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Single-cell multi-omics analysis identifies
two distinct phenotypes of newly-onset
microscopic polyangiitis

Masayuki Nishide 1,2,3,14 , Kei Nishimura3,4,5,14, Hiroaki Matsushita3,4,5,
Ryuya Edahiro1,6, Sachi Inukai5, Hiroshi Shimagami1,2,3, Shoji Kawada1,2,3,
Yasuhiro Kato1,2,3, Takahiro Kawasaki1,2,3, Kohei Tsujimoto1,2,3, Hokuto Kamon3,4,5,
Ryusuke Omiya4,5, Yukinori Okada 6,7,8,9,10,11, Kunihiro Hattori4,5,
Masashi Narazaki1,2,3 & Atsushi Kumanogoh 1,2,7,8,12,13

The immunological basis of the clinical heterogeneity in autoimmune vascu-
litis remains poorly understood. In this study, we conduct single-cell tran-
scriptome analyses on peripheral blood mononuclear cells (PBMCs) from
newly-onset patients with microscopic polyangiitis (MPA). Increased propor-
tions of activated CD14+ monocytes and CD14+ monocytes expressing inter-
feron signature genes (ISGs) are distinctive features of MPA. Patient-specific
analysis further classifies MPA into two groups. The MPA-MONO group is
characterized by a high proportion of activated CD14+ monocytes, which
persist before and after immunosuppressive therapy. These patients are
clinically defined by increased monocyte ratio in the total PBMC count and
have a high relapse rate. The MPA-IFN group is characterized by a high pro-
portion of ISG+ CD14+ monocytes. These patients are clinically defined by high
serum interferon-alpha concentrations and show good response to immuno-
suppressive therapy. Our findings identify the immunological phenotypes of
MPA and provide clinical insights for personalized treatment and accurate
prognostic prediction.

Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis
(AAV) is a heterogeneous autoimmune disorder characterized by the
production of autoantibodies against molecules in the cytoplasm of
neutrophils, such asmyeloperoxidase (MPO) and proteinase 3 (PR3)1,2.
Patients with AAV experience inflammation of small blood vessels,
which leads to damage in multiple organs. Despite its diverse clinical
manifestations, the immunological basis for the heterogeneity of AAV
remains poorly understood. The current remission induction therapy
for AAV combines glucocorticoids with immunosuppressive agents
such as cyclophosphamide or rituximab3, and recommendations for
optimal treatment protocols are constantly being updated4–7. The
presence of organ-threatening symptoms factors into drug selection,
however, the treatment strategy has not been sufficiently individua-
lized. Therefore, accurate prognostication and optimal treatment

strategies based on a comprehensive understanding of the immuno-
logical profile of individual cases could represent a paradigm shift in
the management of vasculitis.

To date, different approaches such as flow cytometry, bulk tran-
scriptomic analyses, and mouse models have been used to character-
ize circulating immune cells involved in AAV. The direct binding of
ANCA to neutrophils is a crucial factor in the pathogenesis of AAV, as
the inappropriate activation of neutrophils byANCA results in vascular
injury8–11. Reduced numbers and impaired function of regulatory
T cells have been associated with the development of AAV12,13. Auto-
reactive CD4+ T cells that recognize MPO can induce glomerular
damage in mice14. Removing of CD8+ T cells has been shown to reduce
the severity of glomerulonephritis inducedby anti-MPO antibodies in a
mouse model15. Patients with relapsing AAV have more CD8+ effector
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memoryT cells, suggesting that the cytotoxic capacity of T cells plays a
role in disease development and intractability16. Serum levels of B-cell
activating factor are elevated in patients with AAV and the differ-
entiation of B cells into antibody-producing cells is continuously
promoted17. Dysfunction of peripheral blood cells is thus important in
the pathogenesis of AAV. However, previous studies have largely
been based on the classification of cell types using a limited set of cell
surface markers and bulk transcriptomic profiles, which did not have
sufficient sensitivity to identify cell type–specific expression
differences.

Single-cell RNA sequencing (scRNA-seq) is a technique that allows
for the identification of diversity within known cell populations at the
single-cell level. Furthermore, multimodal single-cell approaches such
as cellular indexing of transcriptomes and epitopes by sequencing
(CITE-seq) have recently been developed. Integrated analysis of
gene expression and surface protein markers allow us to identify and
validate previously unreported subpopulations18. scRNA-seq
has identified functional cell populations and therapeutic targets in
autoimmune diseases such as rheumatoid arthritis19, systemic lupus
erythematosus20, and systemic sclerosis21,22. However, single-cell-based
transcriptomic analysis has not yet been reported in the context of
autoimmune vasculitis.

In this work, we perform single-cell transcriptome and surface
proteome analyses using CITE-seq on 109,350 peripheral blood
mononuclear cells (PBMCs) and mass cytometry analysis using cyto-
metry by time of flight (CyTOF) on 737,794 PBMCs from eight newly-
onset, treatment-naïve patients with MPA and seven healthy donors.
All patients underwent a physical examination and were linked with
detailed clinical information including blood and urine test results and
Birmingham Vasculitis Activity Score (BVAS) 2008 version 3. By
visualizing the dynamics of acquired immunity underlying each case,
we aim to identify multi-omics–based disease phenotypes of MPA and
provide clinically applicable recommendations for predicting prog-
nosis and selecting treatment for each patient.

Results
Single-cell multi-omics analysis of PBMCs derived from patients
with newly-onset and treatment-naïve MPA
PBMCswere collected from eight patients withMPA and seven healthy
donors. All patients had newly-onset disease, and blood samples were
collected prior to the induction of immunosuppressive therapy. The
clinical characteristics of each patient with MPA are shown in Sup-
plementary Table 1. Isolated PBMCs were analyzed on a 10x chromium
platform, and the transcriptome and expression of 43 surface proteins
were simultaneously obtained using CITE-seq (Fig. 1a). The same
samples underwent CyTOF analysis in parallel (Fig. 1a). A total of
109,350 high-quality cells were obtained for analysis. The cell popu-
lations were annotated with supervised analysis using the existing
CITE-seq data18 and divided into 28 populations. UMAP plots of PBMCs
derived from healthy donors (n = 7, left) and patients with MPA (n = 8,
right) are shown in Fig. 1b. UMAP plots of PBMCs obtained from a total
of 15 samples (Supplementary Fig. 1a) and individual study participants
(Supplementary Fig. 1b) are shown. The ratio of cell numbers in each
subset to the total number of PBMCs was calculated. Among the
subsets in which the average ratio was 1% or greater, increased pro-
portions of plasmablasts and CD14+ monocytes, and decreased pro-
portions of CD8+ naïve T cells and mucosal-associated invariant T
(MAIT) cells were observed in patients with MPA (Fig. 1c). Among the
other subsets, increased proportions of proliferating CD4+ T cells and
decreased proportions of gamma-delta T cells (gdT), classical den-
dritic cells (cDC), and AXL+ dendric cells (ASDC) were observed in
patients withMPA (Fig. 1d).We next conducted differential abundance
analysis usingMilo, a statistical framework that performsdifference-in-
presence tests by assigning cells to partially overlapping neighbor-
hoods on a k-NN graph23 (Fig. 1e). This cluster-free and age-adjusted

analysis confirmed the alterations in cellular proportions shown in
Fig. 1c, d. Compared to healthy donors, the proportion of plasmablasts
(median log2 fold change: +1.7), CD14+ monocytes (+0.51), and pro-
liferating CD4+ T cells (+1.7) subsets were increased, while the pro-
portion of CD8+ naïve T cells (median log2 fold change: −1.2),
MAIT cells (−2.5), gdT cells (−0.98), cDC1 (−1.6), cDC2 (−1.6), and ASDC
(−3.4) subsets were decreased in patients with MPA (Fig. 1f).

CyTOF analysis was also performed on PBMCs from the study
participants. A total of 737,794 cells were analyzed andUMAPplots are
shown in Supplementary Fig. 2a. Each cellular subset was annotated
basedon surfacemarker information. UMAPplots of PBMCs fromeach
study participant are shown in Supplementary Fig. 2b. Consistent with
the results of the single-cell analyses, increased proportions of CD14+

monocytes and decreased proportions of CD8+ naïve T cells were
observed in patients with MPA (Supplementary Fig. 2c).

Differential abundance analysis of monocyte, CD8+ T cell, and B
cell subsets
We then focused on monocyte, CD8+ T cell, and B cell subsets and
conducted differential abundance analysis using Milo. First, we sub-
clusteredmonocytes into six subsets according to the RNA expression
of known marker genes24–27: activated CD14+ monocytes (CD14
Mono_Activated), CD14+ monocytes characterized by VCAN gene
expression (CD14 Mono_VCAN), CD14+ monocytes characterized by
interferon signature gene (ISG) expression (CD14 Mono_ISG), CD14+

monocytes characterized by HLA gene expression (CD14 Mono_HLA),
CD16+ monocytes (CD16 Mono), and classical dendritic cells (cDC)
(Fig. 2a). Highly expressed genes in each subpopulation are shown in
Fig. 2b. UMAP plots of monocytes derived from each study participant
are shown in Supplementary Fig. 3a. Representative surfaceproteins in
each subpopulation are shown in Supplementary Fig. 3b. Differential
abundance analysis was subsequently performed to reveal the com-
positional changes of each neighborhood between patients with MPA
and healthy donors (Fig. 2c). Compared to healthy donors, the pro-
portion of CD14 Mono_Activated (median log2 fold change: +1.1) and
CD14Mono_ISG ( + 1.7) subsetswere increased, while the proportion of
CD14 Mono_HLA (median log2 fold change: −0.82), CD16 Mono (−1.2),
and cDC (−1.7) subsets were decreased in patients with MPA (Fig. 2d).

The CD8+ T cell subset was similarly annotated and classified into
five subpopulations according to the RNAexpression of knownmarker
genes28,29: naïve CD8+ T cells (CD8 T_Naïve), central memory CD8+

T cells (CD8 T_CM), effector memory CD8+ T cells (CD8 T_EM), cyto-
toxically active CD8+ T cells (CD8 T_CTL), and CD8+ T cells character-
ized by killer immunoglobulin-like receptor (KIR) gene expression
(CD8 T_KIR) (Fig. 2e). Highly expressed genes in each subpopulation
are shown in Fig. 2f. UMAP plots of CD8+ T cells from each study
participant are shown in Supplementary Fig. 4a. Representative sur-
face proteins in each population are shown in Supplementary Fig. 4b.
Differential abundance analysis revealed that the proportion of CD8
T_CTL (median log2 fold changes: +0.40) and CD8 T_KIR (+0.85) sub-
sets were increased, while the proportion CD8 T_Naïve (median log2
fold changes: −0.95) and CD8 T_EM (−0.35) subsets were decreased in
patients with MPA (Fig. 2g, h). These results indicate that the char-
acteristics of MPA include increased proportions of activated CD14+

monocytes, CD14+monocyteswith ISG expression, cytotoxically active
CD8+ T cells, and KIR+ CD8+ T cells.

The B cell and antibody-producing cell subset was similarly
annotated and classified into seven subpopulations according to the
RNA expression of known marker genes30,31: naïve B cells (B_Naïve),
activated naïve B cells (B_Naïve Activated), pre-switched memory B
cells (B_Memory pre-switched), post-switched memory B cells
(B_Memory post-switched), age-associated B cells (ABC), plasmablasts
(Plasmablast), and plasma cells (Plasma cell) (Supplementary Fig. 5a).
Highly expressed genes in each subpopulation are shown in Supple-
mentary Fig. 5b. Differential abundance analysis revealed that the
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proportion of B_Naïve Activated (median log2 fold changes: +2.0),
Plasmablast (+1.9), and Plasma cell (+1.8) subsets were increased,
while the proportion of B_Memory pre-switched (median log2
fold changes: −1.3) subset was decreased in patients with MPA

(Supplementary Fig. 5c, d). These results suggest that activation of B
cells, characterized by an increased population of the CD69+ activated
naïve B cell subset and enhanced antibody production capacity, are
features of MPA.
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Fig. 1 | CITE-seqanalysisofPBMCs fromhealthydonors andpatientswithnewly
diagnosed, treatment-naïveMPA. aOverview of the experimental workflow.MPA
microscopic polyangiitis, HDhealthy donors, PBMCperipheral bloodmononuclear
cells. b UMAP plots showing CITE-seq data of 47,391 PBMCs derived from healthy
donors (n = 7, left) and 61,959 PBMCs derived from patients withMPA (n = 8, right).
28 cellular clusters were annotated with reference mapping. TCM central memory
T cells, TEM effector memory T cells, CTL cytotoxic T lymphocytes, dnT double
negative T cells, gdT gamma-delta T cells, Treg regulatory T cells, MAIT mucosal
associated invariant T cells, NK natural killer cells, Mono monocytes, cDC classical
dendritic cells, ASDC AXL+ dendric cells, pDC plasmacytoid dendritic cells, ILC
innate lymphoid cells, HSPC hematopoietic stem and progenitor cells. Percentage
of each cellular subpopulation relative to total number of PBMCs derived from
healthy donors (n = 7, blue dots) and patients with MPA (n = 8, red dots) for the
clusters with an average ratio of 1% or greater (c) and less than 1% (d). Values are

means with SEMs and nominal P-values are calculated using a two-sided Mann-
Whitney U test. e Neighborhood graph of monocytes using Milo differential
abundance testing. Nodes represent neighborhoods from the PBMC population.
Colors indicate the log2-fold difference between patients with MPA and healthy
donors. Neighborhoods that increased in patients with MPA are shown in red.
Neighborhoods decreased in patients withMPA are shown in blue. f Beeswarm and
box plots showing the distribution of log2-fold differences in neighborhoods in
different cell type clusters. Colors are represented similarly to e. Box plots show
median and interquartile range (IQR); the lower and upper hinges correspond to
the first and third quartiles. The upper whisker extends from the hinge to the
largest value no further than 1.5*IQR from the hinge. The lower whisker extends
from the hinge to the smallest value atmost 1.5*IQR from thehinge. Source data are
provided as a Source Data file.
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Differential abundance analysis was also performed on CyTOF
data using the Cydar method. Based on surface marker analysis, the
monocyte subsets were manually annotated and divided into four
subpopulations (Supplementary Fig. 6a). In patients with MPA, the

percentage of HLA-DR- CD14+ monocytes was higher compared to
healthy donors, while the percentages of cDC, CD16+ monocytes, and
HLA-DR+ CD14+ monocytes were lower (Supplementary Fig. 6b, c). A
feature plot of representative surface proteins that identify each cell
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cellular clusters were identified; activated CD14+ monocytes (CD14 Mono_-
Activated), CD14+ monocytes characterized by VCAN gene expression (CD14
Mono_VCAN), CD14+ monocytes characterized by interferon signature gene
expression (CD14 Mono_ISG), CD14+ monocytes characterized by HLA gene
expression (CD14 Mono_HLA), CD16+ monocytes (CD16 Mono), and classical den-
dritic cells (cDC).b Balloon plot showing highly expressed genes in eachmonocyte
subpopulation shown in a. Balloon color indicates the averaged scaled expression
of the indicated genes. Balloon size indicates the percentage of cells expressing the
indicated genes. c Neighborhood graph of monocytes using Milo differential
abundance testing. Nodes represent neighborhoods from the monocyte popula-
tion. Colors indicate the log2-fold difference between patients with MPA and

healthy donors. Neighborhoods that increased in patients with MPA are shown in
red.Neighborhoodsdecreased inpatientswithMPA are shown inblue.dBeeswarm
and boxplots showing the distribution of log2-fold differences in neighborhoods in
different cell type clusters. Colors are represented similarly to c. Box plots are
created in a similar fashion as in Fig. 1f. e UMAP plots showing the CD8+ T cell
subpopulations in 15 samples. Five cellular clusters were identified; naïve CD8+

T cells (CD8 T_Naïve), central memory CD8+ T cells (CD8 T_CM), effector memory
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T cells characterized by KIR gene expression (CD8 T_KIR). f Balloon plot showing
highly expressed genes in each population shown in e. g Neighborhood graph of
CD8+ T cells based on Milo differential abundance testing. The analysis was per-
formed similarly to c. h Beeswarm and box plots of CD8+ T cells based on Milo
differential abundance testing. The analysis was performed similarly to d. Box plots
are created in a similar fashion as in Fig. 1f.
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subset is shown in Supplementary Fig. 6d. TheCD8+ T cell subsetswere
manually annotated and divided into four subpopulations (Supple-
mentaryFig. 7a). In patientswithMPA, thepercentages ofCD8T_Naïve,
CM, and EM cells were lower compared to healthy donors. The per-
centage of CD8 T_CTL cells did not significantly change, but the cells
expressing granzyme B/perforin and cells characterized by high CD57
expression (CD8 T_KIR cells) were higher in patients with MPA com-
pared to healthy donors (Supplementary Fig. 7b–d). A feature plot of
representative surface proteins or intracellular cytokines that identify
each cell subset is shown in Supplementary Fig. 7d. Thus, the char-
acteristics of the cell populations detected with CITE-seq were con-
firmed using molecular-based analysis.

Distinction of transcriptome-based phenotypes using case-by-
case omics analysis
To detect case-by-case differences in gene expression profiles
among patients with MPA, differential expression genes (DEG)
analysis was performed to identify genes with higher expression
in patients with MPA than in healthy donors (Supplementary
Table 2a). As a result, 40 CD14+ monocyte signature genes and 18
ISGs were included in the top-ranked DEGs (Supplementary
Table 2b). Pathway analysis for DEGs revealed that CD14+ mono-
cyte signature and interferon alpha/beta signaling pathways were
enriched in patients with MPA (Fig. 3a). Subsequently, we created
a heat map of study participant–specific expression of ISGs,
CD14+ monocytes signature genes, and cytotoxic CD8+ T cell
signature genes (Fig. 3b). Patients MPA-1 and MPA-2 had high
expression of CD14+ monocytes signature genes and were there-
fore placed in the MPA-MONO group. Patients MPA-3, MPA-4, and
MPA-5 had high expression of ISGs and were therefore placed in
the MPA-IFN group. The remaining patients MPA-6, MPA-7, and
MPA-8 were placed in the MPA-Others group (Fig. 3b). Gene
module scores of each study participant are shown in Fig. 3c.
Among participants in the MPA-IFN group, ISG expression was
elevated in monocytes, CD4+ T cells, CD8+ T cells, B cells, and
natural killer (NK) cells (Supplementary Fig. 8). Using the anno-
tation and clustering shown in Fig. 2a, the ratio of cell numbers in
each subset to the total number of monocytes was calculated for
each case. The MPA-MONO group had a higher percentage of
CD14 Mono_Activated cells (MPA-1, 23.4% and MPA-2, 17.8% of the
total number of monocytes) and the MPA-IFN group had a higher
percentage of CD14 Mono_ISG cells (MPA-3, 38.7%, MPA-4, 37.9%,
and MPA-5, 42.6% of the total number of monocytes) than the
other groups (Fig. 3d). In the CD8+ T cell and B cell subsets, there
were no common changes in the cell populations that char-
acterized each group (Fig. 3e and Supplementary Fig. 9a).
Importantly, DEG analysis showed an elevated expression of MHC
class II genes (e.g. HLA-DPB1, HLA-DRB1) and ISGs (e.g. IFI44L,
IFITM1) in B cells from patients in the MPA-IFN group compared
to those in the MPA-MONO group (Supplementary Table 3).
Pathway analysis of the DEGs revealed an enrichment of MHC
class II pathways and immunoglobulin production pathways in
patients within the MPA-IFN group (Supplementary Fig. 9b). Thus,
two phenotypes of MPA were determined based on genes
expression: one characterized by CD14+ monocytes signature
genes and the other characterized by enhanced ISG expression.

Changes of transcriptome-based cell populations before and
after treatment
We next compared single-cell–based cell population profiles before
and after treatment in three patients; MPA-1, who was in the MPA-
MONO group, MPA-3 and MPA-5, who were in the MPA-IFN group.
PBMCs were collected from patient MPA-1 at the onset and at four
months after the initiation of treatment, from patient MPA-3 at
the onset and at twelve months after the initiation of treatment, and

from patient MPA-5 at the onset and at two months after the initiation
of treatment. The detailed clinical profiles of each patient are shown in
Supplementary Table 4. CITE-seq data of each participant was inte-
grated and projected in UMAP plots of monocytes (Fig. 4a). Increased
population in CD14 Mono_Activated (MPA-1; before treatment, 33.5%
and after treatment, 42.0%, MPA-3; before treatment, 1.42% and after
treatment, 11.3%, MPA-5; before treatment, 9.53% and after treatment,
22.4% of the total number of monocytes), CD14 Mono_VCAN (MPA-1;
before treatment, 46.6% and after treatment, 49.2%, MPA-3; before
treatment, 21.3% and after treatment, 43.1%, MPA-5; before treatment,
25.5% and after treatment, 50.8% of the total number of monocytes),
and decreased population in CD14 Mono_ISG (MPA-1; before treat-
ment, 6.18% and after treatment, 1.77%, MPA-3; before treatment,
38.6% and after treatment, 29.3%, MPA-5; before treatment, 48.3% and
after treatment, 14.4% of the total number of monocytes) were con-
sistent across three cases, irrespective of the treatment regimen,
duration, or recurrence (Fig. 4b). UMAP plots of CD8+ T cells before
and after treatment were similarly generated (Fig. 4c). There were no
significant changes in the CD8 T_CTL population in these two patients
(MPA-1; before treatment, 35.3% and after treatment, 20.5%, MPA-3;
before treatment, 16.0% and after treatment, 2.94%, MPA-5; before
treatment, 60.1% and after treatment, 65.7% of the total number of
CD8+ T cells; Fig. 4d).

We subsequently focused on the CD14 Mono_Activated and CD14
Mono_ISG subsets, conducting DEG analysis compared to the entire
CD14+ monocyte population (Supplementary Table 5). The upregu-
lated genes in CD14Mono_Activated, such as FOS, ALOX5AP, and NCF1,
indicate traits of immature monocytes, typically mobilized from
bone marrow during inflammation25. Module scoring analysis con-
firmed the similarity of CD14Mono_Activated to a previously reported
immature monocyte subset25 (Supplementary Fig. 10a, b). Further
pathway analysis substantiated that the transcription factors CEBPD
and RUNX1, known to be activated temporarily during steady-state and
sepsis-induced myelopoiesis25,32, were featured in CD14 Mono_-
Activated (Fig. 4e). Both DEG and pathway analyses of CD14Mono_ISG
indicated elevated levels of type I interferon-related genes, aligning
with the annotated cell populations (Supplementary Table 5 and
Fig. 4e). These findings suggest that the presence of CD14 Mono_-
Activated at the onset of MPA holds pathological significance, with an
increased population of this immature monocyte subset characteriz-
ing the MPA-MONO phenotype. We also performed a comparative
analysis to track genetic changes pre- and post-treatment in each
patient. Genes with altered expression in CD14+ monocytes in each
case are listed in Supplementary Table 6, with the log2 fold change for
each gene presented in Fig. 4f. The results showed an increase in IL1R2,
FKBP5, and CD163 expression in MPA-1, implying that monocyte acti-
vation and macrophage polarization33 are characteristic during MPA-
MONO relapse.

Application to the bedside and laboratory tests
To determine whether the classification of the MPA-MONO and MPA-
IFN groups could be used in real-world clinical practice, we evaluated
which clinical or laboratory parameters were correlatedwith theCD14+

monocyte signature scores and interferon signature scores shown in
Fig. 3c. The average expression of CD14+ monocyte signature genes
was correlatedwith the percentage ofmonocytes among PBMCs in the
complete blood count (CBC) (Supplementary Fig. 11a). The average
expression of ISGs was correlated with serum IFN-α concentrations
(Supplementary Fig. 11b). Therefore, we reviewed the clinical infor-
mation and measured serum IFN-α concentrations in 43 patients with
MPA (Supplementary Table 7). As expected, patients with MPA were
divided into three groups: patients with a high monocyte ratio (MPA-
MONO; green colored dots), patients with high serum IFN-α con-
centrations (MPA-IFN; pink colored dots), and patients with neither
characteristic (Fig. 5a). Only one patient had both a high monocyte
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ratio and high serum IFN-α concentrations (green and pink colored
dot). In newly diagnosed patients not yet undergoing immunosup-
pressive therapy, MPA-MONO (3 patients) and MPA-IFN (8 patients)
remained distinctly classified (Supplementary Fig. 12a). Among the
BVAS components, patients in the MPA-IFN group had significantly
more severe renal symptoms compared to patients in theMPA-MONO
group (uncorrected P =0.033) (Fig. 5b). Seven out of total nine
patients in the MPA-MONO group experienced relapse, whereas only
one out of nine patients in the MPA-IFN group experienced relapse.
The annualized relapse rate of patients in the MPA-MONO group was
significantly higher than thatof patients in theMPA-IFNgroup (Fig. 5c).

Next, we reviewed clinical information of 43 patients with MPA to
evaluate the correlation between the monocyte ratio and laboratory
parameters, and between serum IFN-α concentrations and laboratory
parameters (Supplementary Table 8). The monocyte ratio was posi-
tively correlated with the number of neutrophils and the levels of
C-reactive proteins (Fig. 5d). Serum IFN-α levels were positively cor-
related with urine protein levels and serumMPO-ANCA levels (Fig. 5d).
The monocyte ratio in the CBC remained almost unchanged between
newly-onset cases and cases under treatment (Fig. 5e). In addition, the
monocyte ratio was monitored in newly diagnosed MPA-MONO and
MPA-IFN cases over a period of one year from their initial
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hospitalization (Supplementary Fig. 12b). While there was a clear dif-
ference in the monocyte ratio at baseline, no significant differences
emerged over time. Serum IFN-α concentrations significantly
decreased in cases under treatment (Fig. 5e). Finally, to provide
prognostic insights from our cohort, we constructed a receiver oper-
ating characteristic (ROC) curve for predicting relapse fromserum IFN-
α concentration and percentage of monocytes in PBMC in newly
diagnosedMPApatients (Fig. 5f). ThisROCcurve canpredict the riskof

relapse before initiation of immunosuppressive treatment with a sen-
sitivity of 82% and a specificity of 50% (Fig. 5f).

Collectively, the percentage of monocytes and serum IFN-α levels
were the markers that clearly characterized the MPA-MONO andMPA-
IFN groups, respectively. MPA-MONO was resistant to immunosup-
pressive therapy. MPA-IFN was characterized by renal symptoms and
high MPO-ANCA titers and showed good response to treat-
ment (Fig. 6).
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Discussion
In this study, we present multi-omics analysis–based characterization
of PBMC subtypes derived from patients with newly-onset, treatment-
naïve MPA. Our CITE-seq results confirm the findings of previous stu-
dies, showing significant differences in the ratio of certain cell types,
such as lower numbers of gamma-delta T cells,MAIT cells34, and cDCs35

(Fig. 1c, d). MAIT cells and gamma-delta T cells mediate early innate
responses and are essential for autoimmune responses against MPO36.
Gamma-delta T cellsmigrating into draining lymph nodes promoteDC
survival and activation. These changes in cell type ratios may be a
result of the recruitment of gamma-delta T cells and DCs from per-
ipheral vessels into tissues and lymph nodes. Among the major cell
populations, we found significantly more CD14+ monocytes and fewer
CD8+ naïve T cells to be characteristic of MPA (Fig. 1c). However, it was
unclear how changes in the ratios of other cell groups offset these
differences.

Milo, a method for differential abundance analysis, is a statistical
framework that performs difference-in-presence tests by assigning
cells to partially overlapping neighborhoods on a k-NN graph23. In this
study, Milo enabled us to visualize some notable changes in gene
expression–based subsets of PBMCs. Genes associated with the acti-
vation of CD14+ monocytes were highly enriched in PBMCs from
patients with MPA (Fig. 2c, d). This type of monocyte exhibits a gene
profile that is very similar to the profile previously reported for CD14+

monocytes that are more prevalent in patients with sepsis25. Further-
more, there have been reports of higher populations of CD14+ mono-
cytes expressing Toll-like receptor (TLR) 2, TLR4, major
histocompatibility complex (MHC) class II, and integrins, indicating
macrophage-like activationof CD14+monocytes in the pathogenesis of
AAV37–39. It is widely known that ANCA production is triggered by
preceding infections. Exposure to pathogens can recruit activated
monocytes and be a driving force for the pathogenesis of MPA.
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Another interesting finding is the increased population of CD14+

monocytes with ISGs (Fig. 2c, d). The significance of ISGs has recently
been reported in various immune diseases. In AAV, response to
remission induction therapy can be predicted by monitoring the
decrease in several IFN-related genes, such as IRF7, IFIT1, IFIT5, OASL,
and GBP-140. Importantly, we showed the ISG score is positively cor-
related with serum concentrations of IFN-α in patients with MPA. The
primary source of interferon production in MPA is unclear, as detect-
ing IFN-α gene expression via scRNAseq can be challenging due to the
relatively low expression of these genes, as previously reported41,42.
The aberrant activation of neutrophils in MPA may be a factor as the
nucleic acid component of neutrophil extracellular traps can induce
IFN activity43.

Peripheral blood samples from patients with recurrent auto-
immune diseases typically contain higher numbers of CD8+ CTLs
compared to healthy donors, and these cells contribute to organ
damage16. We found that long-lived memory subsets such as TCM;
central memory T cells and TEM; effector memory T cells were
decreased in the peripheral blood of patients withMPA,while theCD8+

CTL subset with high cytotoxic activity was increased (Fig. 2g, h).
Interestingly, KIR+ CD8+ T cells, a subset of CD8+ T cells that prevent

immune overshoot by eliminating CD4+ T cells that react abnormally
to antigens29, were significantly increased in patients with MPA. KIR+

CD8+ T cells play a role in suppressing autoimmune responses by
recognizing and killing complexes of autopeptides bound to MHC
class I antigens that are specifically present on autoreactive CD4+

T cells. KIR+ CD8+ T cells are increased in patients with autoimmune
diseases and are associated with vascular damage in patients with
COVID-1929. Thus, KIR+ CD8+ T cells can be a key player in vasculitis and
a promising therapeutic target for MPA.

Gene expression analysis of each patient allowed us to divide
patients with MPA into two main subgroups: those with increased
CD14+ monocyte features and those with high ISG features (Fig. 3b, c).
In this study, we referred to these phenotypes as MPA-MONO and
MPA-IFN, respectively. The increase in Mono_Activated and CD14
Mono_VCAN populations, as well as the decrease in CD14 Mono_ISG
population, were consistent across all three cases, regardless of the
treatment regimen, duration, or recurrence (Fig. 4a, b). A previous
study suggested that this type of activated CD14+ monocytes may
originate from bone marrow mononuclear cells rather than from
mature peripheral blood cells25. In MPA, pathogen-induced myelo-
poiesis and dysregulated hematopoietic precursor differentiationmay

Fig. 6 | Graphical scheme of this study.Newly-onset, untreated patients withMPA
(n = 8) and healthy donors (n = 7) were recruited for this study. MPA is character-
ized by increased proportions of cytotoxic CD8+ T cells, KIR+ CD8+ T cells, activated
CD14+ monocytes, CD14+ monocytes with ISG expression, CD69+ naïve B cells,
plasmablasts, and plasma cells. MPA was further subclassified into two groups
basedon the highexpression of CD14+monocytes signature genes (MPA-MONO) or
high expression of ISGs (MPA-IFN). The percentage of monocytes and serum IFN-α
levelswere the clinicalmarkers that clearly distinguishedMPA-MONOandMPA-IFN

groups, respectively. The findings of this study suggest clinical recommendations
for estimating prognosis for each patient based on the immunological phenotypes
of MPA. MPAmicroscopic polyangiitis, PBMC peripheral blood mononuclear cells,
CITE-seq cellular indexing of transcriptomes and epitopes by sequencing, CyTOF
cytometry by time-of-flight, CTL cytotoxic T lymphocytes, KIR killer
immunoglobulin-like receptor, ISG interferon signature genes, MAIT mucosal
associated invariant T cells, cDC classical dendritic cells, gdT gamma-delta T cells,
CBC complete blood count.
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lead to the reprogrammed monocyte population entering the blood-
stream. These monocytes expressing an imprinted inflammatory
condition at the bone marrow level may be responsible for resistance
to oral or intravenousmedication. However, post-treatment single-cell
analyses were conducted on three cases with varying treatments and
durations. The limited number of cases represents a study limitation
due to potential immunological alterations resulting from disparate
treatment regimens.

Translating of the results from large-scale single-cell analysis to
clinical practice is a significant translational challenge currently. In our
study, CD14+monocyte signature scores correlatedwith themonocyte
ratio to the total number of PBMCs in a complete blood count, and ISG
scores strongly correlated with serum IFN-α concentrations (Fig. 5a).
Patients in the MPA-MONO group exhibited a higher rate of relapse
(Fig. 5c). Patients in the MPA-IFN group had characteristics such as
proteinuria, renal symptoms as assessedby theBVAS, andhigh titers of
MPO-ANCA (Fig. 5b, d). By assessing serum IFN-α concentrations and
monocyte ratios, it may be possible to predict the clinical phenotype
and probability of disease recurrence in each patient. Moreover,
monocyte-targeted therapies may be more suitable for the MPA-
MONO phenotype, while B-cell–specific therapies or anti-IFN agents
may be more appropriate for the MPA-IFN phenotype.

In summary, single-cell multi-omics analysis revealed that
increased proportions of activated CD14+ monocytes, CD14+ mono-
cytes characterized by ISG expression, cytotoxic CD8+ T cells, and KIR+

CD8+ T cells were characteristic of newly diagnosed, untreated MPA.
MPA was classified into two groups characterized by high expression
of CD14+monocyte signature genes (MPA-MONO) and high expression
of ISGs (MPA-IFN). The percentage of monocytes and serum IFN-α
levels were the clinical markers that clearly characterized MPA-MONO
and MPA-IFN groups, respectively. MPA-MONO is resistant to immu-
nosuppressive therapy. MPA-IFN is characterized by renal symptoms
and high MPO-ANCA titers (Fig. 6). Our findings provide insights into
future therapies for vasculitis by characterizing the immunological
phenotype of each patient with MPA. Further studies are needed to
evaluate the roles of CD14+ monocytes and CD8+ T cells in the clinical
course of MPA and to determine their potential as therapeutic targets.

Methods
Study participants
Samples were obtained after informed consent was provided by the
study participant, in accordance with the Declaration of Helsinki and
with approval from the ethics review board of the Graduate School of
Medicine,OsakaUniversity, Japan (No. 855).We have obtained consent
to publish information including age, sex, the name of medical center,
and the diagnosis. Study participants were not compensated.MPAwas
defined according to the 2012 Chapel Hill Consensus Conference
nomenclature and definitions. Patients with AAV were diagnosed as
having MPA according to the 2022 American College of Rheumatol-
ogy/European Alliance of Associations for Rheumatology classification
criteria44,45. The diagnosis was verified by at least 2 rheumatologists.
The Birmingham Vasculitis Activity Score (BVAS) 2008 version 3 was
used to rate MPA disease activity. We recorded the clinical status of
each patient, with 31 December 2022, serving as the endpoint for this
study. We calculated the individual annualized relapse rate (ARR) for
each patient by dividing the number of relapses by the duration from
onset to the endpoint, then converting this into an annual average.

Patient profiles
Eight patients withMPA (four females;median age, 73 years) and seven
healthy donors (four females;median age, 62 years) were recruited for
CITE-seq experiments. All PBMCs samples were submitted for cyto-
metry by time-of-flight (CyTOF) analysis as well. All patients with MPA
hadnewly-onset disease and hadnot received any immunosuppressive
therapy. All patients were admitted to Osaka University Hospital and

underwent a comprehensive assessment to rule out potential vasculitis
mimics, including infectious diseases and neoplastic lesions, before
applying the 2022ACR/EULARMPAclassification criteria. PatientMPA-
1 presented with systemic symptoms, progressive interstitial pneu-
monia (IP), and aseptic recurrent bilateral otitis media. Patient MPA-2
presented with systemic symptoms, progressive IP, and renal dys-
function. Patients MPA-3 and MPA-8 presented with systemic symp-
toms and pauci-immune glomerulonephritis. Patient MPA-4 presented
with systemic symptoms and extensive pachymeningitis. Patients
MPA-5 and MPA-7 presented with multiple mononeuropathy. Patient
MPA-6 presented with retinal vasculitis via fundoscopic examination.
43 patients with MPA (24 females; median age, 75 years) were addi-
tionally recruited to evaluate clinical and laboratory parameters. All
serum samples were submitted to IFN-α ELISA.

Serum and PBMCs preparation
Whole blood (3.5mL) was collected in Vacutainer SST II tubes (BD
Diagonostics, Cat. No. 365920). Tubes are centrifuged for 10min at
1200×g. The resultant supernatant was collected as serum and stored
at −80 °C. For PBMCs collection, whole blood (20mL) was collected
into a Na-heparin blood collection tube (Terumo, Cat. No. VP-H070K).
PBMCs were separated using Leucosep (Greiner, Cat. No. 22788-013).
PBMCs were washed and resuspended with Cellbanker 1plus
(ZENOAQ, Cat. No. CB023) to a concentration of 1.0 × 107 cell/mL
before being stored at −150 °C.

Single-cell library construction
PBMCs were thawed and DNA-barcoded antibodies for CITE-seq were
attached. Information on the antibodies used for CITE-seq is shown in
Supplementary Table 9. Single-cell suspensions were processed
through the 10x Genomics Chromium Controller (10x Genomics). The
libraries were constructed following the protocol outlined in the
Chromium Single Cell 5’ Reagent Kits v2 (Dual Index, Cat. No. PN-
1000263)UserGuide (10xGenomics). Briefly, up to 10,000 labeled live
cells per sample were separately loaded into the 10x Genomics plat-
form without sample mixing to create a barcoded cDNA library for
individual cells. Data quality control was performed using the Bioa-
nalyzer (Agilent). Individual libraries were pooled for sequencing on
the HiSeq 2500 or Novaseq 6000 platform (Illumina) to achieve at
least 20,000paired-end reads per cell for gene expression and 60,000
paired-end reads per cell for surface proteins. Sequence information is
summarized in Supplementary Table 10.

Reference-based and manual annotation of CITE-seq data
RawFASTQ files werematched to theGRCh38 referencegenomeusing
CellRanger (version 6.0.6). Filtered HDF5 feature-barcode matrix files
were generated using CellRanger count to establish a Seurat object.
The Seurat R package (V4.2.0) was used for data quality control, scal-
ing, transformation, clustering, dimensionality reduction, differential
expression analysis, and visualization. A total of 109,350 cells were
selected for further analysis out of a total of 117,791 putative cells using
unique molecular identifiers (UMIs) per cells and % mitochondrial
reads. Data were normalized and scaled using the SCTransform func-
tion. Cellular identity was determined by two rounds of clustering. At
the first round of clustering, reference-based integration was applied
for the query dataset using the CITE-seq dataset of 211,000 human
PBMCs as a reference18. The FindTransferAnchors functionwas used to
find anchors between the reference and the query using precomputed
supervised principal component analysis (supervised PCA) transfor-
mation for SCT-normalized data. The MapQuery function was then
used to transfer cell type labels and protein data from the reference to
the query. Platelets and erythrocytes were removed from the analysis.
To identify clusters within each major cell type, we performed a sec-
ond round of clustering on monocytes (CD14 Mono, CD16 Mono, and
cDC) and CD8+ T cells (CD8 Naïve, CD8 TCM, and CD8 TEM). The
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RunUMAP function was used for uniform manifold and projection
(UMAP) dimensional reduction with 30 precomputed spca dimen-
sions. A nearest-neighbor graph using the 30 dimensions of the
supervided PCA reduction was computed using the FindNeighbors
function followed by clustering using the FindClusters function. The
newly generated UMAP was visualized using the DimPlot function.
Each cluster was manually annotated using gene expression and pro-
tein data. Doublets were manually removed using cell-surface protein
data (e.g., CD3, CD4, CD8, CD11c, CD19, CD56), separately.

Differential abundance analysis using scRNA-seq data
Differential abundance analysis of patients with MPA and healthy
donors was performed using scRNA-seq data. We used miloR (version
3.15) to detect sets of cells that are differentially abundant in various
conditions by modeling counts of cells in the neighborhoods of a
k-nearest neighbor (KNN) graph23. We first used the buildGraph func-
tion to construct a KNN graph based on precomputed supervised PCA
with k = 10, using 30 principal components (d = 30). Next, we used the
makeNhoods function to assign cells into neighborhoods based on
their connectivity over the KNN graph. For computational efficiency,
we subsampled 10% for monocytes and CD8+ T cells. To test for dif-
ferential abundance, Milo fit an NB GLM to the counts for each
neighborhood, accounting for different numbers of cells across sam-
ples using TMM normalization. We included age as covariates in
testNhoods function. The log2 fold change of number of cells between
two conditions in each neighborhood was used for visualization.

Module scoring using scRNA-seq data
Gene scores for each study participant were visualized using the Dot-
plot function based on cell-based scores, which were calculated using
the AddModuleScore function. Interferon signature genes (ISGs) used
for module scoring were previously reported46. Classical monocyte
signature genes and CD8+ cytotoxic T lymphocytes (CTL) signature
genes were determined in the human PBMC dataset18 as genes highly
expressed in the CD14+ monocyte population and the CD8+ CTL
population, respectively. The immaturemonocyte signaturegenes and
interferon-gamma signature genes were identified in accordance with
previous studies25,47.

CyTOF assays
PBMCs were thawed and prepared to a concentration of 1 × 107 cell/mL.
Next, they were cultured in RPMI-1640 medium for 6 h at 37 °C with
GolgiStop supplementation (BD bioscience, Cat. No. 554724). To limit
the batch effect, we barcoded each sample based on combinations of
seven types of anti-CD45 antibodies obtained from MCP9 Labeling Kit
(StandardBiotools, Cat. No. 201111 A) 30minbefore the endpoint of the
culture. Cell-ID Cisplatin (Fluidigm, Cat. No. 201064) (2μM) was added
15min before the endpoint of the culture. All barcoded samples were
then combined and stainedwith antibodies specific for surfacemarkers
for 30min at room temperature. To normalize the data across multiple
batches, we combined control PBMCs (Cellular Tchnology Limited, Cat.
No. CTL-UP1) across all batches. The samples were fixed with 1mL of
Maxper Fix and Perm buffer (Fluidigm, Cat. No. 201067) for 30min at
4 °C. Cells were stained in 1mL of Foxp3 Fixation/Permeabilization
buffer (eBioscience, Cat. No. 00-5523-00) with antibodies specific for
intracellular cytokines and Cell-ID intercalator-Ir (Fluidigm, Cat. No.
201192A) for 30min at room temperature. The antibodies used for
CyTOF are shown in Supplementary Table 11. Antibodies were obtained
from the Human Maxpar Direct Immune Profiling Assay (Standard
Biotools, Cat. No. 201334), the Human PB Phenotyping Panel Kit
(Standard Biotools, Cat. No. 201304), the Human T-Cell Phenotyping
Panel Kit (Standard Biotools, Cat. No. 201305), and the Human Intra-
cellular Cytokine I Panel Kit (Standard Biotools, Cat. No. 201308) and
used at the concentrations indicated in the kits. The samples were
suspended in a total of 10% Four Element Calibration Beads (Fluidigm,

Cat. No. 201078) with Cell Acquisition Solution (Fluidigm). CyTOF data
were collected with a Helios CyTOF system (Fluidigm, Cat. No. 201244).
Raw FCS data underwent bead-based normalization with CyTOF soft-
ware (version 7.0.8493; Fluidigm).

Normalization and population analysis of CyTOF data
In the preprocessing step, the FCS data were debarcoded by gating
based on the staining patterns of anti-CD45 antibody–conjugated
metals in Cytobank (https://premium.cytobank.org/cytobank/). The
pre-processing gating strategy of the FCS files is shown in Supple-
mentary Fig. 13. We used CytoNorm48 and normalized the data
across multiple batches based on a combined control sample. Flow-
SOM clustering was used to make 10 clusters for control samples
with learning a spline to transfer from the computed 101 quantities.
Combined samples were mapped with FlowSOM clustering and
normalized based on the computed spline. Newly created FCS
files were analyzed in Cytobank for PBMCs analysis. For each
study participant, 10,532–99,958 single live cells were identified
and used for further analysis. UMAP was applied to all normalized
samples. Cells weremanually annotated with surface proteins listed in
Supplementary Table 11.

Differential abundance analysis of CyTOF data
We used cydar (version 1.22.0)49 to detect the set of cells that was
differentially abundant in patients with MPA and healthy donors using
CyTOF data. Normalized FCS files were transformed using the trans-
formation function and used to construct hyperspheres using the
countCells function (downsample = 10) with the tolerance parameter
chosen so that each hypersphere had at least 50 cells, as estimated
using the neighborDistances function. Hyperspheres frommonocytes
or CD8+ T cells were then extracted and UMAP was applied to aggre-
gated data from 15 individuals using the umap function. Enrichment of
each hypersphere from patients with MPA was visualized using the
ggplot function from ggplot2 (version 3.4.0).

Pseudo-bulk differential gene expression analysis using scRNA-
seq data
Differential gene expression analysis was performed between patients
with MPA and healthy donors. Pseudo-bulk samples were first created
by aggregating gene counts and normalized by the overall counts in
individual samples. Genes whose expression rate wasmore than 15% in
either patients with MPA or healthy donors were included in the ana-
lysis. P-values were calculated using Student’s t-test. For the char-
acterization of differential expression genes (DEG), we performed
gene set enrichment analysis using Enrichr50 for highly expressed
genes inMPA (FoldChange >1.5). HumanGeneAtlas fromBioGPS51 and
Reactome 201552 were used as dataset and adjusted P-values for each
pathwaywere calculated by Benjamini–Hochbergmethod.We utilized
ENCODE and ChEA Consensus TFs from ChIP-X53 to calculate the
adjusted P-values for each transcription factor-related pathway of
DEGs inCD14Monocyte_Activated andCD14Mono_ISG.DEGs in B cells
were analysed using GOBiological Process 202354. ISGs were identified
using a gene set termed “Interferon alpha/beta signaling” and “Inter-
feron gamma signaling” in Reactome 2015, and “Interferon Alpha
Response” and “Interferon Gamma Response” from MSigDB Hallmark
2020 fromGSEA47. CD14Mono-signature genes were identified using a
gene set termed “CD14+ Monocytes” or “CD33+ Myeloid” in Human
Gene Atlas, and “CD14 Monocyte” and “Monocyte” in Azimuth Cell
Types 202118.

Measurement of serum interferon-alpha (IFN-α) levels
Serum IFN-α concentrations were measured using a pan–IFN-α ELISA
detection kit (PBL Assay Science, Cat. No. 41115-1) using Flex Station3
(Molecular Devices) and analyzed using SoftMax Pro (version 7.1,
Molecular Devices).
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ROC curve
The ROC curve for relapse prediction was constructed using pROC
package (v1.18.0). We used the glm function and calculated the coef-
ficient in generalized linear model (GLM) to create the combination
ROC curve. The cut-off value was determined using Youden’s index.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Count matrix data of CITE-seq are available at Genomic Expression
Archive (GEA) with accession code E-GEAD-635 [https://humandbs.
biosciencedbc.jp/en/hum0416-v1]. The reference for cell type annota-
tion of PBMC in scRNA-seq was obtained from the following website
(https://satijalab.org/seurat/articles/multimodal_reference_mapping.
html). TheGRCh38 reference genomewas obtained fromNCBI (https://
www.ncbi.nlm.nih.gov/assembly/GCF_000001405.26/). Source data
are provided with this paper.

Code availability
Experimental protocols and the data analysis pipeline used in ourwork
follow the 10X Genomics and Seurat official websites. The analysis
steps, functions and parameters used are described in detail in the
Methods section. Custom code used in the paper is available at gihub
(https://github.com/KeiNishim/MPA_scRNAseq).
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