aggregated and misfolded proteins bind to pattern
recognition receptors on microglia and astroglia, they
induce an innate immune response that involves the
release of inflammatory mediators that play key roles in
disease severity.41‐44 This is consistent with the results of
the immune cell infiltration analysis performed in the
present study, which indicated that immune dysfunction
was associated with AD. The classification of patients
with AD into disulfidptosis‐related clusters revealed
differences in multiple types of immune cells, implying
that further research is necessary to explore possible
differences in outcomes.

Nowadays, machine learning has exhibited excellent
performance in clinical diagnosis; thus, it is widely
applied to predict new biomarkers and provide novel
insights into disease pathogenesis. In the present study,
we used various machine‐learning algorithms to generate
prediction models based on the hub genes identified by
WGCNA on the training cohort and disulfidptosis‐related
clusters. The results indicated that SVM yielded superior
diagnostic outcomes for AD than the other algorithms.
The SVM model showed the most favorable performance
with the lowest residuals and highest AUC values.
Therefore, the top five essential feature variables
(FXYD5, NRXN3, SERTAD3, AEBP1, and PAK1) revealed
by the SVM model were considered as the optimal
signature gene panel. PAK1 was one of the primary
isoforms of PAK present in the brain, with a diffuse
distribution across cell bodies and dendrites, and was
implicated in the synaptic and cognitive dysfunctions in
AD.45 NRXN3 exhibited distinct essential pre‐ or
postsynaptic functions in various brain regions and its
dysregulation in presynaptic expression and splicing
might contribute to increased neuronal inflammation in

the brain of patients with AD.46‐48 AEBP1 plays a role in
the progression of AD pathology.49‐51 Moreover, FXYD5
can downregulate E‐cadherin and promote metastasis,52

whereas SERTAD3 is a strong transcriptional co‐activator
with high activity.53 The precise functions of FXYD5 and
SERTAD3 in AD are yet to be fully elucidated, and our
findings offer new insights into AD pathogenesis.
Additionally, the nomogram based on this gene model
exhibited remarkable accuracy in predicting AD. Impor-
tantly, five external datasets were included to validate the
developed gene model, and the robustness of the model
was confirmed by AUC values consistently exceeding
0.75. Thus, our findings provide compelling evidence that
the established model is a dependable tool for AD
diagnosis.

Nevertheless, the study has some limitations. We
used multiple datasets extracted from the GEO database,
so necessitating prospective investigations are needed to
determine the efficacy of the model when applied to
clinical samples. Additionally, the molecular mecha-
nisms underlying the predictive model were not eluci-
dated or validated via experimental studies. Furthermore,
additional samples are necessary to clarify the accuracy
of the disulfidptosis‐related clusters and the correlation
between DRGs and immune responses in AD. We plan to
address these limitations in future research.

In conclusion, we demonstrated substantial heteroge-
neity in immune cell populations among AD patients
with different disulfidptosis‐related clusters. A five‐gene‐
based SVM model was selected as the optimal model for
predicting AD. The AUC values were consistently above
0.75 in the training and validation cohorts, suggesting the
reliability of the diagnostic prediction model and the
possibility of its effective integration into clinical
practice. These findings have significant clinical implica-
tions regarding the role of disulfidptosis in AD heteroge-
neity and the development of targeted therapies for
individuals with AD.
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