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ABSTRACT

Experiments were conducted to examine the development of photosyn-
thetic carbon metabolism in Peperomia scandens, a tropical epiphyte.
Leaves were sampled during a 10-day period when they were between 30
to 165 days old. P. scandens exhibits a C3 to CAM-cycling to CAM shift
during maturation with the magnitude of CAM increasing with age.
Initially, during both day and night, no significant CO2 uptake or diurnal
acid flux was evident. C3 gas exchange was detected at 41 days of age
with a gradual shift towards CAM ps exchange maximized thereafter.
An acidity flux of 130 to 150 microequivalents per gram fresh weight
was evident by 41 days. Between 40 and 90 days, the leaves shifted their
CO2 uptake pattern from a daytime to a nighttime peak. After 90 days,
the leaves remained in CAM. The 613C values became progressively less
negative as the leaves matured. In the 30-day-old leaves, the 613C value
was -21.1% while in the 165-day-old leaves the 613C value was -18.3%.
The time-dependent shift from C3 to CAM-cycling toCAM in P. scandens
does not appear to result from changes in water, light, or temperature
regimes since these variables were constant for all leaves sampled.

investigated by von Willert et al. (33).
The second modification, CAM-cycling, is typified by predom-

inantly C3-like gas exchange during the day with a subsequent
diurnal cycling of organic acids. CAM-cycling has been observed
in members of the Cactaceae (16), Welwitschiaceae (27), Cras-
sulaceae (24), Piperaceae (22, 26), Bromeliaceae (14), and Por-
tulacaceae (13).

Succulents have been observed to shift from a C3 photosyn-
thetic mode to one of the aforementioned CAM variations. Such
shifts are the result of either developmental (34, 36) or environ-
mental (16, 30, 35) changes.
The objective of this study was to investigate the development

of CAM in Peperomia scandens. Peperomia scandens is native
to the Caribbean, Mexico, and Central America where it is
widespread and exists as an epiphytic or lithophytic vine (32).
The genus Peperomia exhibits variable photosynthetic gas ex-
change patterns (22) with P. scandens having been shown to be
one of the most CAM-like of the peperomias (26). Unpublished
observations from our laboratory indicate there are significant
differences in gas exchange patterns between the young and old
leaves ofthis plant. Thus we sought to quantitate the CO2 uptake,
malate flux, and carbon isotope composition of the plant during
development.

CAM in succulent plants has been the subject of extensive
research during the past 20 years (25). This variation of carbon
assimilation is characterized by stomatal opening predominantly
during the period from late afternoon to early morning and a
diurnal fluctuation oftitratable acids, principally malic acid. CO2
is initially fixed by carboxylation of PEp2 via PEP carboxylase
and is immediately reduced to form malic acid. The malic acid
accumulates and is stored overnight in the vacuole until the
subsequent light period when it is released to the cytoplasm and
decarboxylated. The liberated CO2 is then assimilated through
the C3 photosynthetic cycle (25).
Two modifications ofCAM have been described: CAM-idling

and CAM-cycling. The former is characterized by a water stress-
induced closure of the stomata which may persist for long
periods. There is a constant, albeit reduced, recycling of organic
acids through the CAM pathway in both whole plants (16, 19,
23, 29) and in detached stem pieces (5). It is thought that the
persistence ofa reduced metabolic rate during water-stress main-
tains the biochemical apparatus until water is no longer a limiting
factor for growth (15, 17-19). CAM-idling has been observed in
members of the Cactaceae (5, 23), Cucurbitaceae (17, 18), Ascle-
piadaceae (19), Piperaceae (22, 30), Liliaceae (9), and Aizoaceae
(34) but was not detected in various South African CAM plants
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2Abbreviations: PEP, phosphoenolpyruvate; C3, Calvin-Benson cycle
for CO2 fixation; FW, fresh weight; RuBP, ribulose bisphosphate; THO,
tritiated water.

MATERIALS AND METHODS

Plant Material. Specimens of Peperomia scandens were prop-
agated from cuttings and grown in a greenhouse in Riverside,
CA. PAR did not exceed 135 ,gmol m-2 s-'. The mean RH was
35 to 45% and the mean air temperature was 23 to 29°C. Plants
were irrigated frequently using one-quarter strength Hoaglands
solution (4) to preclude water and nutrient stress. Experimenta-
tion occurred over a 10-d period in August 1985 on leaves
initiated between February 1, 1985, and July 16, 1985. Sunrise
was at approximately 5 AM and sunset was at approximately 9
PM, thus yielding a 16 h light period. Three leaves, each from
separate plants, were sampled in triplicate. Leaf initiation in this
study was defined as the point when a leaf was 1 cm long.
Gas Exchange Studies. Gas exchange parameters were meas-

ured with a dual-isotope porometer as previously described (6).
Acid Titrations. Leaf samples were collected in triplicate,

frozen, and stored on dry ice until assayed. Individual samples
were weighed and then ground in glass-distilled water using a
coaxial tissue homogenizer with a motor-driven Teflon pestle
(Potter-Elvehjem). The resulting homogenate was then titrated
to pH 7.0 with 0.01 N KOH.

Isotopic Analysis. Isotopic composition was determined as
previously described (26). The precision for the isotope analysis
of the whole leaf extract was ±0.2%oo for 653C values.

RESULTS

CO2 uptake patterns of Peperomia scandens leaves changed
markedly during the course of the study. The leaves exhibited
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little CO2 uptake until 32 d after initiation (Fig. 1A). After 40 d
the leaves exhibited a typical C3 pattern of CO2 uptake. By 60 d
postinitiation, the CO2 uptake pattern was biphasic with maxi-
mum rates at 5 PM and 1 AM (Fig. 2A). By 75 d postinitiation,
two broad peaks were evident that were lower in magnitude than
observed at 60 d and occurring between 5 to 9 PM and S to 9
AM. In older leaves, gas exchange in P. scandens assumed a
pattern more typical of a CAM plant (Figs. 3A, 4A, and SA).
The youngest leaves had little or no fluctuation in stomatal

conductance over a 24-h period (Fig. IB). Conductances re-
mained below 0.02 cm s-' for 75 d. After this time, conductances
were generally greater than 0.02 cm s-' (Figs. 3B, 4B, and SB).
Conductances did not correlate well with CO2 uptake until 145
d after initiation (Fig. 5B).
The young leaves (i.e. 30-45 d old) of P. scandens exhibited

no statistically significant diurnal acid fluctuation (Fig. IC),
although the level of tissue acidity remained high. By 45 d
postinitiation, acid fluctuation was evident (Fig. IC). Titratable
acid levels reached a minimum at 5 PM and a maximum between
5 AM and 9 AM with a magnitude of 135 to 150 ,eq g-' FW (Figs.
2C, 3C, and 4C). This flux was maintained until about 150 d
postinitiation after which the leaves began to senesce resulting in
a reduced diurnal acid flux (Figs. SC and 6).
The older leaves of P. scandens exhibited less discrimination

against '3C than did the younger leaves (Fig. 7). As the leaves
matured, 653C values became progressively less negative until
130 d postinitiation when 613C values stabilized at about -18.1%.

DISCUSSION

In a previous study, Peperomia scandens was reported to be
one of the most CAM-like members of the genus analyzed to
date (26). The results presented here in more detail confirm the
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FIG. 1. Diurnal variations in C02 uptake (A), conductance (B), and

titratable acidity (C) 32 d (U -) and 41 d (O---O) after initiation
for leaves of P. scandens. Points are means of nine samples + SE of the
mean.
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FIG. 2. Diumal variations in CO2 uptake (A), conductance (B), and
titratable acidity (C) 60 d (B-U and 75 d (O---O) after initiation
for leaves of P. scandens. Points are means of nine samples ± SE of the
mean.

earlier report; however, we now have shown that the magnitude
ofCAM activity is positively correlated with leaf age.
Leaftissue maturity is a major factor in the induction ofCAM

in P. scandens. This phenomenon of tissue age influencing the
mode of carbon fixation has previously been reported in Cissus
quadrangularis (31), Mesembryanthemum crystallinum (34), Ka-
lanchoe blossfeldiana and K. velutina (1), and Bryophyllumfedt-
schenkoi (7). Shifts from a C3 to a CAM photosynthetic mode
have also been reported to result from changes in environmental
conditions such as water status (28, 34), temperature (12), light
quality (12), relative humidity (12), and photoperiod (2). Here,
the induction of CAM in P. scandens occurs under more stable
environmental conditions. The constancy of our environmental
conditions suggests the development of CAM in P. scandens is
constitutive. The possibility that environmental signals, in con-
cert with normal developmental signals, effect an accelerated C3
to CAM shift (as in Mesembryanthemum [34]) is certainly plau-
sible in P. scandens.
During the maturation of P. scandens, the mode of carbon

assimilation is quite variable. When quite young, the leaves fix
carbon via the C3 pathway. The high tissue acidity levels present
at this time indicate that respiratory CO2 is being refixed. There-
after, diurnal acid fluctuation becomes evident before nocturnal
CO2 uptake is observed. Thus, the young leaves of P. scandens
are performing CAM-cycling prior to the onset of the more
typical CAM pattern of a diurnal acid flux coupled with noctur-
nal CO2 uptake. The existence ofthis phenomenon indicates that
the enzymatic complement necessary for carbon assimilation
through CAM is functional before the stomatal apparatus begins
to function at night. The CO2 source for the CAM-cycling in the
young leaves is also presumed to be from respiration. Therefore,
these immature leaves possess a mechanism for reducing respi-
ratory CO2 losses.
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FIG. 3. Diurnal variations in CO2 uptake (A), conductance (B), and
titratable acidity (C) 91 d (U ) and 131 d (O --- ) after initiation
for leaves of P. scandens. Points are means of nine samples ± SE of the
mean.

In the genus Peperomia, we have measured great variability in
stomatal conductance: the highest being in P. orba at 0.32 cm
s-I and the lowest being P. scandens at 0.01 cm s-' (30). In this
study we found the young leaves ofP. scandens had conductances
of about 0.02 cm s-' while the old leaves had conductances of
0.04 cm s-'. The low stomatal conductances are probably par-
tially the result of the low irradiances during growth of the
experimental plants. Also, conductances of this low magnitude
are not uncommon in plants adapted to environments charac-
terized by periodic droughts (8). There was little change in the
conductance of P. scandens over 24-h periods in this study. The
lack ofa close correlation between conductance and CO2 uptake
is curious. Sampling on all leaves was conducted in August when
the daylength in Riverside is about 16 h. Sipes and Ting (20)
have reported that under long days (>14 h), P. camptotricha also
showed no fluctuation in conductance during the course of a
day. It is reasonable, therefore, to assume that the lack of
fluctuation in the stomatal conductance of P. scandens during
this study was a result ofdaylength. While there was little diurnal
fluctuation in conductance, the stomata were nevertheless open
and functional (as evidenced by the CO2 uptake data) during this
study.
Young leaves of P. scandens exhibit a high level of titratable

acids (about 250 ,eq g-' FW). Other species of Peperomia that
have been investigated typically have less than 100 seq g-' FW
of titratable acids (26, 30) although the young leaves of P.
camptotricha reach a dawn maximum of 160 ueq g-' FW (30).
As P. scandens matures, the endogenous acid level decreases.
This appears to be normal for other CAM plants (7, 30).
The period of peak CO2 uptake in P. scandens differs with the

age of the leaf. Young leaves (40-50 d) tend to show a C3-type
daytime gas exchange pattern while mature leaves (>90 d) exhibit
a CAM-like nocturnal pattern. Perhaps the most interesting CO2
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FIG. 4. Diurnal variation in CO2 uptake (A), conductance (B), and
titratable acidity (C) 121 d(-) and 131 d (O --O) after initiation
for leaves of P. scandens. Points are means of nine samples ± SE of the
mean.

uptake patterns were those observed between these two extremes.
Between 45 to 90 d, P. scandens has a unique CO2 uptake
pattern. There appears to be a progressive shift from daytime to
nighttime CO2 uptake. By 60 d, there are well defined peaks at
5 PM and at 1 AM which are presumably the result of the activity
of two different carboxylating enzymes; RuBP-carboxylase and
PEP-carboxylase, respectively. By 75 d, the peaks are less well
defined, broader, and occur between 5 to 9 PM and 5 to 9 AM.
However, the identity of the enzymes responsible for the peaks
is unknown.
The shift in 613C values from -2 1.1% towards a more CAM-

like value of -18.1% is consistent with the observed shift in the
CO2 uptake pattern from C3 to CAM-cycling to CAM. Other
workers have reported changes in the 6'3C value with increasing
age in CAM plants (3, 10). A 6'3C value of -21.1% indicates
that a portion of P. scandens' carbon fixation is through the
CAM pathway. Although the leaves appear to be in the C3 mode,
there is a small amount of nocturnal CO2 uptake (Fig. IA). This
nocturnal carbon gain along with translocation from more ma-
ture leaves could account for the -21.1% value. The observed
steady decrease in 13C discrimination with leaf maturity is indic-
ative ofa greater reliance on PEP-carboxylase for carbon fixation.

In Kalanchoe, environmental parameters can influence carbon
isotope values. Increased diurnal temperature fluctuations,
longer photoperiods, water stress, and salt stress induce a shift to
a more CAM-like 5'3C value (21). Water and salt stress were not
factors during this study. The leaves assayed were initiated be-
tween February and July such that the older leaves may have
been influenced by the greater daily temperature fluctuations
and longer photoperiods associated with the onset of summer.
However, one would expect the young leaves to also exhibit a
613C value similar to the older leaves since both experienced the
same environmental conditions. Therefore, we believe that the
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shift in 5'3C value is largely ontogenetic in origin

environmentally enhanced.
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