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Evidence suggests innate and adaptive cellular responses mediate resistance to influenza virus 

and confer protection after vaccination. However, few studies have resolved the contribution of 

cellular responses within the context of pre-existing antibody titers. Here, we measured peripheral 

immune profiles for 206 vaccinated or unvaccinated adults to determine how baseline variations 

in cellular and humoral compartments contribute independently or synergistically to the risk of 

developing symptomatic influenza. Protection correlated with diverse and polyfunctional CD4 

and CD8 T cells, cTfh, mDCs, Th17 cells, and CD16+ NK cell subsets. Conversely, increased 

susceptibility was predominantly attributed to nonspecific inflammatory populations, including γδ 
T and activated CD16neg NKs, as well as TNFα+ single-producing CD8 T cells. Multivariate and 

predictive modeling indicate cellular subsets i) work synergistically with humoral immunity to 

confer protection, ii) improve model performance over demographic and serologic factors alone, 

and iii) comprise the most important predictive covariates. Together, these results demonstrate 

that pre-infection peripheral cell composition improves prediction of symptomatic influenza 

susceptibility over vaccination, demographics, or serology alone.

INTRODUCTION

Influenza viruses are among the leading etiologic agents responsible for human respiratory 

illness with annual infection estimates between 10–49 million and upwards of 650,000 

deaths globally1,2. Although seasonal influenza vaccinations are an important preventative 

measure limiting severe disease, year-to-year effectiveness is inconsistent ranging between 

10–60%3–7. Some of this variability is attributable to incomplete matching between 

circulating and vaccine strains, but another possible factor is the reliance on these vaccines 

to generate protective humoral immunity alone. While current seasonal influenza vaccine 

platforms can promote robust antibody titers and the helper T cell responses necessary to 

promote them, none are specifically designed to stimulate durable, virus-specific cellular 

immunity, thereby neglecting a potential ally in preventing and controlling influenza 

virus infection. In recent years, there have been several large-scale initiatives to improve 

influenza vaccine design by increasing surveillance and strain prediction, identifying 

universal humoral or T cell antigens, evaluating new delivery platforms, and considering 

demographic-specific formulations8–11. Driving this push is the need to understand the 

complete range of protective immune responses limiting symptomatic influenza illness – 

termed correlates of protection (CoP) – which to date have been largely defined by serologic 

measurements alone. Few studies have examined how efficacious serological data are as 

predictors of influenza protection within the context of additional immune measures, such as 

cellular and innate immunity, how individual cell populations contribute to protection in the 

presence of existing antibody responses, or if/how these compartments coordinate.

Further complicating the study of CoP against influenza viruses is the substantial degree 

of baseline immune variation that exists across humans, now recognized as a key 

determinant in predicting efficacy of some vaccines and therapeutics, and modeling disease 

outcomes12–17. Differences in host genetics, environmental and demographic factors, and 

antigen exposure histories impact the composition of baseline innate, cell-mediated immune 

(CMI; adaptive T cells), and humoral compartments, and may augment varied responses 

to influenza virus infection or vaccination15,18–31. Therefore, identifying baseline CoP 
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necessitates the use of large, well-curated, influenza virus-seropositive human cohorts 

where immune and demographic data are considered together. To address these challenges, 

the second iteration of the Southern Hemisphere Influenza Vaccine Effectiveness and 

Response Study (SHIVERS-II) was established to track unvaccinated and vaccinated 

adults within a natural community setting in New Zealand. Using baseline serum and 

peripheral blood samples from 206 SHIVERS-II adult participants, we aimed to define 

baseline immune cell subsets correlated with protection against symptomatic influenza 

independently from or synergistically with humoral responses. Further, we investigated 

the quantitative and relative contributions of baseline cellular and humoral compartments 

in mediating protective anti-influenza virus immunity. Our analytic approach incorporates 

high-dimension flow cytometry, serology measures, vaccination status, and demographic 

data into statistical models allowing identification of individual baseline cell populations 

associated with increased risk or protection against symptomatic influenza across vaccinated 

and unvaccinated adults, while accounting for baseline immune and demographic variation. 

Using univariate analyses and multivariate partition and regression models, we demonstrate 

that baseline composition of peripheral cell profiles improves influenza susceptibility risk 

prediction over serology, vaccination, or demographics alone. Our results underscore the 

complexity and variability of baseline cellular responses, support influenza vaccine design 

strategies targeting optimized cell subsets to induce long-lasting heterosubtypic immunity, 

and provide improved methods to compare vaccine effectiveness.

RESULTS

Study Population

A total of 206 adult subjects (Table 1) were selected from the 2018 SHIVERS-II cohort 

for inclusion in this study (Fig. 1a) and were analyzed according to pre-defined analysis 

pipeline (Extended data figure 1). Participant selections were divided into four roughly 

age- and sex-matched comparator groups based on influenza virus vaccine and infection 

status: vaccinated-uninfected (n=75), vaccinated-infected (n=33), unvaccinated-uninfected 

(n=76), unvaccinated-infected (n=22; Fig. 1b). Participant age was comparable across sex 

and vaccine status reducing the potential for confounding effects due to sample selection 

bias (Fig. 1c). Baseline serum and peripheral blood mononuclear cells (PBMCs) were 

collected pre-season (March-May) for unvaccinated participants or 14 days-post vaccination 

for vaccinees. Post-season serum samples were collected September through January with 

a majority sampled in November. All participants exhibiting respiratory symptoms meeting 

World Health Organization (WHO)-defined criteria for influenza-like illness (ILI) were 

further tested by PCR. Participants presenting with ILI and an associated influenza-positive 

PCR result were defined as ‘symptomatic’ influenza cases. For the 2018 influenza season 

(May-September), 41 of 55 (74.5%) influenza virus infections were symptomatic with a 

majority attributed to A(H1N1) (n=29, 70.7%), though infections with A(H3N2) (n=5, 

12.2%), B/Yamagata lineage (n=1, 2.4%), B/Victoria lineage (n=1, 2.4%), and influenza A 

without subtype (n=5, 12.2%) viruses were also recorded (Supplementary Table 1). Cryptic 

influenza cases, identified by seroconversion (≥4-fold rise in anti-HA inhibiting antibody 

titer ≥1:40) in the absence of an influenza PCR-confirmed symptomatic episode, comprised 

the other 14 of 55 (25.5%) infections. Influenza virus strains associated with infection were 
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proportional across male and female participants (Fig. 1d). Supplementary Tables 1–2 detail 

participant vaccination status and demographics by influenza virus strain.

Baseline serology measures associate with protection

Anti-influenza virus antibodies targeting hemagglutinin (HA) and neuraminidase (NA) are 

known CoP32–37. To determine the degree of pre-existing humoral immunity to dominant 

influenza viruses circulating in the region as well as those present in the 2018 quadrivalent 

influenza vaccine38–40, we measured inhibiting antibody titers by inhibition assays (HAI; 

NAI) and total binding antibody by ELISA. Overall correlation between inhibiting and 

total anti-HA (Fig. 2a) or anti-NA (Fig. 2b) serology measures against homosubtypic 

influenza virus targets were positive reflecting a large degree of concordance between 

the assays. Three correlation clusters were also identified across all serology measures 

(Extended data figure 2a) suggesting association between existing anti-influenza antibody 

responses to homo- and heterosubtypic targets. In 2018, the quadrivalent influenza vaccine 

was 38% effective at preventing influenza-associated hospitalizations40. In our study, 

this vaccine elicited HAI titers ≥1:40, a purported cutoff for protection, in roughly half 

of study participants sampled 14 days-post immunization (Extended data figure 2b). 

Vaccinated participants exhibited significantly increased HAI and NAI titers compared to the 

unvaccinated against all targets (Fig. 2c–d). ELISA results depicting total binding antibody 

were also significantly increased in vaccinees, apart from B/Victoria (lineage) HA and 

A(N2), which were lower than in unvaccinated (Fig. 2e–f). Further, we compared antibody 

levels in uninfected and cryptic influenza to symptomatic influenza cases. For these and 

other downstream analyses, uninfected and cryptic infection cases were grouped together as 

these participants did not meet study criteria for symptomatic influenza and represent a more 

protected group. Nearly all NAI titers were significantly increased in the uninfected/cryptic 

group (Fig. 2h), while only total anti-A(H1) and anti-B/Yamagata (lineage) NA binding 

antibody levels were increased in uninfected/cryptic (Fig. 2 i–j).

Previous studies suggest demographic factors can influence humoral responses, illness 

susceptibility, and influenza vaccine effectiveness19,41–43. Therefore, we looked for 

correlations between age, sex, or BMI across serology measures using locally estimated 

scatterplot smoothing (LOESS) to inform downstream statistical modeling. Although age 

and BMI were not correlated with participant sex (Extended data figure 2c), we did observe 

significant relationships between age and BMI with several serology measures (Extended 

data figure 2d–k). While these results indicate the effect of demographics on antibody levels 

is limited to specific targets, this variability may influence serology measures in downstream 

modeling and was therefore accounted for.

As higher antibody titers were observed in the uninfected/cryptic group, we used generalized 

logistic regression modeling (GLM) to establish risk of symptomatic influenza virus 

infection given individual serology measures while adjusting for demographics and 

influenza vaccine status. Elevated NAI titers against A(N1), A(N2), B/Victoria (lineage) 

NA and B/Yamagata (lineage) NA, and total binding antibodies targeting A(H1) and B/

Yamagata (lineage) HA were significantly associated with protection (OR<1; Fig. 2k–l). 

In line with the elevated HAI titer observed in symptomatic influenza cases (Fig. 2g), 
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increased risk (OR>1) was associated with elevated A(H3) HAI titer (Fig. 2k). This 

likely reflects the dominance of regional A(H3N2) virus infections the year prior (2017)44 

skewing pre-existing antibody levels away from an effective titer needed to neutralize the 

A(H1N1) viruses circulating during 201840. Together, the serology results from SHIVERS-

II are consistent with numerous studies demonstrating protection mediated by anti-influenza 

antibodies. Further, these results suggest that baseline levels of anti-NA inhibiting antibodies 

are particularly important in determining risk of symptomatic influenza infection in this 

cohort.

Immune measures vary across vaccine and infection status

As our subjects are relatively evenly divided by vaccination status, this allowed us to 

observe the statistical behavior of all variables separately across vaccination and infection 

groups. Statistical differences in individual baseline demographic, serologic, and cellular 

covariates were evaluated between participants with and without symptomatic infection 

and presented in Supplementary Table 3. Regardless of vaccination and infection status, 

no significant differences in demographic parameters (age, sex, BMI, ethnicity) were 

observed (Supplementary Table 3). For serology measures, unvaccinated participants in the 

uninfected/cryptic infection group had higher median values of total A(H1) and B/Yamagata 

(lineage) NA binding antibodies and NAI titers against B/Yamagata (lineage), while median 

A(H3) HAI titer was elevated in symptomatic influenza cases (Supplementary Table 3). 

Regardless of vaccine status, higher median NAI titers of A(N1), A(N2), and B/Victoria 

(lineage) were observed in the uninfected/cryptic group (Supplementary Table 3).

To evaluate variations in baseline cell profile across participants, PBMCs were stained 

with fluorescent antibody panels distinguishing a wide array of phenotypic and functional 

myeloid (Extended data figure 3) or lymphoid cell subsets (Extended data figure 4). To 

promote influenza virus-specific cytokine production for functional intracellular cytokine 

staining (ICS) in the lymphoid panel, a portion of participant PBMCs were stimulated 

with conserved influenza virus peptide pools or live A(H1N1) or A(H3N2) viruses. Across 

vaccinated and unvaccinated participants, 11 cell populations were significantly increased 

in uninfected/cryptic cases (Supplementary Table 3). Conversely, 20 cell populations were 

significantly increased in symptomatic infection cases. While some of these cell populations 

were elevated regardless of vaccine status, the overall cell profiles were distinct suggesting 

an effect of immunization on protective or susceptible cellular profiles.

Predictive baseline cell profiles differ by vaccine status

To define cellular CoP against symptomatic influenza, cell populations were then evaluated 

by univariate GLM, with respect to vaccination status, to determine whether baseline cell 

population frequencies were associated with a change in the relative risk of acquiring 

symptomatic influenza during the 2018 season (Fig. 3a; Supplementary Table 4). We 

identified 14 cell populations with significant protective associations (OR<1) within 

vaccinated (myeloid dendritic cells [mDC]; naïve CD4 T cells; effector CD4 and CD8 T 

cells; dual cytokine-producing [IL2/TNFɑ/IFNγ] CD8 and CD4 T cells; CD4 PD1+; total 

circulating T follicular helper [cTfh]; cTfh ICOS+; cTfh CXCR3+; total CD8 T cells) and 

unvaccinated (myeloid DC [mDC]; cytotoxic natural killer [NK]; cytokine-producing NK; 
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naïve CD4 T cells; CD4 Th17; total CD8 T cells) subjects (Fig. 3a). We also resolved 

7 populations that increased risk of symptomatic influenza (OR>1) among vaccinated 

(plasmacytoid dendritic cells [pDC]; NK GzmB+IFNγneg; activated NK; γδ T cells; 

CD8 memory CCR5+) or unvaccinated (activated NK; γδ T cells; CD8 memory CCR5+; 

total CD4 T cells; CD8 TNFɑ+) participants (Fig. 3a). The overall cellular correlate of 

protection profile defined by the univariate analyses indicates a diversity of polyfunctional 

responses to influenza viruses, engaging both the adaptive and innate compartments 

(Fig. 3b; left). In contrast, the susceptible-associated profile skewed toward non-specific 

inflammatory and single cytokine-producers (Fig. 3b; right). Comparison of cell profiles 

from unvaccinated participants across protective and non-protective status also indicates that 

baseline composition of innate populations is an important determinant of protection from 

symptomatic influenza in the absence of recent vaccine-induced immunity.

ROC thresholds define protection and susceptibility cutoffs

From the univariate analyses, we identified individual immune measures associated with 

protection from or increased risk of developing symptomatic influenza. To provide a 

quantitative value denoting protection or susceptibility we derived ‘threshold’ values for 

each cell population (Supplementary Table 5) or serology measure (Supplementary Table 6) 

using receiver-operating characteristic (ROC) analysis. Thresholds define the value at which 

an individual parameter accurately identifies ~50% of true positive cases (sensitivity), while 

minimizing false positives (specificity). Therefore, a threshold is a quantifiable measure at 

and above which a factor accurately associates with protection or susceptibility. The area 

under the ROC curve (AUC) defines the quality of the immune measure as a classifier. 

For example, a baseline frequency of CD4+ dual cytokine-producers above a threshold 

of 0.022% identifies at least 50% of vaccinated individuals protected from symptomatic 

influenza (Fig. 3c). Conversely, a threshold frequency ≥12.7% Activated NKs correctly 

identifies at least 50% of individuals susceptible to symptomatic influenza (Fig. 3c). 

Comparing the protection-associated factors with the highest AUC values (Supplementary 

Table 5–6) we observed that serology measures were more accurate in classifying cases 

in unvaccinated participants (e.g. NAI B/Yamagata (lineage) AUC = 0.9; NAI B/Victoria 

(lineage) AUC = 0.86; NAI A(N1) AUC = 0.85), while cellular measures were more 

accurate in vaccinated participants (e.g. CD4 (Dual CK) AUC = 0.78; CD4 (IL2+) AUC = 

0.77; cTfh (ICOS+) AUC = 0.77). This is likely because overall antibody levels are elevated 

in vaccinated individuals so differences in cell populations provide improved resolution; in 

unvaccinated individuals increased baseline antibodies are more variable and therefore more 

accurate classifiers likely reflecting a more recent exposure to influenza antigen. However, 

as these are single parameter measures, we cannot determine from the AUC values alone if 

other confounding factors impact these classifications.

Cryptic influenza cases associated with unique cell profiles

Susceptibility to symptomatic influenza comprises risks associated with i) virus exposure 

and ii) symptom development following exposure. Outside of regional prevalence estimates, 

it was difficult to determine if uninfected study participants were indeed exposed to 

influenza viruses during the 2018 season. Therefore, we analyzed a subset of participants 

with confirmed exposures: symptomatic influenza (confirmed by PCR; n=41) and cryptic 
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infection (confirmed by seroconversion; n=14) cases. Univariate regression analyses 

demonstrated that elevated baseline levels of several anti-HA or anti-NA inhibitory or total 

binding antibody measures were significantly associated with reduced risk of symptomatic 

influenza, while demographic factors and recent influenza vaccine history were not (Fig. 

4a). We then compared cell frequencies between symptomatic and cryptic cases. In 

concordance with our univariate results, both activated and GzmBnegIFNγ+ NKs were 

increased at baseline in symptomatic cases further suggesting a role in susceptibility (Fig. 

4b). Conversely, we identified 15 cell populations with increased baseline frequencies in 

cryptic infection cases comprising a unique set of protective responses, including several 

(conventional DC type 2 [cDC2] and cTfh IL21+) not identified in the prior univariate 

analysis (Fig. 4c). Like the univariate protective profile, baseline cell populations increased 

in cryptic cases were diverse and polyfunctional, reflecting adaptive T cell activation and 

cytokine production (CD4 effector; CD4 IL17+; CD4 IL2+; CD8 IL2+; CD8 IFNγ+; CD8 

dual-cytokine), engagement with humoral immunity (cTfh subsets), and innate immune 

activities (cytotoxic and cytokine-producing NK, mDCs).

Immune cell populations cluster into co-regulated modules

The above univariate analyses consider cell populations independently and do not account 

for coordinated responses often observed across adaptive and innate immune compartments. 

We sought to understand the cell-cell relationships within our dataset and determine 

which populations represented co-regulated immune cell modules, defined here as cell 

populations with strong positive correlation in cell frequencies suggestive of parallel 

responses. Using Pearson’s bivariate correlation, we identified 9 myeloid (Fig. 5a) and 13 

lymphoid/functional (Fig. 5b) cell modules across all study participants. We also evaluated 

immune cell correlations in vaccinated and unvaccinated participants separately (Extended 

data figure 5) and found them to largely reflect the same correlation groups identified 

from the complete set of subjects. Correlation results from the complete set of participants 

were used for downstream analyses. The cell frequencies from individual populations 

within a given module were averaged to give final “Cluster” frequency values, which 

were compared by influenza virus infection status. Clusters with increased average cell 

frequencies in both influenza negative or cryptic infection cases included myeloid Clusters 

1 (mDC; CD14+CD16+ intermediate monocytes), 3 (cytotoxic and cytokine-producing 

NK; neutrophils), and 8 (cDC2; Fig. 5c), and lymphoid/functional Clusters 4 (TNFɑ+, 

IFNγ+, IL17+, and dual cytokine-producing [IL2/TNFɑ/IFNγ] CD4 T cells; IFNγ+ and 

dual cytokine-producing [IL2/TNFɑ/IFNγ] CD8 T cells), 8 (CD4 and CD8 effector T 

cells), 9 (PD1+ CD4, CD8, and cTfh; CXCR3+ cTfh cells), and 13 (total CD8, GzmB+ 

CD4 and CD8, γδ T cells; Fig. 5d). Conversely, myeloid Cluster 7 (activated NKs) was 

found to be increased in symptomatic cases (Fig. 5c), supporting the previous observations 

made in the univariate GLM analysis. Together, these results reflect the involvement of 

coordinated cellular responses in determining influenza virus susceptibility in cases of 

confirmed exposure.

Immune cells most accurately categorize influenza cases

By defining the univariate cellular CoP and susceptibility through regression modeling, we 

have shown the individual contributions of baseline innate and adaptive T cell populations 
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in mitigating or enhancing symptomatic influenza. We next sought to provide additional 

context to these cellular responses by determining which covariates, spanning demographic, 

vaccine, serology, and immune cell categories, would best predict future infections during 

the 2018 influenza season. To do this, we built, trained, and compared random forest 

models from an 80:20 (train:test) split of 200 participants, ensuring equivalent proportions of 

cases (symptomatic influenza) and controls (uninfected and cryptic influenza). Four random 

forest models were built including: (i) Base Model predicting symptomatic infection from 

demographic, 2018 influenza vaccine status, and serology covariates; (ii) Lymphoid Model 

comprising lymphoid/functional panel cell frequencies and all Base variables; (iii) Myeloid 

Model comprising myeloid panel cell frequencies and all Base variables; (iv) Combined 

Model comprising all available variables. Model performance was measured by sensitivity 

and specificity metrics and by scoring data from the testing set in ROC curves (Fig. 

6a). While we observed that both the Base and Myeloid Models categorized participants 

with 79% accuracy (Fig. 6a; bottom right), the Lymphoid Model increased sensitivity 

and specificity and substantially improved categorization accuracy to 86% demonstrating 

the influence of lymphoid populations in categorizing influenza cases. As the Combined 

Model (84% accuracy) did not improve accuracy over the Lymphoid Model, we probed the 

relative contributions of lymphoid and myeloid populations in model performance. Three 

additional random forest models, including Myeloid Only, Lymphoid Only, and combined 

Lymphoid+Myeloid, were also built, trained, and compared (Extended data figure 6). The 

Lymphoid Only model (79%) performed better than the Myeloid Only (72%) and was 

as accurate as the Base Model (79%) in classifying symptomatic influenza cases. The 

combination Lymphoid+Myeloid model also exhibited higher accuracy (81%) than the 

Base model. These data indicate that lymphoid populations improve overall accuracy in 

classifying symptomatic influenza cases compared to myeloid populations, serology, vaccine 

status, and demographics alone. Using Variable Importance (VIP) analysis of the Combined 

Model, we then derived ‘importance’ values representing the individual effect strength 

on the dependent variable. Strikingly, the top 4 (and 25 of the top 30) most important 

covariates used in categorizing symptomatic and uninfected/cryptic influenza cases were of 

cellular origin with cTfh ICOS+ cells being of the highest importance (Fig. 6b). Indeed, 

cTfh ICOS+ frequency was significantly higher in uninfected/cryptic influenza cases across 

both unvaccinated and vaccinated participants (Fig. 6c) and had a predictive accuracy of 

81.6% following cross-validation and adjustment for age, sex, and vaccine status (Fig. 6d). 

Together, the results from the partition analyses emphasize the strong contributions of both 

baseline innate and adaptive cellular immunity in regulating responses to influenza virus and 

mitigating symptomatic disease.

Baseline immune measures predict influenza susceptibility

While partition analysis helps determine which combined or individual baseline variables 

best categorize symptomatic and uninfected/cryptic participants, these models are limited 

in risk assessment. Indeed, the random forest and VIP analyses here do not ascribe effect 

directionality nor associate any factor with increased or decreased risk of symptomatic 

influenza. Therefore, we turned to GLM regression modeling to assess influenza risk given 

all measures of immune and demographic variation present at baseline. A multivariate GLM 

was constructed to identify the differential effects of cell populations, anti-influenza virus 
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antibodies, vaccine status, and demographics on determining overall risk of symptomatic 

influenza (Fig. 7). GLMs with highly correlated factors (collinearity) often produce 

unreliable coefficients with high standard errors45. Due to the high dimensionality and 

observed correlation between the cellular and serology immune measures in our data, 

we took several steps to reduce variable collinearity (Pearson’s correlation and variance 

inflation factor) and optimized selected covariates by comparing stepwise models using 

Akaike information criterion (AIC) and Bayesian model averaging (BMA) (Extended 

data figure 1). The final multivariate GLM was constructed using the set of selected 

covariates against a response variable denoting symptomatic infections (Fig. 7a). The model 

comprises 19 covariates, 4 (CD4 CD107a+; intermediate monocytes; NAI A(N1) and B/

Victoria (lineage)) with significant association with protection and 2 (CD8 TNFɑ+; γδ 
T cells) that significantly predict increased risk of symptomatic influenza. Using CD4 

CD107a+ as an example, the GLM readout shows that for each 4.2% increase in CD4 

CD107a+ frequency, the odds associated with developing symptomatic infection decrease 

by 11.1-fold (1/0.09). Although neither age (p=0.051) or 2018 vaccine status (p=0.859) 

had significant effects on risk, these variables were included in the GLM to account for 

variability across participants. Due to strong correlations observed among cell populations, 

we can further infer protection or susceptibility associations by identifying the myeloid or 

lymphoid modules these populations reside within (Fig. 7b) and referencing the univariate 

associations for a given cell population (Fig. 3b). Together, the final GLM results indicate 

that baseline serologic and cellular factors, when considered together, synergistically predict 

influenza virus infection outcomes and contribute to the relative risk of developing influenza 

disease. Results from this study support recent calls to target adaptive T cell populations 

in next-generation vaccine designs11 and strongly suggest that both cellular and serology 

measures are necessary to fully assess efficacy of influenza vaccines.

DISCUSSION

Immune responses to influenza viruses are complex and include coordinated innate, CMI, 

and serologic responses to clear active infections, build durable immune memory, and 

rapidly neutralize subsequent challenges. Equally nuanced are the determinants of risk 

and susceptibility to symptomatic influenza, which comprise individual comorbidities and 

demographic risk factors, vaccination and infection histories, and variations in baseline 

immune profiles. In our study, we asked which baseline immune cell populations affected 

risk of developing symptomatic influenza, and probed how differences in pre-existing 

anti-influenza virus antibody titers, influenza vaccination status, and participant-level 

demographics impacted these associations.

Our univariate analyses demonstrate that protection from symptomatic influenza correlates 

with increased frequencies of diverse and polyfunctional influenza virus-specific CD4 

and CD8 T cells, cells associated with engagement of humoral responses including 

cTfh, mDCs, and Th17 cells, and innate immune effector CD16+ cytotoxic and cytokine-

producing NKs, many of which have been observed in other studies. As expected, 

protection profiles were distinct between vaccinated and unvaccinated adults. The vaccine-

associated protective profile favored effector and polyfunctional adaptive populations 

pointing toward influenza virus-specific T cell activation. Elevated antigen-presenting mDCs 
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and cTfh populations in vaccinees were also suggestive of humoral crosstalk, discussed in 

detail below. In unvaccinated subjects, protection was associated with increased baseline 

populations exhibiting analogous, albeit antigen-agnostic, functions to those observed 

following vaccination. For example elevated Th17 cells, which were protective in our study, 

have been shown to be involved in anti-influenza virus responses either directly46, through 

B cell engagement promoting IgG, IgA, and IgM47,48, or by recruiting pre-existing B cells 

into the lung without vaccine priming48–50. Therefore, Th17 cells may compensate for the 

absence of other vaccine-induced CD8 or CD4 T helper subsets. Cytokine-producing and 

cytotoxic NKs exhibiting virus-limiting potential similar to CD8 T cells, were also strongly 

protective in unvaccinated subjects supporting studies demonstrating active roles for NKs in 

anti-influenza virus responses and limiting disease severity51–58. NKs, however, may also 

be a double-edged sword. One group reported a link between IFNγ-producing NKs and 

extrapulmonary inflammation leading to poor outcomes in influenza virus-infected pregnant 

women59. Coinciding with these findings, we also observed increased risk of symptomatic 

influenza in participants with elevated baseline frequencies of activated NKs (CD56dimHLA-

DRhiCD16neg), suggesting pleiotropic roles for NKs during influenza virus infection.

A main takeaway from this study is the importance of cell-humoral crosstalk promoting 

increased baseline levels of anti-influenza virus antibodies. We report that elevated baseline 

NAI titers were the best serology predictors of symptomatic influenza and associate 

with protection, supporting other recent findings34–36,60–62. However, we also found that 

addition of lymphoid cell populations improved prediction of symptomatic influenza 

cases arguing that baseline antibody levels cannot be considered alone. Indeed, sustained 

B-T cell crosstalk within germinal centers as well as cTfh cells in peripheral blood 

are associated with productive anti-influenza virus humoral response63–67. In our study, 

evidence of this communication is supported by the association of CD4 populations, 

including cTfh subsets, with protection. In fact, cTfh ICOS+ cells represent the most 

important variable in determining Combined Model accuracy. From our analysis of co-

regulated cell modules, we found cTfh ICOS+ cells correlated with CD4 and CD8 memory 

T cell populations (Lymphoid Cluster 11) linking increased cTfh ICOS+ frequency to 

long-term memory. We also identified correlations across Th17, IFNγ+, and polyfunctional 

CD4 and CD8 T cells (Lymphoid Cluster 4), which are known to improve outcomes 

during influenza virus infection68. Further, our multivariate regression modeling identified 

reduced risk of symptomatic influenza is independently associated with CD107a+ CD4 T 

cells, CD14+CD16+ intermediate monocytes, and anti-influenza virus NAI titers targeting 

A(H1N1) and B/Victoria (lineage) viruses. CD107a is a marker of degranulation69 and 

implies that these CD4 T cells were specifically activated by influenza virus antigens during 

ICS and flow cytometry. That these populations are observed at baseline indicates that 

cTfh and other influenza-responsive T cells persist following influenza antigen exposure in 

prior seasons and may confer ‘carryover’ protection in a subset of participants70. However, 

as our study was limited to immune measures present in circulation, we did not evaluate 

contributions from mucosa-associated cells, secretory IgA, or IgG produced by respiratory-

resident memory B cells, likely CoP (reviewed in24,71). As cTfh ICOS+ and other functional 

lymphoid cells rank highly in our study, we hypothesize that cellular correlates might 
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provide better insights towards mucosal immune responses (including antibody) compared 

to serum antibody measures.

A strength of our statistical modeling approach is the ability to define not only CoP, but 

also baseline factors that increase risk of symptomatic influenza. Among the strongest 

risk-associated cell populations identified across univariate and multivariate models were γδ 
T cells. A prior study from our group demonstrated that γδ T cells are integral for lung 

repair in neonatal mice72; however, in this adult SHIVERS-II cohort, the opposite effect was 

observed. This incongruence could be attributed to differences in γδ TCR repertoires, which 

change significantly with age, tissue-localization, and infection history73,74. While pediatric 

γδ T cells exhibit non-overlapping TCR repertoires, adult γδ T cells heavily favor Vγ9 and 

Vδ2 chain usage associated with poly-cytotoxic cytokine profiles74. Therefore, it is possible 

that within the context of adult influenza virus infection, γδ T cells could contribute to 

inflammation-mediated pathology rather than tissue repair.

The results presented in this study emphasize the need to evaluate anti-influenza virus 

responses and vaccine efficacy from both the serologic and cellular standpoint, and argue 

that composition of baseline cell populations is a better overall predictor of influenza 

susceptibility than serology and vaccine status alone. As baseline cellular and humoral 

immune landscapes vary significantly within human populations and across study cohorts, 

we propose that the protection-associated cell profiles defined in this study are a better 

metric to evaluate influenza susceptibility than any one cell population or serology measure. 

While individual cellular CoP against symptomatic influenza likely differ between cohorts, 

their individual functions may contribute to a converging protective immune profile, which 

can be more easily compared across studies. Further, the statistical and predictive models 

described here will also serve as useful tools to evaluate vaccine efficacy, identify new 

targets for next-generation vaccines promoting both cellular and humoral responses, and 

identify additional at-risk human populations for vaccination. However, further questions 

remain. It will be important for follow-up studies to validate these risk and protection 

models across more diverse cohorts to determine if there are population-specific baseline 

cell profiles correlated with vaccine failure or disease severity. Assessment of CMI and 

innate responses are especially important during pregnancy75 and in adults above the 

age of 65 who are known to generate poor protective humoral responses following 

immunization76,77. The continuing aim of SHIVERS-II is to assess the immunological 

parameters of influenza virus infection and vaccination over several years. As the data 

presented in this study are derived from subjects enrolled in the inaugural year of the 

SHIVERS-II study, there is great potential for future studies using this cohort to validate and 

expand on these results for years to come.

STUDY LIMITATIONS

We acknowledge several limitations within our study. The first is the relatively small sample 

size across comparator groups and, due to the increased circulation of A(H1N1) virus 

that year, an overrepresentation of infections caused by A(H1N1) virus means that no 

strong strain-specific conclusions regarding influenza B or A(H3N2) influenza viruses can 

be drawn. Future studies using samples collected in subsequent years of the SHIVERS-II 
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cohort will focus on providing further validation to the models described here and expanding 

the analyses to include a wider range of influenza virus types and subtypes. Second, subjects 

enrolled in the SHIVERS-II cohort comprise a limited regional, age, and genetic scope and, 

therefore, specific interpretations of these data should be made solely within this context. 

Further validation of our risk modeling and associated cell profiles should be compared 

across a more diverse ethnogeographic space to account for the large degree of baseline 

variability across subjects. Finally, limited considerations were made regarding genetic 

contributions to risk of influenza, as while ethnicity was reported, this is not a robust 

evaluation of genetic background78. Despite these limitations, data presented here are from a 

subset of Year 1 participants and it is our directive to continue to investigate this important 

population across multiple years of the SHIVERS-II study.

METHODS

SHIVERS-II study design and participant definitions

The second iteration of the Southern Hemisphere Influenza Vaccine Efficacy Research 

and Surveillance (SHIVERS-II) study is a population-based, longitudinal (2018–2022) 

prospective cohort in Wellington, New Zealand initiated to evaluate cellular and serologic 

immune responses at baseline and during recall among adults with current influenza virus 

vaccination and/or infection. During year 1 (2018), more than 22,000 individuals aged 

20–69 years were randomly selected for recruitment from 3 participating primary health 

organizations’ healthy patient networks. Selected individuals received a study invitation 

and information packet by mail and those interested provided consent through an online 

electronic consent form and questionnaire in which demographic and contact information, 

vaccination and health and influenza-like illness status was provided. A total of 2,195 

ultimately enrolled following written informed consent (Fig. 1a). Each participant provided 

one baseline blood draw (pre-season, usually during March-May) and another post-season 

blood draw (usually during October through December). Consented participants received 

NZ$30 gift card after each blood or swab sample collection to recognize their time and 

effort. Whole blood samples were collected in vacuum tubes containing heparin. Additional 

samples, including blood draws or nasal swabs, were required for participants with PCR-

confirmed influenza virus infection or who received an influenza virus vaccination during 

the influenza season (May through September). Briefly, participants who received an 

influenza virus vaccine during this time provided a blood draw sample 14 days-post 

vaccination (post-vaccine baseline). All participants were monitored through weekly surveys 

for influenza-like illness (ILI), defined by the WHO as “acute respiratory illness with 

cough and a history of fever/measured fever of ≥ 38°C and illness onset within the past 

10 days”79. If ILI presented, a respiratory specimen (nasopharyngeal or throat swab) was 

collected and subjected to molecular testing for respiratory viruses by PCR (see methods 

below). Participants with both ILI and an associated influenza-positive PCR result were 

categorized as symptomatic influenza virus infection cases and additional acute (1–2 weeks 

post-ILI onset) and convalescent (4–7 weeks post-ILI onset) blood draws were taken. 

Respiratory samples from these PCR-positive influenza cases were further processed to 

determine the influenza virus subtype (see methods below). Inhibiting antibody titers 

against hemagglutinin (HA) and neuraminidase (NA) were determined from baseline and 
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post-season serum samples by hemagglutination-inhibition (HAI) assay or neuraminidase 

inhibition enzyme-linked lectin assay (NAI-ELLA), respectively (see methods below). Total 

binding antibody titers against purified, full-length HA and NA were measured by ELISA 

(see methods below). HAI titers were used to detect cryptic influenza virus infection cases 

not identified by PCR. Briefly, cryptic influenza virus infections were defined by 1) the 

absence of an ILI-associated influenza-positive PCR result, and 2) one of the following 

seroconversion parameters: unvaccinated participants with a ≥ 4-fold increase in pre-season 

to post-season HAI titer, vaccinated participants with a ≥ 4-fold increase in post-vax to 

post-season HAI titer, or vaccinated participants with a ≥ 4-fold increase in pre-season to 

post-season HAI titer who did not seroconvert following vaccination (i.e. seroconversion 

cannot be accounted for by vaccination), with the second titer of at least 1:40 in all cases.

Participant categorization and selection

Participants were categorized based on 2018 influenza virus vaccination (vaccinated or 

unvaccinated), or infection (symptomatic or cryptic) status. The symptomatic influenza 

virus infection group met the WHO-defined criteria for ILI and had a positive influenza 

virus PCR test. Cryptic influenza virus infections were defined as reporting 0–1 mild 

symptom(s) that did not meet the WHO-defined ILI criteria (and therefore do not have 

an associated PCR test) but were confirmed to have had a cryptic influenza virus infection 

via seroconversion. All cryptic infections in this study are, by definition, subclinical as 

no influenza PCR-positive-associated ILI was reported. The uninfected group did not 

meet the WHO-defined ILI criteria, did not have an associated PCR test performed, 

and were negative for cryptic infection. A total of 206 participants were selected from 

year 1 of the SHIVERS-II study and comprised 82 males (39.8%) and 124 females 

(60.2%) residing in the Wellington, New Zealand catchment area, with an average age 

of 43.8 ± 12.6 years (range 20–68 years), body mass index (BMI) of 27.5 ± 5.6 kg/m2 

(range 18.3–48.5 kg/m2), and who predominantly self-identified as New Zealand-European 

descent (83.0%; Table 1). Participants were selected into four comparator groups including 

vaccinated-uninfected (n=75), vaccinated-infected (n=33), unvaccinated-uninfected (n=76), 

and unvaccinated-infected (n=22). Subjects’ age (in years) and sex (assigned at birth) 

were roughly matched when selecting across comparator groups. Sample size requirements 

for statistical testing of the covariates were calculated using the R package WMWssp 

v0.4.080–82 with a defined power of 0.8 and were determined to be sufficient in size for the 

planned comparisons.

Composition of 2018 influenza virus vaccination

The 2018 seasonal quadrivalent influenza virus vaccine contained the following 

four components i) A/Michigan/45/2015 (H1N1)pdm09-like virus; ii) A/Singapore/

INFIMH-16-0019/2016 (H3N2)-like virus; iii) B/Phuket/3073/2013-like virus (B/Yamagata 

lineage); iv) B/Brisbane/60/2008-like virus (B/Victoria lineage).

Molecular testing for respiratory viruses

For detection of respiratory viruses including influenza viruses, the Centers for Disease 

Control and Prevention (CDC) standard real-time reverse transcriptase (RT) PCR assay was 

performed on RNA extracted from participant nasopharyngeal or throat swabs as previously 
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described83–87. All samples were tested for a standard panel including influenza A (subtypes 

of A/H1N1pdm09, A(H3N2)) viruses, influenza B (B/Yamagata and B/Victoria lineages) 

viruses, respiratory syncytial virus, rhinovirus, human metapneumovirus, parainfluenza 

types 1–3, adenovirus, and enterovirus.

Influenza virus antigenic typing

Infecting influenza virus strain antigen typing was performed on all samples identified 

as influenza virus-positive by qPCR with low cycle threshold (Ct) values. Following 

viral isolation by sample inoculation into Madin-Darby canine kidney cells stably 

expressing human α-2,6-sialyltransferase (MDCK-SIAT)88 cells, antigenic typing for 

influenza viruses was performed using a HAI assay with standard antisera supplied by 

the WHO Collaborating Center in Melbourne, AU (WHOCC-Melbourne). Any un-typeable 

influenza A viruses were forwarded to WHOCC-Melbourne or at CDC-Atlanta for further 

characterization.

Hemagglutinin inhibition assay (HAI)

Anti-hemagglutinin antibody titers were determined by HAI assay as previously 

described for influenza A (A/Michigan/45/2015 (H1N1) pdm09-like; A/Singapore/

INFIMH-16-0019/2016 (H3N2)-like) and influenza B (B/Brisbane/60/2008-like [B/Victoria 

lineage]; B/Phuket/3073/2013-like [B/Yamagata lineage]) viruses present in the 2018 SH 

vaccine and in regional circulation38–40. Briefly, serum samples were treated with receptor-

destroying enzyme (Denka Seiken, Japan) at 37°C overnight, heat-inactivated at 56°C for 

30 minutes and tested by HAI assay with 0.5% turkey red blood cells (RBCs). Serum 

was serially diluted two-fold in 96-well U-bottom plates beginning at a 1:10 dilution. 4 

agglutinating doses were added to each well and incubated. Titers were read after 30 min 

incubation with 50 μL of 0.5% turkey RBCs.

Neuraminidase inhibition enzyme-linked lectin (ELLA) assay

Anti-neuraminidase inhibiting (NAI) antibody titers were determined by ELLA for influenza 

A and B virus39,89,90. Briefly, recombinant viruses, composed of the NA from each of 

the influenza A viruses used for HAI and a mismatched H6 on a PR8 backbone, were 

generated by reverse-genetics and used as antigen. Serum samples were tested at a starting 

dilution of 1:10. Because no recombinant antigen was available for influenza B viruses, 

ELLA was performed against the whole B/Brisbane/60/2008 virus (B/Victoria lineage), as 

was previously described91.

Enzyme-linked immunosorbent assay (ELISA)

EIA/RIA 96 well plates (Corning #3590) were individually coated with 0.5 μg 

purified recombinant influenza virus HA or NA protein at 0.01 mg/mL. HA antigens 

derived from A/Michigan/45/2015 (representative H1, Sino Biological, #40567-V08H1), 

A/Singapore/INFIMH-16-0019/2016 (representative H3, Sino Biological, #40580-V08H), 

B/Phuket/3073/2013 (representative B/Yamagata Lineage, Sino Biological, #40498-V08B), 

or B/Brisbane/60/2008 (representative B/Victoria Lineage, Sino Biological, #40016-

V08H) and NA antigens derived from A/Michigan/45/2015 (representative N1, Sino 
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Biological, #40568-V07H), A/Singapore/INFIMH-16-0019/2016) (representative N2, Sino 

Biological, #40802-V08B), B/Phuket/3073/2013 (representative B/Yamagata Lineage, Sino 

Biological, #40502-V07B), or B/Washington/02/2019 (representative B/Victoria Lineage, 

Sino Biological, #40790-V08B) were used. Coated plates were sealed and stored at 4°C for 

24 h. Serum samples were RDE treated by adding 3x volume of receptor destroying enzyme 

(Accurate Chemical, #YCC340122) to 1x volume of sera and incubated at 37°C overnight. 

Sera was then heat treated at 56 °C for 1 h after which 6-times the volume of 1x PBS was 

added to obtain a 1:10 starting dilution of sera. Plates were washed 3 times with 1x PBS 

and coated with 100 μL/well of blocking buffer (1% BSA (Gibco, #15260037) and 0.01% 

Tween-20 (ThermoFisher, #85113) in 1x PBS) for 6 h at 25°C. RDE-treated serum samples 

were titrated 1:160-1:20480 in blocking buffer and 50 μL of each serum dilution or blocking 

buffer (negative control) was added to replicate wells following removal of blocking buffer. 

The plates were then sealed and incubated at 4°C overnight. Plates were washed 3 times 

with wash buffer (0.05% Tween-20 in 1x PBS), 100 μL of anti-Human IgG (Fab specific)-

HRP secondary antibody (Sigma cat #A0293, polyclonal, lot# 0000201676, dilution 1:3000) 

was added to each well, and incubated at 4°C overnight. Plates were washed 3 times in wash 

buffer and 50 μL of tetramethylbenzidine (TMB; Sigma, #T0440) was added to each well. 

After 8 minutes, 50 μL/well of stop solution (1N H2SO4 (Sigma #T0440) was added and 

the plates were read at 450 nm on the BioTek Synergy H1 microplate reader. To normalize, 

average OD values from negative control wells were subtracted from the average OD of 

replicate sample wells per-plate. Area under curve (AUC) values were calculated from XY 

plots of dilution by normalized OD values in GraphPad Prism 9 (v9.5.1 (528)) using the 

following parameters: baseline y=0; minimum peak height <10% of the distance from min to 

max Y; all peaks above baseline; 5 significant digits.

Flow cytometry: surface and intracellular staining

Cryopreserved aliquots of PBMCs were thawed at 37°C, suspended in RPMI-1640 

supplemented with 10% heat-inactivated FBS (Gibco, cat# 16140071), 1% non-essential 

amino acids (Gibco, cat# 11140-050), 1 mM sodium pyruvate (Gibco, cat# 11360-070), 

and 1% penicillin-streptomycin (10,000 U/mL penicillin and 10,000 μg/mL streptomycin; 

Gibco, cat# 15140-122). Cells were plated at 3.0–4.0×105 cells/well in a 96-well U-bottom 

plate.

For peptide stimulated PBMCs, pooled peptides (BEI Resources cat# NR-2667) derived 

from influenza virus matrix (M), nucleoprotein (NP), and polymerase basic 1 (PB1) 

protein were added to wells at a final concentration of 5 μg/mL. For virus stimulation, 

PBMCs were infected with H1N1pdm09 (A/Michigan/45/2015) or H3N2 (A/Singapore/

INFIMH-16-019/2016) at a multiplicity of infection (MOI) = 4 in viral infection media 

(RPMI-1640 completed with 0.3% BSA, 0.225% NaCO3, 1% penicillin-streptomycin 

(10,000 U/mL penicillin and 10,000 μg/mL streptomycin; Gibco), 1% L-glutamine (Gibco), 

and 1% vitamin solution (Gibco)). Cell Stimulation Cocktail (BioLegend, cat# 423302; 

eBioscience, cat# 00-4970-93) were added to positive control wells. Media alone was 

used in unstimulated wells. After addition, cells were incubated for 2 h (peptide; mock) 

or 12 h (virus; Stimulation Cocktail) at 37°C. Brefeldin A (BioLegend cat# 420601; 

BD, cat# 555029) and Monensin (BD Cat #554715) were then added along with anti-
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CD107a fluorophore-conjugated antibodies where appropriate, and incubated at 37°C for an 

additional 6 hr. Cells were washed twice in FACS buffer (DPBS, 2% FBS, 1mM EDTA pH 

8.0), and treated with human Fc-block (BioLegend cat# 422302) for 10 min at 4°C.

Cells were stained for 30 min at 4°C with the following antibodies/dyes: CCR3 

AF647 (BioLegend cat# 310710, clone 5E8, lot# B312457, dilution 1:50), CCR5 PerCP/

eFluor710 (ThermoFisher cat# 46-1951-82, clone 7A4, lot# 4324286, dilution 1:80), 

CCR7 PE/Cy7 (BioLegend cat# 353226, clone G04H7, lot# B305236, dilution 1:20), 

CD1c PE/Cy7 (BioLegend cat# 331516, clone L161, lot# B256006, dilution 1:20), CD3 

BV750 (BioLegend cat# 344846, clone SK7, lot# B303395, dilution 1:200), CD3 BV510 

(BioLegend cat# 300448, clone UCHT1, lot# B281774, dilution 1:200), CD4 BB515 (BD 

cat# 565996, clone SK3, lot# 9343297, dilution 1:200), CD8 BV570 (BioLegend cat# 

301038, clone RPA-T8, lot# B281322, dilution 1:50), CD11b CD785 (BioLegend cat# 

301346, clone ICRF44, lot# B315938, dilution 1:100), CD11c BV650 (BioLegend cat# 

337238, clone Bu15, lot# B304739, dilution 1:20), CD14 APC/Fire750 (BioLegend cat# 

367120, clone 63D3, lot# B257669, dilution 1:100), CD16 FITC (BioLegend cat# 360716, 

clone B73.1, lot# B300038, dilution 1:100), CD19 BV510 (BioLegend cat# 302242, clone 

HIB19, lot# B281769, dilution 1:200), CD33 PE (BioLegend cat# 303404, clone WM53, 

lot# B288411, dilution 1:20), CD40 AF700 (BioLegend cat# 334328, clone 5C3, lot# 

B272227, dilution 1:20), CD45RA V450 (ThermoFisher cat# 48-0458-42, clone HI100, 

lot# 2263338, dilution 1:200) or BV570 (BioLegend cat# 304132, clone HI100, lot# 

B319894, dilution 1:20), CD45RO APC/Fire 750 (BioLegend cat# 304250, clone UCHL1, 

lot# B288981, dilution 1:20), CD56 PE-Cy5 (BioLegend cat# 362516, clone 5.1H11, lot# 

B317268, dilution 1:100), CD64 BV711 (BD cat# 740782, clone 10.1, dilution 1:20), 

CD80 SuperBright 436 (ThermoFisher cat# 62-0809-42, clone 2D10.4, lot# E113289A, 

dilution 1:20), CD103 BV605 (BioLegend cat# 350217, clone Ber-ACT8, lot# B359323, 

dilution 1:20), CD107a BV711 (BioLegend cat# 328640, clone H4A3, lot# B301430, 

dilution 1:50) or PE/Dazzle 594 (BioLegend cat# 328646, clone H4A3, lot# B319152, 

dilution 1:20), CD123 PE (BioLegend cat# 306006, clone 6H6, lot# B269700, dilution 

1:100) or PerCP/Cy5.5 (BioLegend cat# 306016, clone 6H6, lot# B318963, dilution 1:20), 

CD141 BV421 (BioLegend cat# 344144, clone M80, lot# B315574, dilution 1:100), 

CD177 APC (BioLegend cat# 315808, clone MEM-166, lot# B265153, dilution 1:50), 

CXCR3 PE/Dazzle594 (BioLegend cat# 353736, clone G025H7, lot# B289168, dilution 

1:100) or BV711 (BioLegend cat# 353732, clone G025H7, lot# B264427, dilution 1:20), 

CXCR5 SuperBright436 (ThermoFisher cat# 62-9185-42, clone MU5HBEE, lot# 2279709, 

dilution 1:100), HLA-A2 BV650 (BioLegend cat# 343324, clone BB7.2, lot# B290341, 

dilution 1:200), HLA-DR AF700 (BioLegend cat# 307626, clone L243, lot# B272227, 

dilution 1:100) or PE/Dazzle 594 (BioLegend cat# 307654, clone L243, lot# B320167, 

dilution 1:20), ICOS PerCP/Cy5.5 (BioLegend cat# 313518, clone C398.4A, lot# B297477, 

dilution 1:20), GhostDye Violet 510 Viability Dye (Tonbo cat# 13-0870-T500, lot# 

D0870061322133, dilution 1:400), PD1 FITC (BioLegend cat# 329904, clone EH12.2H7, 

lot# B253784, dilution 1:100), Siglec-8 BV480 (BD cat# 747874, clone 837535, lot# 

1006002, dilution 1:50), and TCRγδ AF647 (BioLegend cat# 331214, clone B1, lot# 

B274274, dilution 1:80).
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Cells were washed twice with FACS buffer, then fixed and permeabilized using the 

Cytofix/CytoPerm Fixation and Permeabilization Kit (BD cat# 554714) according to the 

manufacturer’s instructions. Cells were washed twice in Perm/Wash Buffer, then stained for 

30 mins at 4°C with the following intracellular antibodies: CD68 PerCP/Cy5.5 (BioLegend 

cat# 333814, clone Y1/82A, lot# B273670, dilution 1:50), Granzyme B AF700 (BioLegend 

cat# 372222, clone QA16A02, lot# B321316, dilution 1:25), IL2 APC (ThermoFisher cat# 

17-7029-82, clone MQ1-17H12, lot# 2172935, dilution 1:25), IL13 BV421 (BioLegend cat# 

501916, clone JES10-5A2, lot# B319799, dilution 1:25), IL17 BV785 (BioLegend cat# 

512338, clone BL168, lot# B310823, dilution 1:25), IL21 PE (BioLegend cat# 513004, 

clone 3A3-N2, lot# B299502, dilution 1:25), IFNγ BV480 (BD cat# 566100, clone B27, 

lot# 0261295, dilution 1:10), and TNFα BV605 (BioLegend cat# 502936, clone Mab11, lot# 

B312493, dilution 1:25). Cells were washed twice and resuspended in FACS buffer for flow 

cytometric analysis. Data were acquired on a Cytek 3-laser Aurora spectral flow cytometer 

using SpectroFlow v2.2 software (Cytek) and analyzed using FlowJo v10.7.1 (TreeStar). 

Spectral cytometry panels conform to best-practice principles in spectral analysis92,93.

Flow cytometry: select cell subsets for primary analysis

Cell frequencies for more than 89 CMI and innate subtypes were resolved including 

populations previously shown to correlate with anti-influenza virus response. Several 

blinded quality control measures for unbiased selections were used to identify cell 

populations to include in primary analysis. These included filtering out individual samples 

with low cell viability (5% and below) and/or high cellular debris (>25% of events) and 

eliminating cell populations with a limited dynamic range in cell frequency. Using these 

measures, we reduced our individual myeloid populations from 23 to 16 and lymphoid cell 

populations from 66 to 41 for primary analyses. Please refer to Supplementary Table 7 for 

cell population naming conventions used in this study.

Defining co-regulated immune cell modules

Co-regulated immune cell modules were independently determined for myeloid or lymphoid 

cell populations across all vaccinated and unvaccinated participants. For the myeloid 

cell populations, modules (“Clusters”) were identified by significant positive correlation 

between cell frequencies (% parent) using Pearson’s bivariate correlation and a false 

discovery rate (FDR) adjustment cutoff of q ≤ 0.05. To define modules within the lymphoid 

compartment, cell population frequencies (% parent) were first averaged across viral (MOI 

= 4, A/Michigan/45/2015 (H1N1)pdm09 or A/Singapore/INFIMH-16-019/2016 (H3N2)) 

and peptide (1–5 μM/peptide pools containing M1, NP, PB1) stimulation conditions to 

give the average stimulated cell frequency (‘Stim Average’). Lymphoid Clusters were 

then identified by significant positive correlation between Stim Average frequencies using 

Pearson’s bivariate correlation with FDR adjustment cutoff of q ≤ 0.05. Analyses were 

performed using the base library in R v3.6.094.

Statistical modeling

Univariate statistical comparisons presented in Supplementary Table 3 were performed 

independently on vaccinated and unvaccinated subjects and presented as differences between 

cases (symptomatic influenza) and controls (uninfected and cryptic influenza) within each 
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group. Categorical variables and associated levels are displayed as counts and percentages 

across the target variable and Fisher’s exact test was used to compute p values to test the 

significance of association of the variable across cases and controls. Continuous variables 

are represented by their median and interquartile range across symptomatic and cryptic/

uninfected groups, and significance of difference across the two groups is computed using 

the single-sided Kruskal-Wallis test. Statistical analyses were performed using the base 

library in R v3.6.094 and sjTabone v0.1.095. Six subjects with consistent cell frequency 

outliers across multiple cell populations determined by Grubbs’ test (p≤ 0.05) were excluded 

for a total of 200 subjects analyzed.

Univariate regression modeling was performed individually on all cellular covariates for 

vaccinated and unvaccinated subjects separately, on selected co-regulated cell modules, 

and on a subset of cryptic and symptomatic infection participants for serology measures. 

Binomial regression models were built from each cellular or serology measure, or 

Cluster frequency (independent variable) to evaluate effects on symptomatic infection 

risk (dependent variable). Individual multivariate regression models describing risk of 

symptomatic influenza given individual serology measures adjusted for age (years), sex, 

BMI (kg/m2), and 2018 vaccine status were also generated. Logit estimates from each GLM 

were transformed exponentially to give Odds Ratio values.

For the multivariate logistic regression considering demographic, vaccination status, 

serology, and cell immune measures, a stepwise approach was taken to identify appropriate 

variables to include in the GLM. First, we identified highly correlated cell population 

clusters for both lymphoid and myeloid compartments (Fig. 7b) or across serology measures 

(Extended data figure 2a). The resulting Pearson’s correlation coefficients were informative 

in selecting representative immune measures from each cluster to be used in statistical 

models. Inhibiting titers for all HAI and NAI were log2-transformed. All serology measures 

and cell populations found to be influenced by vaccination status in the univariate analyses 

were considered as both individual covariates and as interacting terms with 2018 influenza 

vaccine status. As collinearity is a common problem in studies where the underlying 

phenomenon that generates the observations is not fully specified, we also assessed 

multicollinearity across all covariates by variance inflation factor (VIF) analysis. The results 

from the correlation and VIF analyses identified a ‘selected’ set of covariates that could 

be used in traditional regression methods without overfitting. A GLM was constructed with 

the final set of select covariates against a response variable denoting symptomatic infection 

status. Stepwise regression models (both forwards selection and backwards elimination) 

were also constructed using Akaike information criterion (AIC) as the metric of model 

effectiveness. The final stepwise model had a lower AIC compared to the select GLM but 

resulted in a higher residual deviance. Bayesian model averaging (BMA) was also used to 

test the strength of the selected covariates when averaged over a wider range of models. 

Continuous dependent covariates were normalized using scaled mean values and standard 

deviations (Age; ELISA AUC; % parent cell frequency) or by log2 transformation (HAI; 

NAI). Multivariate analyses were performed using the base library in R v3.6.094 and BMA 

v3.18.1796.
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Univariate protection and susceptibility thresholds

Receiver-operating characteristic (ROC) curves were used to test the effectiveness of each 

univariate immune measure–from all, vaccinated, and unvaccinated participant subsets – as 

a diagnostic97,98. From the ROC analysis we i) measured trade-offs between sensitivity and 

specificity of a given immune measure, and ii) determined the optimal threshold achieving 

50% sensitivity to generalize the behavior of the measure. The area under the ROC curve 

(AUC) was also determined for each immune measure and indicates the overall quality of 

the measure in capturing true positives. Analyses were performed using the base library in R 

v3.6.094.

Predictive modeling

An 80:20 (train:test) split was performed on 200 participants (removal of six subjects 

with significant cell population frequency outliers) while ensuring equivalent proportions of 

cases (symptomatic influenza) and controls (uninfected and cryptic influenza). Four separate 

random forest models were built: (i) a Base model that predicts symptomatic infection using 

demographic (age; sex; BMI category; ethnicity; 2018 influenza virus vaccine status), and 

serologic (HAI A(H1); HAI A(H3); HAI B/Victoria (lineage); HAI B/Yamagata (lineage); 

NAI A(N1); NAI A(N2); NAI B/Victoria (lineage); NAI B/Yamagata (lineage); A(H1) AUC; 

A(H3) AUC; B/Victoria (lineage) HA AUC; B/Yamagata (lineage) HA AUC; A(N1) AUC; 

A(N2) AUC; B/Victoria (lineage) NA AUC; B/Yamagata (lineage) NA AUC covariates; (ii) 

a Lymphoid model that uses the variables from the Base model and cell populations from 

the lymphoid panel (CD4 Total; CD4 TNFɑ+; CD4 Effector; CD4 IL-2+; CD4 Naïve; CD4 

PD1+; CD4 Th17; CD4 dual producers; CD8 Total; CD8 CD107a+; CD8 Effector; CD8 

IFNγ+; CD8 IL-2+; CD8 Memory CCR5+; CD8 PD1+; CD8 TNFɑ+; CD8 single-producers; 

CD8 dual-producers; cTfh CXCR3+; cTfh ICOS+; NK GzmBnegIFNγ+; NK GzmB+IFNγ+; 

NK GzmB+IFNγneg; γδ T cells); (iii) a Myeloid model that uses the variables from the 

Base models and cell populations from the Myeloid panel (mDC; NK CK Producing; NK 

Activated; NK Cytotoxic; Monocytes Intermediate; Monocytes Nonclassical; Basophils; 

Eosinophils); (iv) a Combined model that uses all available variables; Myeloid Only 

model containing populations from the myeloid panel alone; (vi) Lymphoid Only model 

containing populations from the lymphoid panel alone; (vii) Lymphoid+Myeloid Model 

containing populations from both the lymphoid and myeloid panels. For cellular variables 

with high frequency correlation, a representative population was selected for inclusion into 

the models. 5-fold cross-validation was performed to avoid overfitting the data and was 

repeated 3 times to generate reliable metrics of model performance. Model performance 

was measured by sensitivity, specificity, and by scoring test-set data and plotting receiver-

operating characteristic (ROC) curves. Variable of Importance (VIP) analysis was performed 

on the combined model and values were scaled between 0 and 100, with higher values 

denoting a higher impact on prediction. Random forest and VIP analyses were performed 

using the base library in R v3.6.094 and caret v6.0-9299.

Data visualization

Data visualizations were performed in R v3.6.0 using ggplot2 v3.4.0100, and ggpubr 

v0.5.0101, and assembled using Adobe Illustrator 2023 software. Figure 1b was created 
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with BioRender.com and exported under a paid subscription with an associated publication 

license.

Extended Data

Extended Data Fig. 1. 
Data analysis pipeline for predictive and statistical modeling
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Extended Data Fig. 2: 
Participant demographic and serologic correlations
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Extended Data Fig. 3: 
Myeloid panel gating strategy
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Extended Data Fig. 4. 
Lymphoid and ICS panel gating strategy
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Extended Data Fig. 5: 
Co-regulated immune cell clusters by vaccine status
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Extended Data Fig. 6: 
Decision tree model comparison from cellular covariates

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: SHIVERS-II study design, subject enrollment, sample collection, and demographics.
a) Schematic depiction of the Southern Hemisphere Influenza and Vaccine Effectiveness 

Research and Surveillance 2 (SHIVERS-II) study design and participant numbers for 

Year 1 (2018). b) Following consented enrollment, demographic information and whole 

blood draws were collected from all vaccinated and unvaccinated subjects pre-season (non-

vaccinated baseline) and 14 days post-vaccination (vaccinated baseline). Subjects meeting 

WHO-defined criteria for influenza-like illness (ILI) were tested for influenza viruses 

by PCR and confirmed cases were sampled further during acute infection. All enrolled 

subjects were sampled post-season. Cryptic infections were adjudicated post-season from 

ILI- and PCR-negative participants with a 4-fold or greater increase in HAI antibody 

titers without post-vaccination HAI seroconversion. (Right) 206 enrolled subjects were 

selected for study inclusion from four baseline comparator groups (unvaccinated-uninfected; 

unvaccinated-infected; vaccinated-uninfected; vaccinated-infected) based on age- and sex-

Mettelman et al. Page 31

Nat Immunol. Author manuscript; available in PMC 2024 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



matching. c) Sex (assigned at birth) of n=206 participants stratified by vaccine status and 

age (years) compared by two-sided Wilcoxon rank sum test (unvaccinated-female (n=58) 

vs. unvaccinated-male (n=42) p= 0.07; vaccinated-female (n=66) vs. vaccinated-male (n=42) 

p= 0.63). Boxes represent the median and 25th to 75th percentiles; whiskers indicate the 

minimum (left) and maximum (right) values no further than 1.5 times the interquartile 

(IQR); notches extend 1.58*IQR / sqrt(n) providing 95% CI. P< 0.05 achieving significance. 

d) Participant sex stratified by influenza virus infection status and strain. Influenza A (FluA) 

virus category includes A(H1N1) and A(H3N2); influenza B (FluB) viruses include B/

Victoria (lineage) and B/Yamagata (lineage) strains. PBMC (peripheral blood mononuclear 

cells).
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Figure 2: Individual serology measures correlate with protection from symptomatic influenza 
disease.
a-b) Spearman Rank correlations between (a) anti-HA (HAI; ELISA) or (b) anti-NA (NAI; 

ELISA) serology measures. c-f) Serology measures against (c,e) HA and (d,f) NA by 

influenza virus source comparing vaccinated (n=108) to unvaccinated (n=98) participants 

by two-sided Wilcoxon rank sum test. For (c) A(H1) p< 2×10−16, A(H3) p= 4.5×10−11, 

B/Vic (lin) p= 1.6×10−15, B/Yam (lin) p= 4.1×10−12; for (d) A(N1) p< 2×10−16, A(N2) 

p= 1.5×10−8, B/Vic (lin) p= 6×10−12, B/Yam (lin) p= 9.4×10−16; for (e) A(H1) p= 

5.3×10−9, A(H3) p= 2×10−9, B/Vic (lin) p= 4.5×10−5, B/Yam (lin) p= 4.8×10−11; for 

(f) A(N1) p= 0.033, A(N2) p= 7.4×10−5, B/Vic (lin) p= 9.7×10−11, B/Yam (lin) p= 

1.1×10−9. g-j) Serology measures of vaccinated and unvaccinated participants against (g,i) 
HA and (h,j) NA by influenza virus source comparing uninfected and cryptic (n=165) 

to symptomatic (n=41) influenza virus infection using two-sided Wilcoxon rank sum test. 

For (g) unvaccinated: A(H1) p= 0.280, A(H3) p= 0.024, B/Vic (lin) p= 1.0, B/Yam (lin) 
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p= 0.922; vaccinated A(H1) p= 0.32, A(H3) p= 0.57, B/Vic (lin) p= 0.33, B/Yam (lin) 

p= 0.65; for (h) unvaccinated: A(N1) p= 1.6×10−6, A(N2) p= 3.8×10−4, B/Vic (lin) p= 

4.4×10−7, B/Yam (lin) p= 2.7×10−8; vaccinated A(N1) p= 0.012, A(N2) p= 0.0013, B/Vic 

(lin) p= 0.033, B/Yam (lin) p= 0.212; for (i) unvaccinated: A(H1) p= 0.0037, A(H3) p= 

0.450, B/Vic (lin) p= 0.713, B/Yam (lin) p= 0.239; vaccinated A(H1) p= 0.103, A(H3) p= 

0.155, B/Vic (lin) p= 0.646, B/Yam (lin) p= 0.053; for (j) unvaccinated: A(N1) p= 0.781, 

A(N2) p= 0.393, B/Vic (lin) p= 0.161, B/Yam (lin) p= 0.028; vaccinated A(N1) p= 0.90, 

A(N2) p= 0.95, B/Vic (lin) p= 0.40, B/Yam (lin) p= 0.48. Boxes represent the median 

and 25th to 75th percentiles; whiskers indicate the minimum and maximum values no 

further than 1.5 times the interquartile (IQR); dot plots presented as mean± SD. Inhibiting 

titers presented as reciprocal endpoint dilutions calculated from HAI or NAI assays using 

A(H1N1), A(H3N2), B/Victoria (lineage), and B/Yamagata (lineage) viruses. Total binding 

antibody titers reported as AUC values calculated from ELISA assay against purified, 

full-length HA or NA proteins derived from influenza A(H1N1), A(H3N2), B/Victoria 

(lineage), and B/Yamagata (lineage) viruses. Means compared using two-sided Wilcoxon 

rank sum test. k-l) Relative risk of symptomatic infection among all participants (n=206) 

given individual anti-HA and anti-NA serology measures by (k) HAI and NAI, or (l) 
ELISA adjusted for participant age (years), sex, BMI (kg/m2), and influenza vaccine status 

(2018) from individual GLMs. Odds Ratio (OR; center circle) with 95% CI (bars) derived 

from exponential transformation of GLM estimate (logit) values. HAI and NAI reciprocal 

inhibition endpoint values depicted at 1=log2 interval; ELISA AUC values depicted at 

1=5000 interval. Positive effects on symptomatic influenza have OR > 1 while negative 

effects have OR < 1. Individual HAI or NAI models generated from 185 degrees of freedom 

(DOF) (symptomatic n=35, uninfected/cryptic n=151) except A(H3) HAI and B/Vic (lin) 

HAI (DOF = 184; symptomatic n=35, uninfected/cryptic n=150). Significance determined 

from GLM Pr(>|z|) output where z=estimate/SE. Resulting two-tailed p values: A(H1) HAI 

p= 0.368, A(H3) HAI p= 0.033, B/Vic (lin) HAI p= 0.983, B/Yam (lin) HAI p= 0.775, 

A(N1) NAI p= 2.4×10−6, A(N2) NAI p= 3.0 ×10−5, B/Vic (lin) NAI p= 1.9 ×10−6, B/Yam 

(lin) NAI p= 4.1 ×10−6. Individual HA and NA ELISA models generated from 187 DOF 

(symptomatic n=35, uninfected/cryptic n=153); Significance determined from GLM Pr(>|z|) 

output where z=estimate/SE. Resulting two-tailed p values: A(H1) AUC p= 0.011, A(H3) 

AUC p= 0.172, B/Vic (lin) AUC p= 0.163, B/Yam (lin) AUC p= 0.033, A(N1) AUC p= 

0.232, A(N2) AUC p= 0.3, B/Vic (lin) AUC p= 0.252, B/Yam (lin) AUC p= 0.63. Not 

significant (blank); * p≤ 0.05; ** p≤ 0.01; *** p≤ 0.001.

Mettelman et al. Page 34

Nat Immunol. Author manuscript; available in PMC 2024 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: Univariate effects of cell populations on symptomatic influenza by vaccination status.
A) Univariate generalized logistic regression model (GLM) to determine individual effect 

of cell population frequency (% parent) effects on symptomatic influenza by vaccine 

status. Individual GLMs of unvaccinated participants generated from 98 DOF (uninfected/

cryptic n=79, symptomatic n=19); GLMs of vaccinated participants generated from 108 

DOF (uninfected/cryptic n=86, symptomatic n=22). GLM estimate values (logit) were 

transformed to Odds Ratio (OR; center circle) using the e-function and presented with 

associated 95% CI (bars). Cell populations with positive effects on symptomatic influenza 

have OR > 1 while cell populations with negative effects have OR < 1. Univariate 

significance determined from GLM Pr(>|z|) output (closed significant; open not significant) 

where z=estimate/SE. Significance defined as * p≤ 0.05; ** p≤ 0.01; *** p≤ 0.001. Exact 

Pr(>|z|) p values and FDR-adjusted q values reported in Supplementary Table 4. b) Baseline 

cell profiles associated with (left) protection from and (right) susceptibility to developing 
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symptomatic influenza by 2018 influenza virus vaccination status. Subjects with significant 

cell frequency outliers were determined by Grubbs’ test (p<0.05) and removed from this 

analysis. All cell populations presented significant by one-sided Kruskal-Wallis (italicized) 

or both Kruskal-Wallis and univariate GLM (bold) evaluations. Exact p values reported in 

Supplementary Tables 3 and 4. c) Representative thresholds depicted as cell frequency (% 

parent) with associated ROC curves. A threshold defines the cell frequency at which the 

ROC curve sensitivity (true positives) equals 0.5 and represents the cutoff above which an 

individual factor correctly associates 50% of cases as protected or susceptible. AUC values 

indicate the overall quality (true vs false positives) of the individual measure in discerning 

protection or susceptibility.
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Figure 4: Cryptic infections are associated with unique cellular responses.
a) Relative risk of symptomatic infection among influenza virus-infected participants given 

demographic, serologic, or vaccine history covariates. GLM estimate values (logit) were 

transformed to Odds Ratio (OR; center circle) using the e-function and presented with 

associated 95% CI (bars). Univariate GLMs generated from 54 DOF (symptomatic n=41, 

cryptic n=14) except BMI (DOF = 46; symptomatic n=35, cryptic n=12). Significance 

determined from GLM Pr(>|z|) output where z=estimate/SE. Resulting two-tailed p values: 

Age p= 0.528, SexMale p= 0.827, BMI p= 0.24, Flu Vaccine 2017 p= 0.062, Flu Vaccine 

2018 p= 0.111, A(H1) HAI p= 0.321, A(H3) HAI p= 0.945, B/Vic (lin) HAI p= 0.495, 

B/Yam (lin) HAI p= 0.091, A(N1) NAI p= 0.014, A(N2) NAI p= 0.015, B/Vic (lin) NAI 

p= 0.01, B/Yam (lin) p= 0.014, A(H1) AUC p= 0.041, A(H3) AUC p= 0.041, B/Vic 

(lin) AUC p= 0.082, B/Yam (lin) AUC p= 0.026, A(N1) NAI p= 0.249, A(N2) NAI p= 

0.666, B/Vic NAI p= 0.076, B/Yam NAI p= 0.045. Not significant (blank); *p≤ 0.05. 

b-c) Comparison of individual cell population frequencies (% parent) across cryptic and 
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symptomatic participants. Cell populations are grouped based on increased frequencies in 

(b) symptomatic or (c) cryptic influenza cases. In (b) NK Activated (cryptic n= 14 vs. 

symptomatic n= 40); NK GzmBnegIFNγ+ (cryptic n= 13 vs. symptomatic n= 39) and 

(c) mDC, NK Cytotoxic, NK Cytokine Producing (cryptic n= 14 vs. symptomatic n= 

40); cDC2 (cryptic n= 14 vs. symptomatic n= 15); NK GzmB+IFNγ+, CD4 Naïve, CD4 

Effector, CD4 Th17, CD4 IL2+, CD4 Dual CK, cTfh IL21+, cTfh CXCR3+, CD8 IL2+, CD8 

IFNγ+, CD8 Dual CK (cryptic n= 13 vs. symptomatic n= 39). Lymphoid panel frequencies 

represent the average frequency (% parent) across virus (MOI = 4 A/Michigan/45/2015 

H1N1pdm09 or A/Singapore/INFIMH-16-019/2016 H3N2) and peptide (1–5 μM /peptide 

pools containing M1, NP, PB1) stimulation groups. Boxes represent the median and 25th to 

75th percentiles; whiskers indicate the minimum and maximum values no further than 1.5 

times the interquartile (IQR). Means compared using two-sided Wilcoxon rank sum test with 

FDR adjustment with q≤ 0.01 achieving significance.
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Figure 5: Co-regulated CMI and innate immune cell modules.
a-b) Co-regulated cell modules (“Clusters”) determined by average frequency (% parent) of 

individual cell populations from (a) myeloid or (b) lymphoid compartments with significant 

positive correlation (Pearson’s bivariate correlation). Lymphoid population frequencies 

calculated as average frequency across ICS stimulation conditions including peptide pools 

(M1, NP, PB1) and virus (A(H1N1), A(H3N2). P values were adjusted using false discovery 

rate (FDR; q) correction for multiple comparisons. Significance *q <0.1; **q<0.05; not 

significant (blank). c-d) Mean cell cluster frequencies from (c) myeloid or (d) lymphoid 

correlation matrices compared by influenza virus infection status (myeloid Cluster 1, 3, 7: 

uninfected (Neg) n=145 vs. cryptic n=14 vs. symptomatic n= 40; myeloid Cluster 8: Neg 

n=129 vs. cryptic n=14 vs. symptomatic n= 15; lymphoid Cluster 4, 8, 9, 13: Neg n=133 

vs. cryptic n=13 vs. symptomatic n= 39) using two-sided Wilcoxon rank sum test. Boxes 

represent the median and 25th to 75th percentiles; whiskers indicate the minimum and 

maximum values no further than 1.5 times the interquartile (IQR).

Mettelman et al. Page 39

Nat Immunol. Author manuscript; available in PMC 2024 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6: Decision tree model comparison.
a) Comparison of the Base (demographic factors + serology + vaccination status), 

Myeloid (base + myeloid panel cell populations), Lymphoid (base + lymphoid panel cell 

populations), and Combined (base + myeloid + lymphoid) random forest models built to 

categorize symptomatic and uninfected/cryptic influenza. Participants were split 80:20 into 

a training set (symptomatic cases n=31, uninfected/cryptic controls n=128) and testing 

set (symptomatic cases n=8, uninfected/cryptic controls n=33) ensuring equal proportions 

of cases and controls. Models were trained, tested, and cross-validated using 10-times 

cross-validation (10x CV-10). Sensitivity (true positive rate), Specificity (false positive 

rate) and AUROC (area under the receiver-operating characteristic curve) metrics and 

an out-of-sample evaluation of the models (bottom right) are provided. Boxes represent 

the median and 25th to 75th percentiles; whiskers indicate the minimum and maximum 

values no further than 1.5 times the interquartile (IQR). b) Relative importance of each 

baseline covariate in the Combined random forest Model; baseline covariates with high 

importance best categorize symptomatic and uninfected/cryptic influenza cases. Subjects 
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with significant cell frequency outliers were determined by Grubbs’ test (p<0.05) and 

removed from this analysis. c) Mean cTfh (ICOS+) cell frequency comparison between 

uninfected/cryptic and symptomatic influenza infection by 2018 influenza vaccine status 

using two-sided Wilcoxon rank sum test (unvaccinated symptomatic n=18 vs. unvaccinated 

uninfected/cryptic n=75; vaccinated symptomatic n=21 vs. uninfected/cryptic n=71). Boxes 

represent the median and 25th to 75th percentiles; whiskers indicate the minimum and 

maximum values no further than 1.5 times the interquartile (IQR). d) ROC curve generated 

from GLM predicting symptomatic influenza infection from cTfh (ICOS+) cell frequency. 

AUC values from cTfh ICOS+ GLM as univariate model, following 10x CV-10, and after 

age (years), sex, and 2018 influenza vaccine status adjustment.
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Figure 7: Baseline predictors of influenza virus infection susceptibility accounting for 
demographic, vaccination, serologic covariates, and cellular.
Multivariate generalized logistic regression model (GLM) predicting symptomatic influenza 

virus infection accounting for baseline demographics, vaccination status, serology, myeloid, 

and lymphoid covariates. a) Final logistic regression model with covariates by category 

predicting risk of symptomatic influenza (symptomatic n=39 and uninfected/cryptic n=161 

participants). For covariate selection in the final model, baseline covariates with strong 

multicollinearity by variance inflation factor (VIF) assessment were excluded; single 

representative cell populations from each co-regulated cell cluster were included. Models 

comprising these covariates were compared by stepwise Akaike Information Criterion (AIC; 

forward and reverse) and Bayesian model averaging (BMA) to account for inherent model 

uncertainty arising from variable selection. Interaction terms denoted with a colon (:). Odds 

Ratio [95% CI] derived from exponential transformation of GLM estimate (logit) value; 

two-tailed p value significance determined from GLM Pr(>|z|) output (closed significant; 

open not significant) where z=estimate/SE. Variables were scaled as indicated based on 

their median and standard deviation values. The value for 1 Unit of change is indicated 

for each scaled value. Units for scaled values are years (Age), AUC (total antibody ELISA 

measures), log2 reciprocal endpoint titer (HAI; NAI), %parent frequency (cell populations). 

For example, for every increase of 12.7 years of age, there is an increase in the odds of 

susceptible influenza infection by 2.26, suggesting younger individuals are better protected. 

Association of significant baseline covariate predictors with symptomatic (Susceptibility) or 

uninfected/cryptic (Protection) influenza indicated. Subjects with significant cell frequency 

outliers were determined by Grubbs’ test (p<0.05) and removed from this analysis. Cell 

Module column corresponds to (b) strongly correlated cell modules clustered based on 

absolute value of correlation. Significance *p≤ 0.05; **p≤ 0.01; ***p≤ 0.001.
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Table 1:

Participant demographics

Mean Std Dev

Age (years) 43.8 12.6

BMI (kg/m2) 27.5 5.6

Influenza Virus

Infection Status (2018) n Percent

Negative 151 73.3

Positive 55 26.7

Influenza Virus

Vaccination Status (2018)

Unvaccinated 98 47.6

Vaccinated 108 52.4

Sex (assigned at birth)

Female 124 60.2

Male 82 39.8

Ethnicity (participant-reported)

Asian 14 6.8

European 171 83

Māori 12 5.8

Pacific 3 1.5

Other 2 1

Not Reported 4 1.9

BMI Group†

Underweight (<18.5) 1 0.5

Normal Weight (18.5 - <25) 73 35.4

Overweight (25- <30) 59 28.6

Obese (≥30) 56 27.2

Not Reported 17 8.3

Influenza Virus Strain

A(H1N1) 29 14.1

A(H3N2) 5 2.4

A(Untyped) 5 2.4

B/Victoria lineage 1 0.5

B/Yamagata lineage 1 0.5

Cryptic 14 6.8

Uninfected 151 73.3

†
CDC-defined BMI groupings for adults ≥20 years (kg/m2)
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