The Nitrogen Use Efficiency of C_3 and C_4 Plants

II. LEAF NITROGEN EFFECTS ON THE GAS EXCHANGE CHARACTERISTICS OF CHENOPODIUM ALBUM (L.) AND AMARANTHUS RETROFLEXUS (L.)

Received for publication December 29, 1986 and in revised form April 7, 1987

ROWAN F SAGE'* AND ROBERT W. PEARCY Department of Botany, University of California, Davis, California 95616

ABSTRACT

The effect of leaf nitrogen (N) on the photosynthetic capacity and the light and temperature response of photosynthesis was studied in the ecologically similar annuals Chenopodium album (C_3) and Amaranthus retroflexus (C_4). Photosynthesis was linearly dependent on leaf N per unit area (N_a) in both species. A. retroflexus exhibited a greater dependence of photosynthesis on N_a , than C. album and at any given N_a , it had a greater light saturated photosynthesis rate than C. album. The difference between the species became larger as N_a increased. These results demonstrate a greater photosynthetic N use efficiency in A . retroflexus than C . album. However, at a given applied N level, C . album allocated more N to ^a unit of leaf area so that photosynthetic rates were similar in the two species. Leaf conductance to water vapor increased linearly with N_a in both species, but at a given photosynthetic rate, leaf conductance was higher in C. album. Thus, A. retroflexus had a greater water use efficiency than C. album. Water use efficiency was independent of leaf N in C. album, but declined with decreasing N in Λ , retroflexus.

The photosynthetic rate per unit of N^2 is usually higher in C_4 than C_3 plants (4, 18). This is believed to result from the $CO₂$ concentrating mechanism of C_4 plants leading to CO_2 saturation of rubisco. Consequently, less of this enzyme is required for high rates of photosynthesis in C_4 than C_3 plants (18, 24). C_4 grasses generally have greater photosynthetic rates per unit of N than C_3 grasses and dicots $(3, 5, 24, 29)$ as well as greater growth and leaf expansion rates per unit N (22, 27, 28). However, exceptions have been noted (5) and the NUE differences of C_3 and C_4 dicots have not been directly compared.

The relationship between PNUE and photosynthetic capacity is unclear. On the one hand, plants with ^a greater PNUE may have similar N_a and therefore greater photosynthetic capacities than less efficient plants. However, as photosynthetic capacity increases, sink capacity and external environmental constraints may lead to ^a reduction of carbon fixation per unit of N investment (14, 17). Alternatively, more efficient plants may invest less N per unit area, and proportionally more N to the production

of new leaf area. Leaf area production is often a better predictor of growth than photosynthetic capacity per unit area or net assimilation rate (20). As N is required for both production of new leaf area and for increasing photosynthetic capacity, the enhancement of one under limiting N could come at the expense of the other.

In this research, we have compared the N response of photosynthetic nitrogen use efficiency of the ecologically similar weeds C. album (C_3) and A. retroflexus (C_4) . Leaf N effects on the light and temperature dependence of photosynthesis, leaf conductance, and water use efficiency of the two species were also compared. In an accompanying report (22). we show that when grown over ^a range of N nutrition, A. retroflexus had ^a lower maximum and minimum leaf N content per unit area than C. album, yet an equivalent or higher growth rate and leaf area partitioning coefficient. The research reported here was designed to examine in more detail the physiological basis of the differences in the response to N.

MATERIALS AND METHODS

Growth Conditions. C. album and A. retroflexus plants were grown in a growth chamber at $27/23^{\circ}\text{C}$ day/night temperatures and a PFD of 600 μ mol m⁻² s⁻¹. Plants were grown in equal volumes of sand, vermiculite and perlite. Plants with different leaf N contents were obtained by watering the species with ^a 0.5 or 0.75 mm N Johnson-Hoagland's solution modified to contain 12, 8, 6, 4, 3, 2, 1.5, 0.5, or 0.15 mm N in a 7:1 NO_3 . NH_4 ⁺ ratio. The concentration of K, P, Ca, and Mg, and the micronutrients were identical in all treatment solutions. In the N deficient solutions, SO_4^{-2} and Cl^- were used to replace NO_3^- .

Gas Exchange Measurements. A , g , and C_i were determined on fully expanded leaves with no visible signs of senescence on the main shoot of 2 to 4 week old plants.

The gas-exchange apparatus used in these measurements has been previously described (9) and was modified as follows. Air of known water vapor and $CO₂$ partial pressures was obtained by mixing air containing 4% CO₂ with CO₂-free air using two Wostoff precision mixing pumps (models M201 and G-27, Bochum, FRG) connected in series. Water vapor pressure entering the leaf chamber was controlled by first humidifying the air and then partially dehumidifying it in a glass condensing column whose temperature was controlled by circulating water from a thermostated water bath. The leaf chamber was based on the design of Pearcy and Calkin (19), but enlarged to ¹⁰ cm by 20 cm. Air within the chamber was circulated by two Micronel fans (Micronel, Vista, CA). Chamber temperature was controlled by circulating water from a second thermostated bath through a heat exchange block mounted on the chamber.

In all gas exchange measurements, the leafto air vapor pressure difference and $CO₂$ partial pressure were maintained at 5 to 11 mbar and 325 to 345 μ bar, respectively. Measurements were

^{&#}x27;Present address: Biological Sciences Center, Desert Research Institute, P.O. Box 60220, Reno, NV ⁸⁹⁵⁰⁶

² Abbreviations: N, nitrogen; A, net CO₂ assimilation rate; C₂, ambient $CO₂$ partial pressure; C_i , intercellular $CO₂$ partial pressure; g_i leaf conductance to water vapor; N_a, organic nitrogen per unit area; NUE, nitrogen use efficiency; PFD, photon flux density; PNUE, photosynthetic nitrogen use efficiency; rubisco, RuBP carboxylase/oxygenase (EC 4.1.1.39); VPD, leaf-to-air vapor pressure deficit; WUE, water use efficiency.

made of (1) the light saturated $CO₂$ assimilation rate at 20, 27, and 34°C (any given leaf was measured at only one of these temperatures), (b) the light response of photosynthesis, and (c) the temperature response of photosynthesis. To begin each experiment, single leaves were inserted in the chamber and exposed to about 750 μ mol photons m⁻² s⁻¹. After 10 to 15 min, the PFD was increased to a level which saturated photosynthesis (typically 1200 to 2000 μ mol m⁻² s⁻¹, depending upon N_a) and after a 30 minute equilibration period, light saturated A was recorded. The light response of photosynthesis was determined by decreasing the PFD in steps to darkness. The temperature response was determined by beginning the measurements at 20°C and saturating PFD. Temperatures were first decreased to the lowest values, and then increased in steps to about 40°C.

Following the gas exchange measurements, the leaves were dried at 70 $^{\circ}$ C and weighed. Total N and NO₃⁻ were then determined using a micro-Kjeldahl procedure and high-pressure liquid chromotography, respectively (22). The difference between total leaf N and leaf NO_3 ⁻ was taken as organic N.

All gas exchange parameters were calculated using the equations presented in Von Caemmerer and Farquhar (26).

RESULTS

Assimilation Rate versus Nitrogen Content. Light saturated $CO₂$ assimilation increased linearly with N_a in both C. album and A. retroflexus (Fig. 1). Regressions for both species had similar x-intercepts which generally ranged from 46 to 56 mmol m^{-2} , but A increased with increasing N_a more strongly in A. retroflexus than C. album at all three measurement temperatures (Table I). Consequently, at equal N_a , A. retroflexus generally had a greater A than C . album (Fig. 2) and this difference increased as A and N_a increased. However, C. album achieved a higher N_a at a given applied N and therefore had a similar A as that of A . retroflexus at 27°C, the growth temperature.

 A/N_a increased curvilinearly with N_a (Fig. 2) since transformation of the linear equation

$$
A = dA/dN_a(N_a) + b \tag{1}
$$

into the form

$$
A/N_a = dA/dN_a + b/N_a \tag{2}
$$

gives a curvilinear function when the x-intercept is positive and b, the v-intercept, is negative. At high N_a, the value of A/N_a approaches that of dA/dN_a . In general, A/N_a was greater in A. retroflexus than C. album, with the differences increasing as temperature increased. However, at 20°C measurement temperature and in leaves with low N_a , there was little difference in $A/$ Na between the species (Fig. 2).

Light and Temperature Dependence of Photosynthesis. In both species, the light response curves measured at 27°C were essentially identical in leaves with equivalent photosynthetic capacities (Fig. 3). However, C. album required about 40% more N_a in order to accomplish this. The light required for saturation increased with increasing N_a in both species. At a given N_a , A. retroflexus had a higher light saturation point than C. album.

When measured at 540 μ mol photons m⁻² s⁻¹, which was equivalent to the PFD in the growth chamber, A still increased linearly with increasing N_a in both species (Fig. 4). However, the slope was much lower than at light saturation. Linearity of A on N_a was maintained because the decrease in photosynthesis from light saturation to 540 μ mol m⁻² s⁻² was proportional to N_a.

The temperature dependence of photosynthesis in both species was more pronounced in high as compared to low N plants (Fig. 5). The optimum temperature of photosynthesis was higher in A. retroflexus than in C. album but was little affected by N_a . Because of the differences in the temperature dependence of assimilation in the two species, A/N_a changed only slightly with temperature in C. album while it increased substantially with increased temperature in A. retroflexus (Fig. 2). The maximum A/N values at the respective temperature optima for each species were 0.21 μ mol CO₂ s⁻¹ mmol⁻¹ N in C. album and 0.40 μ mol s^{-1} mmol⁻¹ in A. retroflexus. However, at measurement temperatures below 20°C, A/N_a was greater in C. album than A. retroflexus.

Leaf Conductance. Leaf conductance to water vapor (g) was positively correlated with A in both species (Fig. 6). Temperature had little effect on the slope of this relationship, especially in A. retroflexus. At the highest N_a , g was 2 to 2.5 times greater in C. album than A. retroflexus while at the lowest N_a , g was similar in the two species. Because the relationship between A and N_a and g and A were linear, g versus N_a was also linear in both species (data not shown).

The ratio of intracellular to ambient $CO₂$ partial pressure (C_i/C_i) C_a) was independent of N_a in C. album, but inversely related to N_a in A. retroflexus (Fig. 7). Consequently, at low N_a both species had similar C_i/C_a values. Since at a given VPD, the WUE of a leaf is inversely related to C_i/C_a (13), WUE of A. retroflexus was dependent on N_a, ranging from a high of about 12 μ mol CO₂ mmol⁻¹ H₂O at high N_a to a low of about 3 μ mol mmol⁻¹ at low N_a (Fig. 8). In contrast, WUE was independent of N_a in C. album, averaging 4.3 μ mol mmol⁻¹.

DISCUSSION

At identical N_a , the photosynthetic capacity of A. retroflexus was greater than that of C. album. However, for a given applied N level, C. album had a greater N_a than A. retroflexus so that the actual light saturated assimilation capacities were similar in the two species. A comparison of N_a and photosynthesis of A. retroflexus and C. album in fields near Davis, California yielded similar results (21). These results show that C_4 photosynthesis does not automatically enable C_4 plants to have a greater photosynthetic capacity than found in C_3 plants, because differences in the amount of N allocated to leaves can offset advantages

FIG. 1. The relationship between light saturated photosynthetic rate of single leaves and organic leaf nitrogen $\sum_{n=1}^{\infty}$ $\sum_{n=0}^{\infty}$ of $\sum_{n=1}^{\infty}$ in *C. album* (dashed line, $\sum_{n=1}^{\infty}$) and *A.*
retroflexus (solid line, $\sum_{n=1}^{\infty}$). See Table I $retroflexus$ (solid line, \blacktriangle). See Table I
for the regression equations. All responses are significant at $P = 0.01$.

Table I. Regression Coefficients of Response of Light Saturated $CO₂$ Assimilation Rate to Organic Leaf Nitrogen per Unit Area in C. album and A. retroflexus

Species	Temperature	Slope	x -Intercept	\mathbb{R}^2	N
	°C	$(\mu mol s^{-1})/$ (mmol)	$mmol$ m ⁻²		
C. album	20	0.23	51	0.87	32
	27	0.28	56	0.81	26
	34	0.24	46	0.82	19
A. retroflexus	20	0.35	53	0.81	22
	27	0.42	49	0.77	31
	34	0.52	37	0.79	23

FIG. 2. The relationship between photosynthesis per unit nitrogen and organic leaf nitrogen in C. album (dotted, dashed lines) and A. retroflexus (solid lines). The relationships were obtained by transforming the linear regression equations of A versus N_a in Table I into the form $A/N = dA/dN_a + b/N_a$.

FIG. 3. The light response of photosynthesis in C. album (open symbols) and A. retroflexus (closed symbols) at 27°C. The values beside each curve represent organic leaf nitrogen contents in mmol m^{-2} .

resulting from ^a higher PNUE. However, the greater N cost of photosynthesis in C_3 plants may limit allocation of as much N to other plant processes, such as root or leaf production, as could be possible for C_4 plants. As discussed elsewhere (22), C_4 plants may be able to invest more N into new leaf production than C_3 plants and therefore have a greater whole plant carbon gain and growth rate at high N.

FIG. 4. The relationship between single leaf photosynthesis at a PFD of 540 μ mol m⁻² s⁻¹ and organic leaf nitrogen in *C. album* (O) and *A*. retroflexus (\triangle) at 27°C and 34°C. The regression equations are: $y =$ $0.082x + 4.9$ ($R^2 = 0.81$) for C. album at 27°C, $y = 0.058x + 4.1$ ($R^2 =$ 0.92) for C. album at 34°C, $y = 0.151x - 0.23$ ($R^2 = 0.74$) for A. retroflexus at 27°C, and $v = 0.141x + 1.73$ ($R² = 0.84$) for A. retroflexus at 34°C.

FIG. 5. The temperature of photosynthesis in C. album and A. retroflexus at light saturation. The values beside each curve represent organic leaf nitrogen content in mmol m^{-2} .

Most workers have used A/N as an index of PNUE (1, 4, 12). With this index, most C_4 plants, including A. retroflexus, generally have a greater PNUE than similar C_3 plants (3-5, 12, 24, 29). However, comparisons of PNUE based on A/N may be difficult to interpret if the x-intercept of A versus N_a is unknown. As shown by Eq. 2, A/N is dependent on N_a , so that comparisons between species with different N_a may lead to erroneous assessments of PNUE. This problem can be seen if A . retroflexus leaves with low N_a are compared with C. album leaves with high N_a . In addition, A/N at equivalent N_a will vary if the x-intercept of A versus N_a differs significantly. This intercept can range from near 0 to 60 mmol m^{-2} for different species $(8, 10, 15, 16, 30)$. A different measure of PNUE is the slope of A versus N_a, dA/dN_a , which gives the increase in assimilation capacity per unit increase in N investment. Because dA/dN_a is independent of N_a when A versus N_a is linear, PNUE comparisons between species with different N_a can be facilitated. However, species with different xintercepts can have identical slopes, in which case the plant with the lower x-intercept has a greater A/N . Because of these problems, it is probably best to utilize both A/N_a and dA/dN_a in studies of PNUE differences.

As with A/N , the value of dA/dN_a tends to be larger in C₄ plants than similar C₃ plants. Values of dA/dN_a as large as 0.68 μ mol s⁻¹ mmol⁻¹ have been measured in C₄ plants (21). In C₃ annuals, dA/dN_a typically ranges from 0.2 to 0.3 μ mol s⁻¹ $mmol^{-1}$ (8, 10, 16, 30). High growth rate annuals show the

FIG. 6. The relationship between leaf conductance to water vapor and photosynthesis in single leaves of C . album (dashed lines, O) and A. retroflexus (solid lines, A). All trends are significant at $P = 0.01$.

FIG. 7. The ratio of intercellular to ambient $CO₂$ partial pressure (C_i/C_i) C_a) versus organic leaf nitrogen in C. album and A. retroflexus. The regression equation for the significant trend ($P = 0.01$) in A. retroflexus was $y = -0.00233x + 0.872$ ($R^2 = 0.39$).

FiG. 8. The relationship between water use efficiency and leaf nitrogen per unit area in C. album (open symbols) and A. retroflexus (closed symbols), assuming ^a VPD of ¹⁰ mbar. Symbol legends are the same as in Figure 7. The regression equation for the response in A . retroflexus was $y = 0.0505x + 2.61$ ($R^2 = 0.38$; significant at P = 0.01).

greatest response of A to N_a , deciduous trees and shrubs have an intermediate response, and evergreen species have a low response (12). Similarly, in plants adapted to high nutrient availability, A responds strongly to increasing N while in plants adapted to low nutrient availability, A does not respond strongly to increasing N (21). Because of this, it is important that comparisons of C_3 and C_4 plants be made using species with similar growth forms and ecological requirements. Low growth capacity C_4 plants may have a lower PNUE than high growth capacity C_3 plants. However, low growth capacity C_4 plants probably have a greater PNUE than similar, low growth capacity C_3 plants.

It has been reported that A versus N_a is curvilinear when a sufficiently broad range of N_a is examined (10). While studies have reported curvilinearity between A and N_a (10, 16), when the measurements are conducted on plants of similar age, growth conditions, and variety, and N storage forms such as $\overline{NO_3}^-$ and asparagine are accounted for, A versus N_a is usually linear across the entire range of N_a (8, 15, 21, 30). In C.- album and A. retroflexus, failure to account for stored $NO₃⁻$ would have resulted in a curvilinear relationship between A and N_a . Ultimately, however, at very high N levels, the A to N_a relationship should become curvilinear because of other limitations imposed on photosynthesis (11). Evans (10), presents evidence that a 'wall resistance' to $CO₂$ diffusion may become significant at high N, resulting in curvilinearity between A and N_a . In this study, the linear response may result from our accounting for NO_3^- accumulation as well as a regulation of the maximum N_a below levels where A versus N_a becomes curvilinear.

According to Mooney and Gulmon (17), an optimal N allocation exists when leaf N is modulated so that the resulting photosynthetic rate corresponds to the maximum rate which the most limiting environmental resource can support. By this argument, the leaf N of C. album and A. retroflexus should be allocated so that the corresponding light saturation point occurs at about the growth PFD of 600 μ mol m⁻² s⁻¹. In *C*. album this would mean an A of 18 to 24 μ mol m⁻² s⁻¹ and a maximum N_a of 120 to 150 mmol m⁻². That A is double this suggests that leaf N and photosynthesis capacity is determined by factors other than simply instantaneous or average PFD. Data of Chabot (7) and Bunce (6), indicate leaf development responds more to daily integrated PFD, rather than a high instantaneous PFD. The daily PFD in our chamber was 34 mol m^{-2} d⁻¹, which is about 70% of the typical daily PFD on ^a sunny day (2). This level may be high enough to stimulate leaf development in C. album and A. retroflexus similar to that found in natural, high light environments.

While dA/dN_a is an index to PNUE, the slope of g versus A is inversely related to leaf water use efficiency (25) . In C₄ as compared to C₃ plants dg/dA is smaller while dA/dN_a is greater. In plants which are not photosynthetically CO₂ saturated, PNUE is inversely related to WUE (13). This is because ^a change in dg/ dA can change C_i and therefore A without any change in N_a . However, WUE is not necessarily inversely related to PNUE. If g adjusts proportionally to A, an increase in dA/dN_a can raise photosynthetic capacity, but C_i and WUE may be unchanged. This was evident in A. retroflexus, where dA/dN_a increased substantially with temperature while dg/dA remained constant.

Thus, leaf temperature at ^a constant VPD had little affect on WUE in A. retroflexus (Fig. 8).

In both C. album and A. retroflexus, biochemical rather than stomatal limitations account for the decline in photosynthesis with leaf N, since C_i/C_a either increased or was unaffected by N_a . A similar conclusion regarding the importance of biochemical limitations was reached with studies of other C_3 and C_4 species where A was changed by limiting nitrogen, leaf age, phosphorus, or growth light level (25).

Few studies have addressed the question of how the environment influences dA/dN_a . In the short term, it is clear that changes in the environment which reduce photosynthetic rate also reduce dA/dN_a . However, in the long term, where changes in photosynthetic capacity are involved, it is unclear whether changes in the environment can cause a change in dA/dN_a , or simply alter the N_a while keeping dA/dN_a constant. Some evidence indicates the latter possibility (23). Acclimation responses to light, temperature and water stress may involve ^a repartitioning of leaf N among photosynthetic components such that the component most limited by the environment will be proportionally increased relative to less limited components. How these changes in N partitioning with leaf N will affect the A versus N response is unknown.

Acknowledgments-We thank T. M. DeJong and R. C. Huffaker for their helpful comments on this work and the Jastro-Shields foundation for financial assistance.

LITERATURE CITED

- 1. BARUCH Z, LUDLOW MM, R DAVIS ¹⁹⁸⁵ Photosynthetic responses of native and introduced C4 grasses from Venezuelan savannas. Oecologia 67: 388- 393
- 2. BJORKMAN, 0 ¹⁹⁸¹ Responses to different quantum flux densities. In 0 Lange, P Nobel, C Osmond, and H Ziegler, eds. Encyclopedia of Plant Physiology (New Series), Vol 12A. Springer-Verlag, Berlin, pp 57-107
- 3. BOLTON JK, RH BROWN 1980 Photosynthesis of grass species differing in carbon dioxide fixation pathways. V. Response of *Panicum maximum*,
Panicum milioides and tall fescue (Festuca arundinacea) to nitrogen nutrition. Plant Physiol 66: 97-100
- 4. BROWN RH 1978 A difference in N use efficiency in C_3 and C_4 plants and its implications in adaptation and evolution. Crop Sci 18: 93-98
- 5. BROWN RH, JR WILSON 1983 Nitrogen response of Panicum species differing in $CO₂$ fixation pathways. II. $CO₂$ exchange characteristics. Crop Sci. 23: 1154-1159
- 6. BUNCE JA 1983 Photosynthesis characteristics of leaves developed at different irradiances and temperatures: an extension of the current hypothesis. Photosyn Res 4: 87-97
- 7. CHABOT B 1979 Influence of instantaneous and integrated light-flux density on leaf anatomy and photosynthesis. Am ^J Bot 66: 940-945
- 8. DEJONG TM 1982 Leaf nitrogen content and CO₂ assimilation capacity in peach. ^J Am Soc Hort Sci 107: 955-959
- 9. DEJONG TM, BG DRAKE, RW PEARCY ¹⁹⁸² Gas exchange characteristics of Chesapeake Bay tidal marsh species under field and laboratory conditions. Oecologia 52: 5-11
- 10. EVANS JR 1983 Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L.). Plant Physiol 72: 297-302
- 11. FARQUHAR GD, MUF KIRSCHBAUM ¹⁹⁸⁵ Environmental constraints on carbon assimilation. In A. Hawkins, ed, The Regulation of Sources and Sinks in Crop Plants. British Plant Growth Regulator Group Monograph 12, pp 87-97
- 12. FIELD C, HA MOONEY ¹⁹⁸⁶ The photosynthesis-nitrogen relationship in wild plants. In TA Givinish, ed, On the Economy of Plant Form and Function. Cambridge University Press, London, pp 25-55
- 13. FIELD C, ^J MERINO, HA MOONEY ¹⁹⁸³ Compromises between water-use efficiency and nitrogen-use efficiency in five species of California evergreens. Oecologia 60: 384-389
- 14. HEROLD A 1980 Regulation of photosynthesis by sink activity- the missing link. New Phytol 86: 131-144
- 15. Hunt ER, Jr, JA Weber, DM Gates ¹⁹⁸⁵ Effects of nitrate application on Amaranthus Powellii, Wat. III. Optimal allocation of leaf nitrogen for photosynthesis and stomatal conductance. Plant Physiol 79: 619-624
- 16. LUGG DG, TR SINCLAIR ¹⁹⁸¹ Seasonal changes in photosynthesis of fieldgrown soybean leaflets. 2. Relation to nitrogen content. Photosynthetica 15: 138-144
- 17. Mooney HA, SL Gulmon 1982 Constraints on leaf structure and function in reference to herbivory. Bioscience 32: 198-206
- 18. OSMOND CB, K WINTER, H ZIEGLER ¹⁹⁸² Functional significance of different pathways of CO₂ fixation in photosynthesis. In O Lange, P Nobel, C Osmond, H Ziegler, eds, Encyclopedia of Plant Physiology (New Series), Vol 12B.
- Springer-Verlag, Berlin, pp 479–547
19. PEARCY RW, HW CALKIN 1983 Carbon dioxide exchange of C₃ and C₄ tree species in the understory of a Hawaiian forest. Oecologia 58: 26-32
- 20. POTTER JR, JW JONES ¹⁹⁷⁷ Leaf area partitioning as an important factor in growth. Plant Physiol 59: 10-14
- 21. SAGE RF 1986 Photosynthesis and nitrogen use efficiency of C_3 and C_4 plants. PhD thesis, University of California, Davis
- 22. SAGE RF, RW PEARCY 1987 The nitrogen use efficiency of C_3 and C_4 plants. I. Leaf nitrogen, growth, and biomass partitioning in Chenopodium album (L.) and Amaranthus retroflexus (L.). Plant Physiol 84: 954-958
- 23. SEEMANN JR, TD SHARKEY, ^J WANG, CB OSMOND ¹⁹⁸⁷ Environmental effects on photosynthesis, nitrogen-use-efficiency and metabolite pools in leaves of sun and shade plants. Plant Physiol. 84: 796-802
- 24. ScHMIrr MR, GE EDWARDS ¹⁹⁸¹ Photosynthetic capacity and nitrogen use efficiency of maize, wheat, and rice: a comparison between C_3 and C_4 photosynthesis. J Exp Bot 32: 459-466
- 25. SCHULZE ED, AE HALL 1982 Stomatal responses, water loss and CO₂ assimilation rates of plants in contrasting environments. In 0 Lange, P Nobel, C Osmond, H Ziegler, eds, Encyclopedia of Plant Physiology (New Series), Vol 12B. Springer-Verlag, Berlin, pp 181-230
- 26. VON CAEMMERER S, GD FARQUHAR ¹⁹⁸¹ Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153: 376-387
- 27. WILSON JR 1975 Comparative response to nitrogen deficiency of a tropical and temperate grass in the interrelation between photosynthesis, growth and the accumulation of non-structural carbohydrate. Neth J Agric Sci 23: 104- 112
- 28. WILSON JR, RH BROWN 1983 Nitrogen response of Panicum species differing in CO₂ fixation pathways. I. Growth analysis and carbohydrate accumulation. Crop Sci 23: 1148-1153
- 29. WONG SC 1979 Elevated atmospheric partial pressure of $CO₂$ and plant growth. I. Interactions of nitrogen nutrition and photosynthetic capacity in C_3 and C4 plants. Oecologia 44: 68-74
- 30. YOSHIDA S, V CORONELL ¹⁹⁷⁶ Nitrogen nutrition, leaf resistance, and leaf photosynthetic rate of the rice plant. Soil Sci Plant Nutr 22: 207-21 ¹