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Abstract

Aims Heart failure (HF) is a prevalent age-related cardiovascular disease with poor prognosis in the elderly population. This
study aimed to establish the causal relationship between ageing and HF by conducting a bidirectional Mendelian randomiza-
tion (MR) analysis on epigenetic age (a marker of ageing) and HF.
Methods and results Genome-wide association study data for epigenetic age (GrimAge, HorvathAge, HannumAge, and
PhenoAge) and HF were collected and assessed for significant genetic variables. A bidirectional MR analysis was carried out
using the random-effects inverse–variance weighted (IVW) method as the primary approach, while other methods (MR–Egger,
weighted median, simple mode, and weighted mode) and multiple sensitivity analyses (heterogeneity analysis, leave-one-out
sensitivity analysis, and horizontal pleiotropy analysis) were employed to evaluate the impact of epigenetic age on HF and vice
versa. Bidirectional MR analysis of two samples revealed that the epigenetic PhenoAge clock increased the risk of HF [IVW
odds ratio (OR) 1.015, 95% confidence interval (CI) 1.002–1.028, P = 0.028 and weighted median OR 1.020, 95% CI 1.001–
1.038, P = 0.039]. Other results were not statistically significant.
Conclusions The bidirectional MR analysis demonstrated a causal link between genetically predicted epigenetic age and HF
in individuals of European descent. Further research into epigenetic age in other populations and additional genetic informa-
tion related to HF is warranted.
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Introduction

Heart failure (HF) is a common clinical syndrome that results
in myocardial injury or overload during the pathogenesis of
several diseases, ultimately causing decreased myocardial
function.1 HF is often accompanied by various inflammatory
and metabolic disease complications with poor clinical prog-
nosis, including diabetes, atrial fibrillation, and chronic kidney

disease.2 The prevalence of HF is around 26 million people
worldwide,3 with the elderly accounting for 80% of the pop-
ulation, and morbidity and mortality increase with ageing,4

leading to significant socioeconomic and nursing burdens.5,6

Cardiovascular ageing is an important risk factor for HF
among all risk factors.7

The study of ageing-related biomarkers has recently been a
hot topic in HF research. While epigenetic modifications are
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fundamental mechanisms of biological ageing,7 these are in-
creasingly implicated in the development of cardiovascular
diseases.8,9 Because there is significant heterogeneity in
health outcomes in the elderly,10 epigenetic age based on
DNA methylation (DNAm) is more accurate than chronologi-
cal age in predicting physiological ageing status in the
elderly.11,12 Each epigenetic clock measures the DNA methyl-
ation levels at specific CpG loci to capture the epigenetic
ageing profiles. With the advancement of genome-wide
methylation research, epigenetic clocks have developed two
generations of quantitative models: the first generation
(HannumAge13 and HorvathAge14) and the second generation
(PhenoAge15 and GrimAge16). Epigenetic age has been shown
to be closely associated with atrial fibrillation when factors,
such as actual age, are regarded as mediating factors.17 How-
ever, there is a lack of current research on epigenetic age
and HF.

Xu et al.18 studied the susceptibility and severity of epige-
netic age, such as PhenoAge, GrimAge, HannumAge, and
HorvathAge, to novel coronavirus using inverse–variance
weighted (IVW), Mendelian randomization (MR)–Egger,
weighted median, simple mode, and weighted mode. Simi-
larly, this analysis was used to investigate the causality be-
tween epigenetics and HF. To summarize, a bidirectional
MR study was conducted using genome-wide association
study (GWAS) data for HF and epigenetic clocks to evaluate
the causality between them and thus reduce the influence
of confounding factors on outcomes through a large sample
of clinical genetic data and rule out reverse causality.

Research design and methods

Research design

The research was designed in accordance with the
STROBE-MR guideline.19 In this research, four epigenetic
clocks (GrimAge,16 HannumAge,13 HorvathAge,14 and
PhenoAge15) were included as exposures and HF as outcomes
to determine the instrumental variables for bidirectional MR
analysis. Subsequently, MR–Egger, Cochran’s Q analysis, hori-
zontal pleiotropic analysis, and leave-one-out analysis were
performed to validate the reliability of causality, with the first
two analyses used for heterogeneity analysis and the rest for
sensitivity analysis confirmation. MR was then used to exam-
ine HF as an exposure factor and epigenetic clock as an out-
come factor. In summary, MR studies were required to meet
the following three criteria: (i) association hypothesis: instru-
mental variables closely associated with exposure factors; (ii)
independence hypothesis: instrumental variables unrelated
to confounding factors associated with exposure and out-
come factors; and (iii) exclusivity hypothesis: instrumental
variables influenced outcomes through exposure factors only.

In this study, bidirectional MR studies were used to examine
the bidirectional causality between epigenetic age and HF
(Figure 1).

Data source

In this research, four epigenetic age data sets, GrimAge,16

HannumAge,13 HorvathAge,14 and PhenoAge,15 were ob-
tained as GWAS data based on 28 cohort studies of 34 710
European ancestry investigators (https://doi.org/10.7488/
ds/2834). These data identified 137 ageing-related gene
loci.20 This research provided publicly available large GWAS
summary data21 for HF from the Molecular Epidemiology
for Therapeutic Targets (HERMES) Consortium for HF, involv-
ing 26 HF cases from 47 309 and 930 014 HF cases from
European ancestry and control groups, respectively, stored
at the Cardiovascular Disease Knowledge Portal (https://
cvd.hugeamp.org/). Details of these studies were presented
in Table 1.

Tool variable acquisition

A series of parameter controls were performed on
gene-associated data for epigenetic age and HF to screen for
eligible single-nucleotide polymorphisms (SNPs) in a bidirec-
tional MR analysis of two samples. First, epigenetic age (as
the SNP threshold for exposure), kilobase pair (kb), and pa-
rameter r2 were set at a loose threshold P < 5 × 10�6, 5000,
and 0.001, respectively. Significant epigenetic age-related
SNPs obtained from these thresholds were used to match
SNPs for HF outcome data. Moreover, the outcome SNPs that
did not meet the threshold were removed. Similarly, accord-
ing to the above principles, we also set HF as the threshold
for significant SNP for exposure. Afterward, the most recent
and stringent calculation methods for variance (R2) and
F-statistic were performed to avoid weak shifts in instrumen-
tal variables. F-statistic >10 is considered to avoid shifts
caused by weak instrumental variables on MR results.22 The
formula is as follows:

R2 ¼ 2�MAF� 1 � MAFð Þ�β2
SE2�N

F � statistic ¼ R2� N � k � 1ð Þ
k2 1 � R2ð Þ

where MAF is the minor allele frequency, β is the effect size,
SE is the standard error, N is the sample size, and k is the
number of tool variables.

Subsequently, exposed SNP from previous thresholds was
extracted, integrated, and combined with outcome data, such
that the effect value of the effector allele of the outcome was
consistent with that of the exposure.
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Statistical analysis

First, based on the results of the MR analysis, Cochran’s Q
test <0.05 was considered heterogeneous and a
random-effects model was used; otherwise, a fixed-effects
model was used. IVW was used as the primary method23

for MR analysis and could reach robust conclusions. Mean-
while, MR–Egger,24 weighted median,25 simple mode, and
weighted mode were used to assess the robustness of MR
results. Second, the MR–Egger intercept was calculated to
assess heterogeneity and horizontal pleiotropy, and the
MR–Egger intercept <0.05 was considered horizontal pleiot-
ropy. Third, a ‘leave-one-out’ sensitivity analysis was used
to examine whether a single SNP affected MR-level pleiot-
ropy. Subsequently, forest plots and funnel plots were gener-
ated directly for horizontal pleiotropy testing. Finally, causal
estimates (i.e. beta coefficients) were assessed and con-
verted into random numbers [odds ratio (OR)]. The above ap-
proaches would provide the highest statistical effect based
on the MR analysis of exposure to outcomes satisfying three
key assumptions in the methodology section. Overall, these

methods ensure the reliability of the causality between expo-
sure and outcome. For multiple testing, the false discovery
rate (FDR) is considered to be effective and robust.26,27 In this
study, FDR is implemented based on the R package ‘fdrtool’.

All statistical analyses were performed using the
TwoSampleMR (Version 0.5.6) package of R software 4.2.1.
P < 0.05 was considered statistically significant.

Results

Tool variable extraction

When utilizing epigenetic age as the exposure factor,
extracted epigenetic age with GWAS data was significantly
correlated SNP (P < 5 × 10�6), and linkage disequilibrium
(LD) was removed (r2 < 0.001, 5000 kb). Parallelly, we also
eliminated palindromic SNPs (SNPs whose alleles consisted
of one base and its complementary base). Eventually, an epi-
genetic age of SNP (instrumental variable: GrimAge = 26,

Figure 1 The flow chart of this study. LD, linkage disequilibrium; SNPs, single–nucleotide polymorphisms.
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R2 = 1.89%, F-statistic = 25.73; instrumental variable:
HannumAge = 42, R2 = 3.54%, F-statistic = 30.25; instrumental
variable: HorvathAge = 59, R2 = 6.25%, F-statistic = 39.14;
and instrumental variable: PhenoAge = 37, R2 = 3.34%,
F-statistic = 32.35) (Supporting Information, Table S1)
satisfying the genome >2 for MR analysis was obtained.

Correspondingly, when HF was the exposure factor, the
number of instrumental variables was 54, R2 = 0.15%, and
F-statistic = 27.00. The number of instrumental variables also
met the requirements for MR analysis (Supporting Informa-
tion, Table S2). In MR studies, F-statistic was employed to
evaluate the strength of instrumental variables. Generally,

Figure 2 Inverse–variance weighted (IVW) was used as the main method to analyse the two-way causal relationship between epigenetic age
(GrimAge, HannumAge, HorvathAge, and PhenoAge) and heart failure. The forest map visualizes the causal effect of exposure on outcome risk by
IVW method [when the outcome is heart failure, i.e. the dichotomy variable, the standard line is the ‘X = 1’ line (orange dashed line); when the out-
come is epigenetic age, i.e. the continuity variable, the standard line is the ‘X = 0’ line (orange dashed line)], and the blue markers represent positive
results with P < 0.05. Beta, risk index; CI, confidence interval; OR, odds ratio; Se, standard error; SNPs, single–nucleotide polymorphisms.
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Figure 3 Scatter plot of epigenetic age and HF. Horizontal ordinate: single–nucleotide polymorphisms (SNPs) effect on ‘exposure’; vertical coordinates:
SNP effect on ‘outcome’. (A) Exposure: GrimAge; outcome: HF. (B) Exposure: HannumAge; outcome: HF. (C) Exposure: HorvathAge; outcome: HF. (D)
Exposure: PhenoAge; outcome: HF. MR, Mendelian randomization.
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an F-statistic >10 can rule out shifts caused by weak
instrumental variables on MR results. In this study, the bidi-
rectional MR had an F-statistic >10 (range 20.73–239.73),
and no weak instrumental variables were present. Therefore,
these instrumental variables help determine the causality of
exposure to outcomes.

Mendelian randomization analysis of epigenetic
age on heart failure

Cochran’s Q test (P > 0.05) indicated no heterogeneity, so
IVW analysis was performed using a fixed-effects model
(Table 2). The IVW model suggested a causality between

Figure 4 Scatter plots of HF and epigenetic age. Horizontal ordinate: single–nucleotide polymorphisms (SNPs) effect on ‘exposure’; vertical coordi-
nates: SNP effect on ‘outcome’. (A) Exposure: HF; outcome: GrimAge. (B) Exposure: HF; outcome: HannumAge. (C) Exposure: HF; outcome:
HorvathAge. (D) Exposure: HF; outcome: PhenoAge. MR, Mendelian randomization.
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PhenoAge and HF [IVW OR 1.015, 95% confidence interval (CI)
1.001–1.028, P = 0.028]. And similar results were seen with the
weighted median method (OR 1.020, 95% CI 1.001–1.038,
P = 0.039). The OR and 95% CI of other epigenetic clocks and
HF were not statistically significant (Figure 2) (GrimAge and
HF: OR 1.013, 95% CI 0.992–1.034, P = 0.215; HannumAge
and HF: OR 0.986, 95% CI 0.970–1.002, P = 0.081; HorvathAge
and HF: OR 1.004, 95% CI 0.992–1.017, P = 0.519). The gener-
ated scatter plots were used to demonstrate the genetic visu-
alization estimates of epigenetic age on HF (Figure 3). Results
from other analytical methods and forest plots of MR analyses
of individual SNPs were located in Supporting Information,
Figure S1. IVW (P = 0.212) and MR–Egger regression
(P = 0.185) showed no significant heterogeneity between epi-
genetic age and MR analysis of HF. Egger_intercept of MR–
Egger and zero were not statistically significant (P = 0.664).
SNPs were not horizontally pleiotropic (Table 2). There were
no SNPs in the study data that had a significant impact on
the results, so the results have a high level of confidence
(Supporting Information, Figure S2). Therefore, we can also
draw the conclusion that the results were robust.

Mendelian randomization analysis of heart failure
on epigenetic age

There is no clear evidence of causality between HF and epige-
netic age (GrimAge IVW beta = 0.940, 95% CI�0.029 to 1.908,
P = 0.057; HannumAge IVW beta = 0.114, 95% CI �0.632 to
0.861, P = 0.764; HorvathAge IVW beta = 0.200, 95% CI
�0.129 to 2.579, P = 0.076; and PhenoAge IVW beta = 1.170,
95% CI �0.726 to 3.607, P = 0.226) (Figure 2). Visual estima-
tion plots of the genetic variance are displayed in Figure 4
and forest plots of individual SNPs for reverse MR in
Supporting Information, Figure S3. The diagram of HF and epi-
genetic age was shown in Supporting Information, Figure S4.

Discussion

Ageing is a risk factor in an ageing society, causing increased
morbidity and mortality in various diseases. The mechanism
of ageing is the focus of human physiological and pathologi-
cal mechanism research.28 Although the epigenetic age is
not exactly comparable with the traditional age, epigenetic
clocks can help researchers better understand the biological
mechanisms of human health and ageing using different
training samples and populations.12 Investigating the causal-
ity between epigenetic age and cardiovascular disease is a
novel and challenging research topic.

To the best of our knowledge, this is the first study to look
into the bidirectional causality between epigenetic age and
HF. In this research, the epigenetic clock PhenoAge was found

to increase the risk of HF. On the other hand, HF also increased
the risk of the epigenetic HorvathAge clock. In our study, no
causality between other epigenetic clocks and HF was found.

We investigated the mechanism by which the epigenetic
clock PhenoAge increases the risk of HF. As an epigenetic
biomarker, PhenoAge can effectively combine blood DNAm
indicating that epigenetic age, with a correlation coefficient
with the heart of 0.66, can specifically assess the ageing char-
acteristics of cardiovascular disease15 and can better capture
‘preclinical ageing’. Second, it has been demonstrated that
pathway enrichment of genes involved in PhenoAge positively
correlates with the activation of pro-inflammatory pathways
such as response to lipopolysaccharide and nuclear factor-κB
(NF-κB). Lipopolysaccharide is a toxic component produced
by Gram-negative cocci with immunostimulatory and immu-
nomodulatory effects.29 Increased plasma concentrations of
lipopolysaccharide have been reported in patients with
chronic HF.30 They may reach the blood and cause the release
of pro-inflammatory factors such as tumour necrosis factor-α
(TNF-α) by altering the intestinal barrier.31 Lipopolysaccharide
reactivity has also been demonstrated to be an independent
predictor of mortality in HF.32 NF-κB activates myocardial
senescence33 and is closely related to cardiomyocyte survival
and inflammatory regulation.34 Prolonged activation of NF-κB
promotes inflammatory pathway signalling causing HF.
Several studies35–37 have shown that inhibiting NF-κB pathway
activity helps delay cardiomyocyte senescence and reduce
age-related HF, with the underlying mechanism possibly asso-
ciated with apoptosis38 and mitochondrial oxidative stress.39

The findings of the preceding studies are consistent with the
findings of this study regarding the causality of HF and epige-
netic age.40 We investigated why HF can accelerate the ageing
of epigenetic clock (HorvathAge) malfunction due to HF’s ef-
fect on telomere length and DNAmethylation modifications.41

However, our study does have inevitable limitations. First,
the data in our study were primarily obtained from the Euro-
pean populations, and despite a large number of populations,
genetic studies on epigenetic age and HF between ethnic
groups are still lacking. This may cause discrepancies be-
tween observations and the actual situation. Second, because
epigenetic age is intrinsically associated with environmental
exposures rather than genetic factors, this highlights the
limitations of MR in this context. Finally, the OR values of
our findings were low; thus, they should be interpreted
cautiously. We look forward to future research that will
explain the relationship between epigenetic age and HF.

Conclusions

In this study, epigenetic age had a bidirectional causality with
HF. PhenoAge, an epigenetic clock, increased the risk of HF.
Moreover, the underlying mechanism may be related to
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inflammatory pathways. HF accelerated the epigenetic clock
HorvathAge. This research explored the causality between
epigenetic age and HF via MR analysis. However, more re-
search into the mechanisms between epigenetic age and HF
in different ethnic groups is needed.
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Figure S1. Mendelian randomization effects forest plots for
individual SNPs with epigenetic age as the exposure, Heart
Failure as the outcome. (A) exposure: GrimAge, outcome:
Heart Failure; (B) exposure: HannumAge, outcome: Heart
Failure; (C) exposure: HovarthAge, outcome: Heart Failure;
(D) exposure: PhenoAge, outcome: Heart Failure; The red
marker points indicated All-MR Egger and All-IVW.
Figure S2. MR leave-one-out sensitivity analysis “outcome”
on “Heart Failure”. (A) exposure: GrimAge, outcome: Heart
Failure; (B) exposure: HannumAge, outcome: Heart Failure;
(C) exposure: HovarthAge, outcome: Heart Failure; (D) expo-
sure: PhenoAge, outcome: Heart Failure.
Figure S3. Mendelian randomization effects forest plots for
individual SNPs with heart failure as the exposure, epigenetic
age as the outcome. (A) exposure: Heart Failure, outcome:
GrimAge; (B) exposure: Heart Failure, outcome: HannumAge;
(C) exposure: Heart Failure, outcome: HorvathAge; (D) expo-
sure: Heart Failure, outcome: PhenoAge. The red marker
points indicated All-MR Egger and All-IVW.
Figure S4. MR leave-one-out sensitivity analysis “outcome”
on “Epigenetic age”. (A) exposure: Heart Failure, outcome:
GrimAge; (B) exposure: Heart Failure, outcome: HannumAge;
(C) exposure: Heart Failure, outcome: HovarthAge; (D) expo-
sure: Heart Failure, outcome: PhenoAge.
Table S1. Epigenetic age instrumental variables and R2 and F-
statistics.
Table S2. Heart failue instrumental variables and R2 and F-
statistics.
Data S1. Supporting Information.
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