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Neuropathologist-level integrated classifica-
tion of adult-type diffuse gliomas using deep
learning from whole-slide pathological
images
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Current diagnosis of glioma types requires combining both histological fea-
tures and molecular characteristics, which is an expensive and time-
consuming procedure. Determining the tumor types directly fromwhole-slide
images (WSIs) is of great value for glioma diagnosis. This study presents an
integrated diagnosis model for automatic classification of diffuse gliomas
from annotation-free standard WSIs. Our model is developed on a training
cohort (n = 1362) and a validation cohort (n = 340), and tested on an internal
testing cohort (n = 289) and two external cohorts (n = 305 and 328, respec-
tively). The model can learn imaging features containing both pathological
morphology and underlying biological clues to achieve the integrated diag-
nosis. Ourmodel achieves highperformancewith area under receiver operator
curve all above 0.90 in classifying major tumor types, in identifying tumor
grades within type, and especially in distinguishing tumor genotypes with
shared histological features. This integrated diagnosismodel has the potential
to be used in clinical scenarios for automated and unbiased classification of
adult-type diffuse gliomas.

Diffuse gliomas, which account for the majority of malignant brain
tumors in adults, comprise astrocytoma, oligodendroglioma, and
glioblastoma1,2. The prognosis of diffuse gliomas varies, with median
survival being 60–119 months in oligodendroglioma, 18–36 months in
astrocytoma, and 8 months in glioblastoma1. The fifth edition of the
World Health Organization (WHO) Classification of Tumors of
the Central Nervous System (CNS) released in 2021 has categorized
adult-type diffuse gliomas into three types: (1) astrocytoma, isocitrate

dehydrogenase (IDH)-mutant, (2) oligodendroglioma, IDH-mutant,
and 1p/19q-codeleted, and (3) glioblastoma, IDH-wildtype (short for A,
O, and GBM)2. This newest edition has combined not only established
histological diagnosis but also molecular markers for achieving an
integrated classification of adult diffuse gliomas2,3.

In a clinical scenario, integrated diagnosis by combining histolo-
gical and molecular features of glioma is a time-consuming and labor-
ious procedure, as well as an economically expensive examination for
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patients. On one hand, microscopic diagnosis requires experienced
pathologists’ exhaustive scrutiny of hematoxylin and eosin-stained
(H&E) slides. Moreover, histological diagnosis of glioma is subjected to
interobserver variation, and routine review of histological diagnosis by
multiple pathologists is recommended4,5. On the other hand, molecular
diagnosis necessitates invasive surgical resection/biopsy for glioma
tissue followed by Sanger sequencing6 and fluorescence in situ hybri-
dization (FISH)7, which are not always available in routine examinations
of many medical centers.

The development of digitized scanners allows glass slides to be
translated into whole-slide images (WSIs), which offers an opportunity
for image analysis algorithms to achieve automatic and unbiased
computational pathology. Most existing WSI-based diagnosis models
adopt a deep-learning technique named convolutional neural network
(CNN) for image recognition8–10. For glioma, several pathological CNN
models have been proposed, such as a grading model trained on a
small public dataset to distinguish glioblastoma and lower-grade
glioma11, a diagnostic platform developed on 323 patients to classify
five subtypes according to the 2007WHOcriteria12, amodel trained on
The Cancer Genome Atlas dataset to classify the three major types of
glioma based on the 2021 WHO standard13, and a histopathological
auxiliary system for classification of brain tumors14. However, a WSI
diagnostic model for detailed classification of adult-type diffuse
glioma strictly according to the 2021 WHO rule is still in demand.
Previous evidence has shown histopathological image features in
glioma are associated with specific molecular alterations such as the
IDH mutation15–18. However, as each genotype may share overlapping
histological features on H&E sections (e.g., IDH-wildtype and IDH-
mutant tumors), developing an integrated diagnosis model directly
from WSI to classify the 2021 WHO types that combine both patho-
logical and molecular features is still challenging.

Furthermore, there are unique challenges in CNN diagnosis using
WSIs due to their gigapixel-level resolution, whichmakes original CNN
computationally impossible. To tackle this obstacle, a WSI can be tiled
intomany small patches, fromwhicha subset of cancerouspatches can
be selected from manually annotated pixel-level regions of interest
(ROI). To avoid the heavy burden of manual annotation, weakly
supervised learning techniques were applied to train WSI-CNNs with
slide- or patch-level coarse labels such as cancer or non-cancer10,18–25.

In this work, we propose a neuropathologist-level integrated
diagnosis model for automatically predicting 2021 WHO types and
grades of adult-type diffuse gliomas from annotation-free standard
WSIs. The model avoids the annotation burden by using patient-level
tumor types directly as weak supervision labels while exploiting the
type-discriminative patternsby leveraging a featuredomain clustering.
The integrated diagnosis model is developed and externally tested
using 2624 patients with adult-type diffuse gliomas from three hospi-
tals. All datasets have integrated histopathological and molecular
information strictly required for 2021 WHO classification. Our study
provides an integrated diagnosis model for automated and unbiased
classification of adult-type diffuse gliomas.

Results
Overview and patient characteristics
There were three datasets included in this study: Dataset 1 contained
1991 consecutive patients from the First Affiliated Hospital of
ZhengzhouUniversity (FAHZZU), Dataset 2 contained 305 consecutive
patients from Henan Provincial People’s Hospital (HPPH), and Dataset
3 contained 328 consecutive patients from Xuanwu Hospital Capital
Medical University (XHCMU). The selection pipeline was shown in
Fig. 1a. Therefore, a total of 2624patientswere included in this study as
the study dataset (mean age, 50.97 years ± 13.04 [standard deviation];
1511malepatients), including 503A, 445O, and 1676GBM (Fig. 1b). The
study dataset comprised a training cohort (n = 1362, mean age, 50.66
years ± 12.91; 787 men) from FAHZZU, a validation cohort (n = 340,

mean age, 50.81 years ± 12.33; 195 men) from FAHZZU, an internal
testing cohort (n = 289, mean age, 50.25 years ± 13.08; 172 men) from
FAHZZU, an external testing cohort 1 (n = 305, mean age, 52.46
years ± 12.82; 171 men) from HPPH, and external testing cohort 2
(n = 328, mean age, 50.82 years ± 14.25; 186 men) from XHCMU. The
datasets were described in detail in Supplementary Methods A1. The
clinical characteristics and integrated pathological diagnosis of the
four cohorts are summarized in Supplementary Table 1. The detailed
protocols for molecular testing are described in Supplementary Meth-
ods A2–A3. Representative results of IDH1/IDH2 mutations, 1p/19q
deletions, CDKN2A homozygous deletion, EGFR amplification, and
Chromosome 7 gain/Chromosome 10 loss are depicted in Supplemen-
tary Figs. 1–4. The integrated classification pipeline according to the
2021 WHO rule was shown in Fig. 2 and described in Supplementary
Methods A4. There was no significant difference in type, grade, gender,
age, and IDH mutation status among the training cohort, internal
validation cohort, and internal testing cohort (two-sided Wilcoxon test
or Chi-square test P-value >0.05).

Patch clustering-based integrated diagnosis model building
To select a subset of discriminative patches from a WSI, we clustered
the patches based on their phenotypes and distinguished the more
discriminative ones. The pipeline consisted of four steps: patch clus-
tering, patch selection, patch-level classification, and patient-level
classification, as shown in Fig. 1c. The clustering process can be found
in Supplementary Methods A5. The CNN architecture and training
parameters for patch selection were described in Supplementary
Methods A6.

In the training cohort, 644,896 patches were extracted in total.
Using a subset of 43653 patches from 100 randomly selected patients
in the training cohort, a K-means clustering model was developed,
where both the silhouette coefficient and the Calinski-Harabasz index
reached their highest value at the optimal cluster number of nine, as
shown in Fig. 3a, b. Using the K-mean algorithm, all 644,896 patches
from the training cohort were partitioned into nine clusters. Corre-
spondingly, nine separate patch-level CNN classifiers were obtained,
and their patch-level accuracy in classifying the six categories was
shown in Fig. 3c. Among them, three classifiers trained on cluster 2,5,7
hadhigher accuracy than thebenchmark classifier (shownby the green
bar in Fig. 3c). Therefore, the three clusters containing 275,741 patches
in training cohort were selected for building the final patch-level
classifier. The clustering results for three representative patients are
shown in Fig. 3d. It showed the patch heterogeneity across clusters,
implying the capability of the clustering-based method in distin-
guishing different image patterns. The tumor classification perfor-
mance of the patch-level classifier built on the three selected clusters
in each cohort is shown in Supplementary Fig. 5.

Classification performance of the integrated diagnosis model
The diagnostic model was obtained by aggregating the patch-level
classifications into patient-level results. We first showed the patient-
level cross-validation results. The ROC curves for each fold and the
meanROC curves over all folds for classifying the six categories on the
validation cohortwere shown in Supplementary Fig. 6. The boxplots of
AUCs in all folds were shown in Supplementary Fig. 7. The results
demonstrated the model stability across different folds. Next, we
assessed the performance of the best model (the fifth model, corre-
sponding to ROC curves for fold 5 in Supplementary Fig. 6) selected in
cross-validation on multiple testing cohorts. In classifying the six
categories (task 1) of A Grade 2, A Grade 3, A Grade 4, O Grade 2, O
Grade 3, and GBMGrade 4 (short for A2, A3, A4, O2, O3, and GBM), the
model achieved corresponding AUCs of 0.959, 0.995, 0.953, 0.978,
0.982, 0.960 on internal validation cohort, 0.970, 0.973, 0.994, 0.932,
0.980, 0.980 on internal testing cohort, 0.934, 0.923, 0.987, 0.964,
0.978, 0.984 on external testing cohort 1, and 0.945, 0.944, 0.904,
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0.942, 0.950, 0.952onexternal testing cohort 2, respectively, as shown
in Fig. 4a–d and Table 1. In classifying the three types of A, O, and GBM
while neglecting grades (task 2), the model achieved corresponding
AUCs of 0.961, 0.974 and 0.960 on internal validation cohort, 0.969,
0.974, 0.980 on internal testing cohort, and 0.938, 0.973 and 0.983 on

external testing cohort 1, and 0.941, 0.938 and 0.952 on external
testing cohort 2, respectively, as shown in Fig. 4e–h andTable 1. The PR
curves of the diagnosticmodel related to task 1 and task 2 were shown
in Supplementary Fig. 8, demonstrating themodel performance in this
data imbalance problem.
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Fig. 2 | Schematic showing the classificationofadult-typediffusegliomas inour study.All tumors included inour studyunderwent the sameclassificationpipeline.G2/
3/4: grade 2/3/4; MVP: microvascular proliferation; +10/-7: whole chromosome 7 gain and whole chromosome 10 loss.
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Fig. 1 | Dataset andpipeline of the study. aThepatient selection procedure.bThe
bar graph of the patient/patch number for each tumor type in each cohort. c The
pipeline of the presented clustering-based annotation-free classification method.
FAHZZU First Affiliated Hospital of Zhengzhou University, HPPH Henan Provincial
People’s Hospital, XHCMU Xuanwu Hospital Capital Medical University. A2

Astrocytoma, IDH-mutant, Grade 2; A3 Astrocytoma, IDH-mutant, Grade 3; A4
Astrocytoma, IDH-mutant, Grade 4; O2 IDH-mutant, and 1p/19q-codeleted,Grade 2;
O3 IDH-mutant, and 1p/19q-codeleted, Grade 3; GBM Glioblastoma, IDH-wildtype,
Grade 4.
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Considering that IDH-wildtype diffuse astrocytic tumors without
the histological features of glioblastoma but with TERT promoter
mutations, EGFR amplification, or Chromosome 7 gain/Chromosome
10 loss (classified as glioblastomas in 2021 standard) may share similar
histological features with the IDH-mutant Grade 2–3 astrocytoma, we
also assessed the model’s ability in classifying these two categories
(task 3). In these two subgroups, our model achieved high perfor-
mance with AUCs ranging from 0.935 to 0.984 in all cohorts, as shown
in Fig. 4i–l and Table 1. On the other hand, the IDH-mutant glio-
blastoma in the 2016 WHO classification is classified as IDH-mutant
astrocytoma grade 4 in the 2021 WHO classification, which may share
similar histological features such as microvascular proliferation with
IDH-wildtype glioblastoma. Our model also achieved good perfor-
mance in distinguishing these two subgroups with AUCs ranging
from 0.943 to 0.998 on all cohorts, as shown in Fig. 4m–p and
Table 1 (task 4).

Furthermore, we assessed the model performance in classifying
tumor grades within the type. In classifying A2, A3, and A4 within the
IDH-mutant astrocytoma subgroup (task 5), the model achieved high
AUCs ranging from 0.907 to 0.998 across all grades on all cohorts, as
shown in Supplementary Fig. 9a–dandTable 1. In classifyingO2andO3

within the oligodendroglioma subgroup (task 6), the model main-
tained high AUCs ranging from0.928 to 0.989 on all cohorts, as shown
in Supplementary Fig. 9e–h and Table 1. Moreover, we also assessed
the performance in distinguishing IDH-mutant diffuse astrocytoma
with IDH-mutant 1p/19q-codeleted oligodendroglioma (task 7),
achieving subgroup AUCs ranging from 0.957 to 0.994 on all cohorts,
as shown in Supplementary Fig. 9i–l and Table 1.

Comparison with other classification models
The performance of the proposed clustering-based model was further
compared with four previous models, a weakly supervised classical
multiple-instance learning (MIL) model8,9, an attention-based MIL
(AMIL) model26, a clustering-constrained-attention MIL (CLAM)20, and
the all-patch classificationmodel. The AUCs of the classical MIL model
and the all-patch model on all cohorts ranged from 0.793 to 0.997 in
classifying the six categories (task 1) while ranged from 0.894 to 0.981
in classifying the threemajor types (task2), as shown in Supplementary
Figs. 10 and 11 and Supplementary Data 1 and 2. The two advanced
methods, AMIL and CLAM, did not show significant improvement in
AUCs in tasks 1 and 2 compared with classical MIL, as shown in Sup-
plementary Figs. 12 and 13, respectively. The AUCs of all five models
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Fig. 3 | The results of patch clustering and patch selecting. a The silhouette plot
(left) and theCalinski-Harabasz indexplot (right) of theK-means clusteringmethod
with the cluster number ranging from 2 to 12. The silhouette coefficient, whose
value ranges from -1 to 1, is used to assess the goodness of a clustering. A higher
silhouette coefficient means better clustering. The Calinski-Harabasz index is cal-
culated as the ratio of the between-cluster variance to the within-cluster variance.
Similarly, a higher value of the Calinski-Harabasz index indicates better clustering
performance. Well-grouped clusters are apart from each other and clearly dis-
tinguished. The silhouette coefficient and the Calinski-Harabasz index achieved
their highest values of 0.447 and 4159.3, respectively, both at an optimal cluster
number of nine. b Visualization of the nine clusters of the 43653 patches from 100
randomly selected patients in the training cohort. c Bar graph of patch-level clas-
sification accuracy of nine separate cluster-based classifiers. Three classifiers

(shown by the red bar) trained on clusters 2,5,7 had higher accuracy than the
benchmark classifier (shown by the green bar). Then, the patches within the three
clusters 2,5,7 for each patient were selected for building the patient-level classifier.
d The result of patch clustering and patch selection for three representative
patients (top: A2; middle: O2; bottom: GBM). For each patient, the three images in
the first row from left to right are the original whole-slide image, the distribution of
the clustered patches (each color indicates a cluster), and the finally selected pat-
ches in the three clusters, respectively; the nine small images framedwith different
colors in the second row are representative patches from each of the nine clusters,
where the finally selected three patches are shown in bold frames. Each experiment
was repeated independently three times with the same results. Source data are
provided as a SourceData file. Scale bars, 2mm.The size of the patch is 1024 × 1024
pixels, with each pixel representing 0.50 microns.
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were summarized in Supplementary Table 2. The results of the Delong
analysis between the AUCs of the clustering-based model and other
models were summarized in Supplementary Table 3. In classifying
tumor grades within types, distinguishing IDH-mutant astrocytoma
with IDH-mutant 1p/19q-codeleted oligodendroglioma, and distin-
guishing IDH-mutant astrocytoma with astrocytoma-like IDH-wildtype
glioblastoma, the performance of the MIL model and the all-patch
model was summarized in Supplementary Figs. 14 and 15 and Sup-
plementary Data 1 and 2 (tasks 3−7). Among the five models, the MIL
model and its two variants were numerically inferior to or comparable
with the clustering-based model, while the all-patch model lagged the
other four models in all tasks. As shown in Supplementary Table 3, on
most datasets the difference in AUCs between the clustering-based

model and each of the three MIL models was not significant (Delong
P >0.05) in classifying the six tumor types (task 1). In classifying the
three types (task 2), the AUC of the clustering-based model was sig-
nificantly higher than that of the all-patchmodel on all testing datasets
(Delong P <0.05).

Interpretation of the CNN classification
To visualize and interpret the relative importance of different regions
in classifying the tumors, the class activation maps (CAM) along with
the corresponding patches and WSIs from ten representative patients
were shown in Fig. 5. The CAM highlighted in red which regions con-
tributedmost to the classification task. Thesehighlighted regionswere
then evaluated and interpreted from neuropathologist’s perspectives.

Task1 ROC of Valida�on Cohort Task1 ROC of Internal Tes�ng Cohort Task1 ROC of External Tes�ng Cohort 1 Task1 ROC of External Tes�ng Cohort2 

Task2 ROC of Valida�on Cohort Task2 ROC of Internal Tes�ng Cohort 

Task3 ROC of Valida�on Cohort Task3 ROC of Internal Tes�ng Cohort Task3 ROC of External Tes�ng Cohort 1 Task3 ROC of External Tes�ng Cohort2 

Task4 ROC of Valida�on Cohort Task4 ROC of Internal Tes�ng Cohort Task4 ROC of External Tes�ng Cohort 1 Task4 ROC of External Tes�ng Cohort2 

dc

fe

lkji

ponm

Task2 ROC of External Tes�ng Cohort 1 Task2 ROC of External Tes�ng Cohort2 hg

ba

Fig. 4 | The patient-level classification performance of the presented
clustering-based diagnostic model on tasks 1-4. (a–d, task 1): ROC curves for
classifying the six categories of A2,3,4, O2,3, and GBM on the internal validation
cohort (a), internal testing cohort (b), external testing cohort 1 (c), and external
testing cohort 2 (d), respectively. (e–h, task 2): ROC curves for classifying the three
major types of A, O, and GBM on the internal validation cohort (e), internal testing
cohort (f), external testing cohort 1 (g), and external testing cohort 2 (h), respec-
tively. (i–l, task 3): ROC curves for distinguishing the two subgroups of IDH-mutant
astrocytic tumors A2-3 and IDH-wildtype diffuse astrocytic tumors without the
histological features of glioblastoma (classified as glioblastoma) on the internal

validation cohort (i), internal testing cohort (j), external testing cohort 1 (k), and
external testing cohort 2 (l), respectively. (m–p, task 4): ROC curves for distin-
guishing the two subgroups of IDH-mutant astrocytic tumors A2 and IDH-wildtype
gliomas on the internal validation cohort (m), internal testing cohort (n), external
testing cohort 1 (o), and external testing cohort 2 (p), respectively. Corresponding
classification results can be found in Table 1. O2 IDH-mutant, and 1p/19q-codeleted,
Grade 2; A2 Astrocytoma, IDH-mutant, Grade 2; O3 IDH-mutant, and 1p/19q-
codeleted, Grade 3; A3 Astrocytoma, IDH-mutant, Grade 3; A4 Astrocytoma, IDH-
mutant, Grade 4; GBM glioblastoma, IDH-wildtype, Grade 4. Source data are
provided as a Source Data file.
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As shown in Fig. 5, the ten examples were assigned to five groups,
where the two examples in each group shared the same grades or
histological features. This human-readable CAM indicated that the
classification basis of the clustering-based model generally aligned
with pathological morphology well recognized by pathologists. For
example, in distinguishing O2 from A2 or O3 from A3, our model
generally highlighted morphological characteristics of oligoden-
drocytes/astrocytes, which were consistent with human expertize. We
also observed that in classifying caseswith shared histological features
including necrosis andmicrovascular proliferation, features thatmight
reflect underlying IDH mutations and CDKN2A homozygous deletion
can be captured by our model. These features may offer potential
predictive value and might be useful in assisting human readers in
achieving more accurate diagnoses.

Discussion
In this study, we presented a CNN-based integrated diagnosis model
that was capable of automatically classifying adult-type diffuse glio-
mas according to the 2021 WHO standard from annotated-free WSIs.
We compiled a large dataset including 2624 patients with both his-
tological and molecular information. Extensive validation and com-
parative studies confirmed the accuracy and generalization ability of
our model.

Compared to previous work, our research had several strengths
by addressing the key challenges in computational pathology: (1) The
deep-learning model can be trained with only tumor types as weakly
supervised labels by using a patch clustering technique, which obvia-
ted the burden of pixel-level or patch-level annotations. (2) Using only
pathological images, our model enables high-performance integrated
diagnosis that traditionally requires combining pathological and
molecular information. This was made possible through a clustering-
based CNN that can learn imaging features containing both patholo-
gical morphology and underlying biological clues. (3) Using a large
training dataset including 644896 patch images from 1362 patients,
ourmodel cangeneralize to an internal testing cohort and twoexternal
testing cohorts, with strong performance in classifying major types,
grades within type, and especially in distinguishing genotypes with
shared histological features.

Several WSI CNN models have been developed for predicting
histological grades according to the 2007 WHO classification in
patients with glioma11,12,27,28. For instance, Ertosun et al. applied CNN to
perform binary classification between glioblastoma and lower-grade
glioma with an accuracy of 96%, and between grade II and III glioma
with an accuracy of 71%11. Jin et al. presented a diagnostic platform to
classify five major categories considering both histological grades and
molecular makers based on 323 patients, with an accuracy of 87.5%12.
However, to date, there are no CNN-based integrated diagnostic
models strictly according to the 2021 WHO classification, which
introduces substantial changes compared to previous editions. Jose L
et al. developed a CNNmodel using The Cancer Genome Atlas dataset
to classify three types of gliomas considering two molecular markers
(IDH mutation and 1p/19q codeletion) based on the 2021 WHO stan-
dard, with an accuracy of 86.1% and an AUC of 0.96113. Our CNNmodel
is the one that can classify gliomas into six types strictly adhering to
the 2021 rule. To achieve this, we collected a much larger dataset and
performed the integrated diagnosis for each patient according to
the 2021 WHO criteria, where more comprehensive molecular infor-
mation including IDH mutation, 1p/19q codeletion, CDKN2A homo-
zygous deletion, TERT promoter mutation, EGFR amplification, and
Chromosome7 gain/Chromosome 10 losswere obtained to determine
the types.

To emphasize the integrated diagnosis, the 2021 edition intro-
duces a new “grades within type” classification system, where both
grades and types are determined by combining histological and
molecular information. In our study, we predicted the tumor grades/

Table 1 | The classification performance of the proposed
integrated diagnostic model

Task Types/grades AUC Accuracy Sensitivity Specificity F1-score

1 A2 0.959
0.970
0.934
0.945

0.717
0.814
0.850
0.756

0.760
0.814
0.773
0.738

0.948
0.967
0.989
0.965

0.738
0.814
0.810
0.747

A3 0.995
0.973
0.923
0.944

1.000
0.857
1.000
0.833

0.875
0.857
0.800
0.833

1.000
0.996
1.000
0.994

0.933
0.857
0.889
0.833

A4 0.953
0.994
0.987
0.904

0.857
0.714
1.000
0.882

0.923
0.909
0.833
0.714

0.944
0.986
1.000
0.993

0.889
0.800
0.909
0.789

O2 0.978
0.932
0.965
0.942

0.682
0.760
0.950
0.810

0.857
0.792
0.760
0.829

0.954
0.977
0.996
0.972

0.760
0.776
0.844
0.819

O3 0.982
0.980
0.978
0.950

0.812
0.579
1.000
0.778

0.867
0.733
0.750
0.700

0.991
0.971
1.000
0.987

0.839
0.647
0.857
0.737

GBM 0.960
0.980
0.983
0.952

0.956
0.956
0.947
0.914

0.900
0.915
1.000
0.943

0.926
0.920
0.827
0.875

0.927
0.935
0.973
0.928

2 A 0.961
0.969
0.938
0.941

0.770
0.812
0.939
0.843

0.803
0.852
0.816
0.787

0.937
0.947
0.993
0.957

0.786
0.832
0.873
0.814

O 0.974
0.974
0.973
0.938

0.733
0.727
1.000
0.800

0.880
0.821
0.784
0.787

0.945
0.952
1.000
0.955

0.800
0.771
0.879
0.793

GBM 0.960
0.980
0.983
0.952

0.956
0.956
0.947
0.914

0.900
0.915
1.000
0.943

0.926
0.920
0.827
0.875

0.927
0.935
0.973
0.928

3 IDHwt Astrocytic
Tumors

0.952
0.963
0.935
0.947

0.963
0.976
1.000
0.956

0.897
0.820
0.812
0.796

0.935
0.958
1.000
0.976

0.929
0.891
0.896
0.869

IDHmt A2,3
(A4 excluded)

0.964
0.977
0.984
0.942

0.829
0.719
0.943
0.880

0.935
0.958
1.000
0.976

0.897
0.820
0.812
0.796

0.879
0.821
0.971
0.926

4 IDHwt GBM 0.998
0.982
0.943
0.975

0.995
0.994
0.996
0.979

0.995
0.983
1.000
1.000

0.923
0.909
0.833
0.789

0.995
0.988
0.998
0.989

2016 IDHmtGBM
(A4 in 2021 rule)

0.951
0.991
0.986
0.948

0.923
0.769
1.000
1.000

0.923
0.909
0.833
0.789

0.995
0.983
1.000
1.000

0.923
0.833
0.909
0.882

5 A2 0.979
0.990
0.939
0.929

1.000
1.000
0.944
0.939

0.760
0.814
0.773
0.738

1.000
1.000
0.938
0.939

0.864
0.897
0.850
0.826

A3 0.994
0.981
0.930
0.921

1.000
1.000
1.000
0.524

0.875
0.857
0.800
0.917

1.000
1.000
1.000
0.841

0.933
0.923
0.889
0.667

A4 0.958
0.998
0.990
0.907

0.500
0.550
0.500
0.762

1.000
1.000
1.000
0.762

0.776
0.820
0.812
0.907

0.667
0.710
0.667
0.762

6 O2 0.987
0.928
0.947
0.948

0.968
1.000
0.950
0.895

0.857
0.792
0.760
0.850

0.933
1.000
0.917
0.800

0.909
0.884
0.844
0.872

O3 0.989
0.964
0.967
0.956

0.737
0.750
0.647
0.727

0.933
1.000
0.917
0.800

0.857
0.792
0.760
0.850

0.823
0.857
0.759
0.762

7 A 0.982
0.983
0.994
0.957

0.919
0.945
0.939
0.913

0.905
0.912
1.000
0.926

0.898
0.914
0.935
0.893

0.912
0.928
0.969
0.919

O 0.978
0.986
0.990
0.960

0.880
0.865
1.000
0.909

0.898
0.914
0.935
0.893

0.905
0.912
1.000
0.926

0.889
0.889
0.966
0.901

The top, second, third, and bottom rows for each type/grade indicate the performance of the
internal validation cohort, internal testing cohort, and external testing cohorts 1 and 2, respec-
tively. Task 1: classifying the six categories. Task 2: classifying the three types. Task 3: classifying
IDH-wildtype diffuse astrocytic tumors and IDH-mutant astrocytoma grade 2 and 3. Task 4:
classifying IDH-mutantGBM in2016WHOclassification (classified as IDH-mutant A4 in 2021 rule)
and IDH-wildtype GBM. Task 5–6: classifying grades within types. Task 7: classifying IDH-mutant
A and IDH-mutant 1p/19q-codeleted O.
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types directly frompathological images, andnomolecular information
was fed into the model. This implies that our model can learn mole-
cular characteristics frompathological images to achieve an integrated
diagnosis. Several studies have also shown the ability of CNN to
recognize the genetic alterations directly from WSI, such as mutation
detection8,13–15,18,19, microsatellite instability prediction29, and pan-
cancer genetic profiling30,31. In a recent study on CNN-based patholo-
gical diagnosis12, the glioma classification was extended from three
histological grades to five categories by adding the IDH and 1p/19q
status. However, it is not strict WHO-consistent integrated classifica-
tion, and the dataset with molecular information is relatively small
(n = 296). Generally, these studies indicated a potential link between
the tumor’s histopathological morphology and underlying molecular
composition.

Our clustering-based CNN model dedicated to learning the most
representative features from the entireWSI had twomajor advantages.
First, it avoided the need for any manual annotation by automatically
selecting several type-relevant patch clusters that contributedmore to
the integrated classification task. Second, it aggregated local features
to reach a global diagnosis by selectively fusing the most dis-
criminative information from multiple relevant patches. Traditionally,
manual annotation is required to delineate cancerous regions of
interest for CNN training10. However, the manual delineation is always
time-consuming and subjective. To avoid pixel-level annotation,
weakly supervised methods were developed where experts can assign
a label to an image. Among them,MIL and its variants employing a “bag
learning” strategy have been widely used in WSI classification8,9. Our
study compared the presented clustering approach with the classical
MIL and its two variants, the AMIL26 and CLAM20, demonstrating the
superior performance of our approach in classifying the six integrated
types, the three histological categories, and the grades within each

type. Especially, our clustering model also achieved high performance
in classifying several histologically similar subgroups, i.e., IDH-mutated
vs. IDH wildtype tumors with similar morphology, and 1p/19q code-
leted vs. 1p/19q non-codeleted tumors with similarmorphology. These
new classifications are also the major changes introduced by the 2021
WHO rule. Furthermore, the attention mechanism incorporated in
both AMIL and CLAM did not seem to bring as much benefit as
expected. One reason might be the high degree of variability and
complexitywithin thepathologicdata,making it hard to learneffective
attention weights for instances related to the target classes. Specifi-
cally, to classify the six types according to the 2021 WHO rule, the
model needs to identify discriminative morphology related to histo-
logic types (A,O, andGBM) andgradeswithin types (A2/3/4,O2/3), and
tumor genotypes with shared histologic features (e.g., IDH-wildtype
and -mutant tumors). Furthermore, some key instances might be
sparse (microvascular proliferation or necrosis). The discriminative
features might be contained in the same instances, in many different
instances, or in sparse instances. These key instances may be too
diverse and complex to be recognized by an attention mechanism.
Moreover,we guess that the label noise inducedby the simplified slide-
to-patch label assignment would also impair the attention weights to
some extent. Instead of emphasizing key patches, we turned to
searching for important patch clusters with similar imaging pheno-
types. Our data as well as the CAM visualization suggested the cap-
ability of the clustering-based model in recognizing not only
pathological morphology such as microvascular proliferation and
necrosis useful for histological classification, but also imaging patterns
reflecting underlying genomic alterations useful for the integrated
diagnosis.

Despite the encouraging results, three limitations should
be pointed out. First, despite our dataset comprises of a sample size

O2 A2 O3 A3 Necrosis +
IDHmt A4

Necrosis +
IDHwt GBM

MVP +
IDHmt A4

MVP +
IDHwt GBM

CDKN2A 
Homozygous 
dele�on (+)

CDKN2A 
Homozygous 
dele�on (-)

Fig. 5 | Ten examples of classification results on the external testing sets. The
ten exampleswere assigned intofive groups,where the twoexamples ineachgroup
shared the grades or histological features. The first row represents the original
whole-slide images. The second row shows selected patches from the three clusters
used for building the diagnostic model, where each color indicates a cluster. The
third row shows a representative patch indicated by an arrow in the second row.
The fourth row shows the class activationmaps (CAM) generated by the diagnostic
model overlapped on their corresponding patches. Regions with warm colors refer
to the areas on which our model is focused on the typical area we are interested in

for each group. O2 IDH-mutant, and 1p/19q-codeleted, Grade 2; A2 Astrocytoma,
IDH-mutant, Grade 2; O3 IDH-mutant, and 1p/19q-codeleted, Grade 3; A3 Astro-
cytoma, IDH-mutant, Grade 3; A4 Astrocytoma, IDH-mutant, Grade 4; GBM:
Glioblastoma, IDH-wildtype, Grade 4; IDHmt: IDH mutation; IDHwt IDH wildtype;
MVP, microvascular proliferation; (+): positive; (−): negative. Scale bars in sub-
figures in the first and second rows, 2mm. Scale bars in subfigures in the third and
fourth rows, 40μm. The size of the patch is 1024 × 1024 pixels, with each pixel
representing 0.50 microns.
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of 2624 patients from three hospitals, future international multi-
center and multiracial dataset of a larger sample size is welcomed.
Second, in our study, all slides from three hospitals were scanned
using the same digital scanner to ensure consistency. To address
the impact of scanner variability and develop a classifier with
good robustness in clinical practice, we plan to collect a larger
dataset of WSIs obtained from a variety of scanners. Advanced stain
normalization may be required to enhance the model’s robustness.
We will also assess the impact of different stain normalization
methods, as the variations in stain intensity may affect the perfor-
mance of deep-learning models. Third, more preclinical experi-
mentalwork in genome, transcriptome, proteome, and animal level is
needed to further elucidate the biological interpretability of the
deep-learning model.

In conclusion, our data suggested that the presented CNN model
can achieve high-performance fully automated integrated diagnosis
that adheres to the 2021WHO classification from annotation-freeWSI.
Our model has the potential to be used in clinical scenarios for
unbiased classification of adult-type diffuse gliomas.

Methods
Patients and datasets
This study was a part of the registered clinical trial (ClinicalTrials ID:
NCT04217044). This study was approved by the Human Scientific
Ethics Committee of the First Affiliated Hospital of Zhengzhou Uni-
versity (FAHZZU), Henan Provincial People’s Hospital (HPPH), and
Xuanwu Hospital Capital Medical University (XHCMU). Informed
consent and participant compensation werewaived by the Committee
due to the retrospective and anonymous analysis. There were three
datasets included in this study: Dataset 1 contained 1991 consecutive
patients from FAHZZU, Dataset 2 contained 305 consecutive patients
from HPPH, and Dataset 3 contained 328 consecutive patients from
XHCMU. Dataset 1 includes three cohorts: a (1) training cohort
(n = 1362, from FAHZZU) used to develop the glioma type/grade clas-
sification model, a (2) validation cohort (n = 340, from FAHZZU) used
to optimize the model, and a (3) internal testing cohort (n = 289, form
FAHZZU) used to test the model. The training and validation cohorts
were selected with stratified random sampling from the FAHZZU
patient set collected from January 2011 to December 2019 at a ratio of
4:1, where the clinical parameters between both cohorts were
balanced. We repeated this procedure in a five-fold cross-validation
approach, re-assigning the patients into training and validation
cohorts five times. Patients from FAHZZU between January 2020 and
December 2020wereused as the internal testing cohort. Dataset 2was
used as an external testing cohort 1, and dataset 3 was used as an
external testing cohort 2. The datasets were described in detail in
Supplementary Methods A1. The inclusion criteria are as follows: (1)
adult patients (>18 years) surgically treated and pathologically diag-
nosed as diffuse gliomas (WHO Grade 2–4), (2) availability of clinical,
histological, and molecular data, (3) availability of sufficient formalin-
fixed, paraffin-embedded (FFPE) tumor tissues for testing for mole-
cular markers in the 2021 WHO classification of adult-type diffuse
gliomas, (4) availability of H&E slides for scanning as digitalized WSIs,
(4) sufficient imagequality of digitalizedWSIs. The selection pipeline is
shown in Fig. 1a.

Determination of WHO classification
In the last 5 years since the publication of the 2016 Edition of theWHO
CNS, the development of targeted sequencing and omics techniques
has helped neuro-oncologists gradually establish some new tumor
types in clinical practice, aswell as a series ofmolecularmarkers. Based
on 7 updates at the Consortium to Inform Molecular and Practical
Approaches to CNS Tumor Taxonomy (cIMPACT-NOW), the Interna-
tional Agency for Research on Cancer (IARC) has finally released the
5th edition of the WHO Classification of Tumors of the CNS.

According to cIMPACT-NOW update 332, despite appearing his-
tologically as grade II and III, IDH-wildtype diffuse astrocytic gliomas
that contain high-level EGFR amplification (excluding low-level EGFR
copy number gains, e.g., trisomy 7), or whole chromosome 7 gain and
whole chromosome 10 loss (+7/−10), or TERT promoter mutations,
correspond to WHO grade IV and should be referred to as diffuse
astrocytic glioma, IDH-wildtype, with molecular features of glio-
blastoma, WHO grade 4. According to cIMPACT-NOW update 533, dif-
fusely infiltrative astrocytic gliomawith an IDH1 or IDH2mutation that
exhibits microvascular proliferation or necrosis or CDKN2A/B homo-
zygous deletion or any combination of these features should be
referred to as Astrocytoma, IDH-mutant, WHO grade 4. Thus, in 5th
edition of theWHOCNS, adult-type diffuse gliomas are divided into (1)
Astrocytoma, IDH-mutant, Grade 2,3,4; (2) Oligodendroglioma, IDH-
mutant, and 1p/19q-codeleted, Grade 2,3 and (3) Glioblastoma, IDH-
wildtype, Grade 4 (A2, A3, A4, O2, O3, and GBM)2.

Therefore, in our study, formalin-fixed, paraffin-embedded (FFPE)
tissues were used for the detection of ATRXby immunohistochemistry
(IHC), and for detection ofmutational hotspots in IDH1/IDH2 andTERT
promoter by Sanger sequencing, as well as for detection of Chromo-
some 1p/19q, CDKN2A, EGFR and chromosome 7/10 status by fluor-
escence in situ hybridization (FISH). The detailed protocols are
described in Supplementary Methods A2 and A3. The integrated clas-
sification pipeline according to the 2021 WHO rule is shown in Fig. 2
and described in Supplementary Methods A4.

WSI data acquisition and preprocessing
The slides were scanned using the MAGSCAN-NER scanner (KF-PRO-
005, KFBIO) to obtain the WSI. In our study, one patient had one WSI.
As tissues generally occupy a portion of the slide with large areas of
white background space in a WSI, tissue segmentation should be
performed first. The WSI at the 5× resolution was transformed from
RGB to Lab color space and the tissue was segmented with a threshold
value calculated using the OSTU algorithm. The segmented tissue
image was divided into many 1024 × 1024 patches at 20 × objective
magnifications (0.5 microns per pixel). The patches were adjacent to
one another covering the entire WSI. From all 2624 patients, a total of
1292420 patches were extracted, as shown in Fig. 1b. The number of
patches in different WSIs varied from hundreds to more than 2000.
EachWSI belonged to one of the six categories: A2, A3, A4, O2, O3, and
GBM. This patient-level label was also assigned to each patch within
one WSI. All classifiers in the following were trained to predict the six
tumor types.

Integrated diagnosis model building
We aimed to find a subset of discriminative patches from a WSI.
Considering that a group of patches may share similar imaging pat-
terns or phenotypes, we clustered the patches based on their pheno-
types and distinguished the clusters with better discriminative power.
The pipeline consisted of four steps: patch clustering, patch selection,
patch-level classification, and patient-level classification, as shown
in Fig. 1c.

Patch clustering. First, the patch clustering algorithm was trained
using 43653 candidate patches from 100 randomly selected patients in
the training cohort, including 11 A2, 2A3, 2A4, 14O2, 3O3, and68GBM
patients. Considering that the original image may not present type-
relevant cancer phenotypes, we chose to cluster the patches in the
feature domain. The patches were resized into 256× 256 and were fed
into a pre-trained CNN for deep feature extraction. Here a ResNet-50
trained with patch-level labels (six categories) on all patches in the
training cohort was used as the CNN feature extractor (referred to as
all-patch classifier). Using this trained ResNet-50, 2048 deep features
can be extracted from the averaging pooling layer for each patch.
Based on the features, the candidate 43,653 patches for the 100
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patients were used to develop a K-means clustering algorithm by
partitioning these patches into K clusters, where the optimal cluster
number K was determined using the silhouette coefficient. The
Calinski-Harabasz index was also used to additionally assess the clus-
tering quality. The patches in different clusters were considered to
have discriminative imaging patterns related to cancer types. The
clustering process can be found in Supplementary Methods A5.

Patch selection. Using the established K-means clustering algorithm,
all patches from each patient in the training cohort were partitioned
into K clusters. Next, K separate patch-level CNN classifiers were
trained on the K patch clusters for all patients in the training cohort
respectively, where the ResNet-50 was used as the CNN architecture
and the training parameters were the same as used in the all-patch
classifier. The K clusters obtained in the validation cohort were used to
optimize the K corresponding classifiers. The K cluster-based classi-
fiersmay have different powers in classifying the tumor types. Here we
used the all-patch classifier as a performance benchmark. For each
patient, the clusters with better classification accuracy than the
benchmark were selected for further analysis. The CNN architecture
and training parameters were detailed in Supplementary Methods A6.

Patch-level classification. Using the patches from all selected clus-
ters, a patch-level ResNet-50model was trained on the training cohort
while optimized on the validation cohort. The same training para-
meters were used. This network was used to provide an estimation of
the tumor types for each input imagepatch. Next, we should aggregate
the patch-level estimations to make a final patient-level prediction.

Patient-level classification. The patch-level predictions were aggre-
gated to determine the types of the entire WSI using a majority voting
approach. Specifically, the class to which the maximum number of
patches belonged was used as the final patient-level prediction. This
aggregation approach can reduce the bias of patch-level prediction.

Model selection. To assess the model’s robustness and to select an
optimal model, we repeated the training/validation cohort division
procedure five times using five-fold cross-validation. In each repeti-
tion, the training and validation sets were divided using stratified
random resampling with patient characteristics balanced between
both sets. During the cross-validation process, the model was trained
for a minimum of 50 epochs. Then, the loss on the validation set was
computed in each epoch, where the model with the lowest average
validation loss over 10 consecutive epochs was saved. If such a model
was not found, the training continued up to amaximumof 150 epochs.
Finally, the patient-level model with the best-averaging performance
across all folds was selected as the proposed diagnostic model.

Statistical analysis
Statistical analysis was performed using Python (Version 3.6.1).
P-value < 0.05 was considered significant. All data analysis was per-
formed using Python 3.6.1. Specifically, the packages or software
comprised PyTorch 1.10.0 for model training and testing, CUDA 11.6
and cuDNN 8.1.0.77 for GPU acceleration, and scikit-learn 1.0.2 for
statistical analysis. All CNNs were trained on two NVIDIA Tesla V100
GPUs. The difference in patient characteristics between training and
the other cohorts was assessed by a two-sided Wilcoxon test or Chi-
square test. The patch-level classifiers were trained on the training
cohort and optimized on the validation cohort. The performance of
the optimal patient-level classifiers in five-fold cross-validation was
further tested on the internal testing cohort and two external testing
cohorts. Receiver operating characteristic (ROC) analysis was used for
performance evaluation in terms of area under the ROC curve (AUC),
accuracy, sensitivity, specificity, and F1-score in classifying the six
categories A2, A3, A4, O2, O3, and GBM. Thesemetrics were calculated

using a one-vs.-rest approach in the multi-class problem. The average
AUC over the six categories on the validation cohort for each fold was
used to select the best model in cross-validation. To address the class
imbalance problem, the precision-recall (PR) curves were also calcu-
lated to comprehensively assess the model performance. In addition,
the performance of the clustering-based model was compared with
another four models, a weakly supervised classical multiple-instance
learning (MIL) model8,9, an attention-based MIL (AMIL) model26, a
clustering-constrained-attention MIL (CLAM)20, and the all-patch clas-
sificationmodel. Briefly, inMIL the patcheswith the highest score (that
were most likely to be cancerous) were selected for diagnosis model
building. AMIL and CLAM were two variants of MIL, where the former
learned to emphasize thepatches related to the target classeswhile the
latter extended AMIL to a general multi-class with a refined feature
space. As described before, the all-patch model used all patches for
classification without patch selection. The statistical difference
between AUCs was compared using DeLong analysis. Reporting of the
study adhered to the STARD guideline34.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The whole-slide histology image data and paired pathological data
from First Affiliated Hospital of Zhengzhou University, Henan Pro-
vincial People’s Hospital, and Xuanwu Hospital Capital Medical Uni-
versity are protected and restricted to be used with institutional
permission and are therefore not publicly available due to data privacy
policies. For example, whole-slide histology image data of six repre-
sentative patients used for model testing was uploaded with the code
and is publicly available in CodeOcean database35. Sanger sequencing
data for IDH andTERTpromotermutations have been deposited in the
Genome Sequence Archive (GSA for Human) database under ID
HRA005239. Z.-Y.Z. or W.-C.L. should be contacted to request access
to the WSI data and Sanger sequencing raw data. Requests will be
assessed according to institutional policies to determine whether the
data request is subject to patient privacyobligations. A user agreement
will be required. All other relevant data supporting the key findings of
this study are available within the article and its Supplementary
Information files or from the corresponding authors upon
request. Source data are provided in this paper.

Code availability
The Python codes for implementation and testing of themodel used to
calculate the classification probability as well as the testing data were
deposited into a publicly available repository at https://doi.org/10.
24433/CO.1134119.v135.
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