Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1987 Aug;84(4):979–981. doi: 10.1104/pp.84.4.979

Oligomerization and the Sensitivity of Phosphoenolpyruvate Carboxylase to Inactivation by Proteinases 1

Randolph T Wedding 1, M Kay Black 1
PMCID: PMC1056711  PMID: 16665631

Abstract

Phosphenolpyruvate (PEP) carboxylase from leaves of Crassula argentea displays varying levels of sensitivity to inactivation by various proteolytic enzymes. In general, the native enzyme is sensitive to proteinases known to attack at the carbonyl end of lysine or arginine (trypsin, papain, or bromelain). The ineffective proteolytic enzymes are those which have low specificity or which attack at the N-terminal end of hydrophobic amino acids, or which cannot attack lysine. The lack of an effect of endoproteinase arginine C, which is specific for arginine, probably indicates that lysine is the critical residue. When the native enzyme, which is comprised of an equilibrium of dimers with tetramers in approximately equal quantities, is treated by preincubation with 5 millimolar PEP, the enzyme becomes much more resistant to proteolytic inactivation. When the preincubation is with 5 millimolar malate rather than buffer alone, the effect is to slightly increase (ca. 15%) the sensitivity of the enzyme to inactivation by trypsin as measured by estimates of the pseudo-first order rate constant for inactivation. PEP carboxylase from corn leaves appears to be relatively susceptible to inactivation by trypsin, but is unaffected by preincubation with malate or PEP. The sensitivity of this C4 enzyme to inhibition by malate is also unaffected by preincubation with these ligands.

Full text

PDF
979

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Gurley W. B., Czarnecka E., Nagao R. T., Key J. L. Upstream sequences required for efficient expression of a soybean heat shock gene. Mol Cell Biol. 1986 Feb;6(2):559–565. doi: 10.1128/mcb.6.2.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Huber S. C., Sugiyama T. Changes in Sensitivity to Effectors of Maize Leaf Phosphoenolypyruvate Carboxylase during Light/Dark Transitions. Plant Physiol. 1986 Jun;81(2):674–677. doi: 10.1104/pp.81.2.674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Lawton M. A., Lamb C. J. Transcriptional activation of plant defense genes by fungal elicitor, wounding, and infection. Mol Cell Biol. 1987 Jan;7(1):335–341. doi: 10.1128/mcb.7.1.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Podesta F. E., Iglesias A. A., Andreo C. S. Modification of an essential amino group of phosphoenolpyruvate carboxylase from maize leaves by pyridoxal phosphate and by pyridoxal phosphate-sensitized photooxidation. Arch Biochem Biophys. 1986 May 1;246(2):546–553. doi: 10.1016/0003-9861(86)90309-7. [DOI] [PubMed] [Google Scholar]
  5. Veron M., Guillou Y., Fazel A., Cohen G. N. Reversible dissociation of aspartokinase I/homoserine dehydrogenase I from Escherichia coli K 12. The active species is the tetramer. Eur J Biochem. 1985 Sep 16;151(3):521–524. doi: 10.1111/j.1432-1033.1985.tb09133.x. [DOI] [PubMed] [Google Scholar]
  6. Walker G. H., Ku M. S., Edwards G. E. Catalytic activity of maize leaf phosphoenolpyruvate carboxylase in relation to oligomerization. Plant Physiol. 1986 Apr;80(4):848–855. doi: 10.1104/pp.80.4.848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Wedding R. T., Black M. K. Malate inhibition of phosphoenolpyruvate carboxylase from crassula. Plant Physiol. 1986 Dec;82(4):985–990. doi: 10.1104/pp.82.4.985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Wu M. X., Wedding R. T. Diurnal regulation of phosphoenolpyruvate carboxylase from crassula. Plant Physiol. 1985 Mar;77(3):667–675. doi: 10.1104/pp.77.3.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Wu M. X., Wedding R. T. Regulation of Phosphoenolpyruvate Carboxylase from Crassula argentea: Further Evidence on the Dimer-Tetramer Interconversion. Plant Physiol. 1987 Aug;84(4):1080–1083. doi: 10.1104/pp.84.4.1080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Wu M. X., Wedding R. T. Regulation of phosphoenolpyruvate carboxylase from Crassula by interconversion of oligomeric forms. Arch Biochem Biophys. 1985 Aug 1;240(2):655–662. doi: 10.1016/0003-9861(85)90073-6. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES