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ABSTRACr

The effect of leaf nitrogen (N) on the photosynthetic capacity and the
light and temperature response of photosynthesis was studied in the
ecologically similar annuals Chenopodium album (C3) and Amaranthus
retropxus (C4). Photosynthesis was linearly dependent on leaf N per
unit area (N.) in both species. A. retroflexus exhibited a greater depend-
ence of photosynthesis on N. than C. albxm and at any given N. it had
a greater light saturated photosynthesis rate than C. album. The differ-
ence between the species became Lrger as N. increased. These results
demonstrate a greater photosynthetic N use efficiency in A. retroJ'exus
than C. album. However, at a given applied N level, C. album allocated
more N to a unit of leaf area so that photosynthetic rates were similar in
the two species. Leaf conductance to water vapor increased linearly with
N. in both species, but at a given photosynthetic rate, leaf conductance
was higher in C. album. Thus, A. retroJiexus had a greater water use
efficiency than C. album. Water use efficiency was independent of leaf
N in C. album, but declined with decreasing N in A. retroflexus.

The photosynthetic rate per unit of N2 is usually higher in C4
than C3 plants (4, 18). This is believed to result from the CO2
concentrating mechanism of C4 plants leading to CO2 saturation
of rubisco. Consequently, less of this enzyme is required for high
rates of photosynthesis in C4 than C3 plants (18, 24). C4 grasses
generally have greater photosynthetic rates per unit ofN than C3
grasses and dicots (3, 5, 24, 29) as well as greater growth and leaf
expansion rates per unit N (22, 27, 28). However, exceptions
have been noted (5) and the NUE differences ofC3 and C4 dicots
have not been directly compared.
The relationship between PNUE and photosynthetic capacity

is unclear. On the one hand, plants with a greater PNUE may
have similar N. and therefore greater photosynthetic capacities
than less efficient plants. However, as photosynthetic capacity
increases, sink capacity and external environmental constraints
may lead to a reduction of carbon fixation per unit ofN invest-
ment (14, 17). Alternatively, more efficient plants may invest
lessN per unit area, and proportionally moreN to the production
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of new leaf area. Leaf area production is often a better predictor
of growth than photosynthetic capacity per unit area or net
assimilation rate (20). As N is required for both production of
new leaf area and for increasing photosynthetic capacity, the
enhancement ofone under limitingN could come at the expense
of the other.

In this research, we have compared the N response of photo-
synthetic nitrogen use efficiency ofthe ecologically similar weeds
C. album (C3) and A. retroflexus (C4). LeafN effects on the light
and temperature dependence of photosynthesis, leaf conduct-
ance, and water use efficiency of the two species were also
compared. In an accompanying report (22). we show that when
grown over a range of N nutrition, A. retroflexus had a lower
maximum and minimum leaf N content per unit area than C.
album, yet an equivalent or higher growth rate and leaf area
partitioning coefficient. The research reported here was designed
to examine in more detail the physiological basis of the differ-
ences in the response to N.

MATERIALS AND METHODS
Growth Conditions. C. album and A. retroflexus plants were

grown in a growth chamber at 27/23C day/night temperatures
and a PFD of 600 umol m 2 s-'. Plants were grown in equal
volumes of sand, vermiculite and perlite. Plants with different
leafN contents were obtained by watering the species with a 0.5
or 0.75 mm N Johnson-Hoagland's solution modified to contain
12, 8, 6, 4, 3, 2, 1.5, 0.5, or 0.15 mM N in a 7:1 NO3 :NH,'
ratio. The concentration of K, P, Ca, and Mg, and the micro-
nutrients were identical in all treatment solutions. In the N
deficient solutions, SO4-2 and Cl- were used to replace NO3-.
Gas Exchange Measurements. A, g, and Cs were determined

on fully expanded leaves with no visible signs of senescence on
the main shoot of 2 to 4 week old plants.
The gas-exchange apparatus used in these measurements has

been previously described (9) and was modified as follows. Air
of known water vapor and CO2 partial pressures was obtained
by mixing air containing 4% CO2 with CO2-free air using two
Wostoff precision mixing pumps (models M201 and G-27, Bo-
chum, FRG) connected in series. Water vapor pressure entering
the leaf chamber was controlled by first humidifying the air and
then partially dehumidifying it in a glass condensing column
whose temperature was controlled by circulating water from a
thermostated water bath. The leaf chamber was based on the
design of Pearcy and Calkin (19), but enlarged to 10 cm by 20
cm. Air within the chamber was circulated by two Micronel fans
(Micronel, Vista, CA). Chamber temperature was controlled by
circulating water from a second thermostated bath through a
heat exchange block mounted on the chamber.

In all gas exchange measurements, the leafto air vapor pressure
difference and C02 partial pressure were maintained at 5 to 11
mbar and 325 to 345 Abar, respectively. Measurements were
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made of (1) the light saturated CO2 assimilation rate at 20, 27,
and 34°C (any given leaf was measured at only one of these
temperatures), (b) the light response of photosynthesis, and (c)
the temperature response of photosynthesis. To begin each ex-
periment, single leaves were inserted in the chamber and exposed
to about 750 ,mol photons m 2 s-'. After 10 to 15 min, the PFD
was increased to a level which saturated photosynthesis (typically
1200 to 2000 ,umol m-2 s-', depending upon Na) and after a 30
minute equilibration period, light saturated A was recorded. The
light response of photosynthesis was determined by decreasing
the PFD in steps to darkness. The temperature response was
determined by beginning the measurements at 20°C and saturat-
ing PFD. Temperatures were first decreased to the lowest values,
and then increased in steps to about 40°C.

Following the gas exchange measurements, the leaves were
dried at 70°C and weighed. Total N and NO3 were then deter-
mined using a micro-Kjeldahl procedure and high-pressure liquid
chromotography, respectively (22). The difference between total
leafN and leafNO3 was taken as organic N.

All gas exchange parameters were calculated using the equa-
tions presented in Von Caemmerer and Farquhar (26).

RESULTS

Assimilation Rate versus Nitrogen Content. Light saturated
CO2 assimilation increased linearly with Na in both C. album
and A. retroflexus (Fig. 1). Regressions for both species had
similar x-intercepts which generally ranged from 46 to 56 mmol
m-2, but A increased with increasing Na more strongly in A.
retroflexus than C. album at all three measurement temperatures
(Table I). Consequently, at equal Na, A. retroflexus generally had
a greater A than C. album (Fig. 2) and this difference increased
as A and Na increased. However, C. album achieved a higher Na
at a given applied N and therefore had a similar A as that of A.
retroflexus at 27°C, the growth temperature.
A/Na increased curvilinearly with Na (Fig. 2) since transfor-

mation of the linear equation
A = dA/dNa(Na)+b (1)

into the form

A/Na = dA/dNa + b/Na (2)
gives a curvilinear function when the x-intercept is positive and
b, the y-intercept, is negative. At high Na, the value of A/Na
approaches that of dA/dNa. In general, A/Na was greater in A.
retroflexus than C. album, with the differences increasing as
temperature increased. However, at 20°C measurement temper-
ature and in leaves with low Na, there was little difference in A/
Na between the species (Fig. 2).

Light and Temperature Dependence of Photosynthesis. In both
species, the light response curves measured at 27°C were essen-
tially identical in leaves with equivalent photosynthetic capacities
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(Fig. 3). However, C. album required about 40% more Na in
order to accomplish this. The light required for saturation in-
creased with increasing Na in both species. At a given Na, A.
retroflexus had a higher light saturation point than C. album.
When measured at 540 ,mol photons m-2 s-', which was

equivalent to the PFD in the growth chamber, A still increased
linearly with increasing Na in both species (Fig. 4). However, the
slope was much lower than at light saturation. Linearity ofA on
Na was maintained because the decrease in photosynthesis from
light saturation to 540 Mmol m-2 S-2 was proportional to Na.
The temperature dependence ofphotosynthesis in both species

was more pronounced in high as compared to low N plants (Fig.
5). The optimum temperature of photosynthesis was higher in
A. retroflexus than in C. album but was little affected by Na.
Because of the differences in the temperature dependence of
assimilation in the two species, A/Na changed only slightly with
temperature in C. album while it increased substantially with
increased temperature in A. retroflexus (Fig. 2). The maximum
A/N values at the respective temperature optima for each species
were 0.21 ,umol CO2 s-' mmol-' N in C. album and 0.40 Mmol
s-' mmol-' in A. retroflexus. However, at measurement temper-
atures below 20aC, A/Na was greater in C. album than A. retro-
flexus.

Leaf Conductance. Leaf conductance to water vapor (g) was
positively correlated with A in both species (Fig. 6). Temperature
had little effect on the slope of this relationship, especially in A.
retroflexus. At the highest Na, g was 2 to 2.5 times greater in C.
album than A. retroflexus while at the lowest Na, g was similar
in the two species. Because the relationship between A and Na
and g and A were linear, g versus Na was also linear in both
species (data not shown).
The ratio of intracellular to ambient CO2 partial pressure (Ci/

Ca) was independent of Na in C. album, but inversely related to
Na in A. retroflexus (Fig. 7). Consequently, at low Na both species
had similar Ci/Ca values. Since at a given VPD, the WUE of a
leaf is inversely related to Ci/Ca (13), WUE ofA. retroflexus was
dependent on Na, ranging from a high of about 12 ,umol CO2
mmol-' H20 at high Na to a low of about 3 umol mmol-' at low
Na (Fig. 8). In contrast, WUE was independent of Na in C.
album, averaging 4.3 rmol mmol'.

DISCUSSION
At identical Na, the photosynthetic capacity of A. retroflexus

was greater than that of C. album. However, for a given applied
N level, C. album had a greater Na than A. retroflexus so that the
actual light saturated assimilation capacities were similar in the
two species. A comparison of Na and photosynthesis of A.
retroflexus and C. album in fields near Davis, California yielded
similar results (21). These results show that C4 photosynthesis
does not automatically enable C4 plants to have a greater pho-
tosynthetic capacity than found in C3 plants, because differences
in the amount of N allocated to leaves can offset advantages
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Table I. Regression Coefficients ofResponse ofLight Saturated CO2
Assimilation Rate to Organic LeafNitrogen per Unit Area in C. album

and A. retroflexus

Species Temperature Slope x-Intercept R2 N

°C (4mols5')/ mmol m2(mmol) m

C. album 20 0.23 51 0.87 32
27 0.28 56 0.81 26
34 0.24 46 0.82 19

A. retroflexus 20 0.35 53 0.81 22
27 0.42 49 0.77 31
34 0.52 37 0.79 23
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FIG. 2. The relationship between photosynthesis per unit nitrogen
and organic leaf nitrogen in C. album (dotted, dashed lines) and A.
retroflexus (solid lines). The relationships were obtained by transforming
the linear regression equations of A versus Na in Table I into the form
A/N = dA/dN. + b/Na.
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FIG. 3. The light response of photosynthesis in C. album (open sym-

bols) and A. retroflexus (closed symbols) at 27°C. The values beside each
curve represent organic leaf nitrogen contents in mmol m-2.

resulting from a higher PNUE. However, the greater N cost of
photosynthesis in C3 plants may limit allocation of as much N
to other plant processes, such as root or leaf production, as could
be possible for C4 plants. As discussed elsewhere (22), C4 plants
may be able to invest more N into new leaf production than C3
plants and therefore have a greater whole plant carbon gain and
growth rate at high N.
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FIG. 4. The relationship between single leaf photosynthesis at a PFD
of 540 Mmol m-2 s-' and organic leaf nitrogen in C. album (0) and A.
retroflexus (A) at 27'C and 34°C. The regression equations are: y =

0.082x + 4.9 (R2 = 0.81) for C. album at 27°C, y = 0.058x + 4.1 (R2 =
0.92) for C. album at 34°C, y = 0.151x - 0.23 (R2 = 0.74) for A.
retroflexus at 27°C, and y = 0. 141x + 1.73 (R2 = 0.84) for A. retroflexus
at 340C.
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FIG. 5. The temperature of photosynthesis in C. album and A. retro-
flexus at light saturation. The values beside each curve represent organic
leaf nitrogen content in mmol m-2.

Most workers have used A/N as an index of PNUE (1, 4, 12).
With this index, most C4 plants, including A. retroflexus, gener-
ally have a greater PNUE than similar C3 plants (3-5, 12, 24,
29). However, comparisons of PNUE based on A/N may be
difficult to interpret if the x-intercept ofA versus Na is unknown.
As shown by Eq. 2, A/N is dependent on Na, so that comparisons
between species with different Na may lead to erroneous assess-
ments ofPNUE. This problem can be seen ifA. retroflexus leaves
with low Na are compared with C. album leaves with high Na. In
addition, A/N at equivalent Na will vary if the x-intercept ofA
versus Na differs significantly. This intercept can range from near
0 to 60 mmol m-2 for different species (8, 10, 15, 16, 30). A
different measure of PNUE is the slope ofA versus Na, dA/dNa,
which gives the increase in assimilation capacity per unit increase
in N investment. Because dA/dNa is independent of Na when A
versus Na is linear, PNUE comparisons between species with
different Na can be facilitated. However, species with different x-
intercepts can have identical slopes, in which case the plant with
the lower x-intercept has a greater A/N. Because of these prob-
lems, it is probably best to utilize both A/Na and dA/dNa in
studies ofPNUE differences.
As with A/N, the value of dA/dNa tends to be larger in C4

plants than similar C3 plants. Values of dA/dNa as large as 0.68
,gmol s-' mmol' have been measured in C4 plants (21). In C3
annuals, dA/dNa typically ranges from 0.2 to 0.3 gmol s-'
mmoli' (8, 10, 16, 30). High growth rate annuals show the
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FIG. 7. The ratio of intercellular to ambient CO2 partial pressure (CJ/
C.) versus organic leaf nitrogen in C. album and A. retroflexus. The
regression equation for the significant trend (P = 0.01) in A. retroflexus
was y = -0.00233x + 0.872 (R12 = 0.39).
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FiG. 8. The relationship between water use efficiency and leaf nitro-
gen per unit area in C. album (open symbols) and A. retroflexus (closed
symbols), assuming a VPD of 10 mbar. Symbol legends are the same as
in Figure 7. The regression equation for the response in A. retroflexus
was y = 0.0505x + 2.61 (R2 = 0.38; significant at P = 0.01).

greatest response ofA to Na, deciduous trees and shrubs have an
intermediate response, and evergreen species have a low response
(12). Similarly, in plants-adapted to high nutrient availability, A
responds strongly to increasing N while in plants adapted to low
nutrient availability, A does not respond strongly to increasing
N (21). Because of this, it is important that comparisons of C3
and C4 plants be made using species with similar growth forms

and ecological requirements. Low growth capacity C4 plants may
have a lower PNUE than high growth capacity C3 plants. How-
ever, low growth capacity C4 plants probably have a greater
PNUE than similar, low growth capacity C3 plants.

It has been reported that A versus Na is curvilinear when a

sufficiently broad range of Na is examined (10). While studies
have reported curvilinearity between A and Na (10, 16), when
the measurements are conducted on plants ofsimilar age, growth
conditions, and variety, and N storage forms such as NO3- and
asparagine are accounted for, A versus Na is usually linear across
the entire range of Na (8, 15, 21, 30). In C.-album and A.
retroflexus, failure to account for stored NO3- would have re-
sulted in a curvilinear relationship betweenA and Na. Ultimately,
however, at very high N levels, the A to N. relationship should
become curvilinear because of other limitations imposed on
photosynthesis (1 1). Evans (10), presents evidence that a 'wall
resistance' to CO2 diffusion may become significant at high N,
resulting in curvilinearity between A and Na. In this study, the
linear response may result from our accounting for NO3- accu-
mulation as well as a regulation ofthe maximum Na below levels
where A versus Na becomes curvilinear.
According to Mooney and Gulmon (17), an optimal N allo-

cation exists when leaf N is modulated so that the resulting
photosynthetic rate corresponds to the maximum rate which the
most limiting environmental resource can support. By this ar-
gument, the leaf N of C. album and A. retroflexus should be
allocated so that the corresponding light saturation point occurs
at about the growth PFD of 600 Mmol m-2 s-1. In C. album this
would mean an A of 18 to 24 Umol m-2 s-' and a maximum Na
of 120 to 150 mmol m-2. That A is double this suggests that leaf
N and photosynthesis capacity is determined by factors other
than simply instantaneous or average PFD. Data of Chabot (7)
and Bunce (6), indicate leafdevelopment responds more to daily
integrated PFD, rather than a high instantaneous PFD. The daily
PFD in our chamber was 34 mol m2 d-', which is about 70%
of the typical daily PFD on a sunny day (2). This level may be
high enough to stimulate leaf development in C. album and A.
retroflexus similar to that found in natural, high light environ-
ments.
While dAidNa is an index to PNUE, the slope ofg versusA is

inversely related to leaf water use efficiency (25). In C4 as
compared to C3 plants dg/dA is smaller while dA/dNa is greater.
In plants which are not photosynthetically CO2 saturated, PNUE
is inversely related to WUE (13). This is because a change in dg/
dA can change C. and therefore A without any change in Na.
However, WUE is not necessarily inversely related to PNUE. If
g adjusts proportionally to A, an increase in dA/dNa can raise
photosynthetic capacity, but C and WUE may be unchanged.
This was evident in A. retroflexus, where dA/dNa increased
substantially with temperature while dg/dA remained constant.
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Thus, leaf temperature at a constant VPD had little affect on
WUE in A. retroflexus (Fig. 8).

In both C. album and A. retroflexus, biochemical rather than
stomatal limitations account for the decline in photosynthesis
with leaf N, since Ci/Ca either increased or was unaffected by Na.
A similar conclusion regarding the importance of biochemical
limitations was reached with studies of other C3 and C4 species
where A was changed by limiting nitrogen, leaf age, phosphorus,
or growth light level (25).
Few studies have addressed the question of how the environ-

ment influences dA/dNa. In the short term, it is clear that changes
in the environment which reduce photosynthetic rate also reduce
d4/dNa. However, in the long term, where changes in photosyn-
thetic capacity are involved, it is unclear whether changes in the
environment can cause a change in d4/dNa, or simply alter the
Na while keeping dA/dNa constant. Some evidence indicates the
latter possibility (23). Acclimation responses to light, temperature
and water stress may involve a repartitioning of leaf N among
photosynthetic components such that the component most lim-
ited by the environment will be proportionally increased relative
to less limited components. How these changes in N partitioning
with leaf N will affect the A versus N response is unknown.
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