Table 3.
Evaluation of classification algorithms on AD data.
| Classification algorithm | Feature selection | Accuracy | Sensitivity | Specificity | ROC-AUC | prAUC |
|---|---|---|---|---|---|---|
| LR | All genes | 0.737 | 0.811 | 0.635 | 0.821 | 0.848 |
| Knowledge genes | 0.713 | 0.783 | 0.615 | 0.802 | 0.830 | |
| VSSRFE | 0.733 | 0.755 | 0.702 | 0.812 | 0.842 | |
| LASSO | 0.777 | 0.790 | 0.760 | 0.859 | 0.899 | |
| VAE | 0.648 | 0.657 | 0.635 | 0.661 | 0.692 | |
| SVM | All genes | 0.769 | 0.853 | 0.654 | 0.842 | 0.860 |
| Knowledge genes | 0.737 | 0.797 | 0.654 | 0.800 | 0.822 | |
| VSSRFE | 0.745 | 0.769 | 0.712 | 0.827 | 0.858 | |
| LASSO | 0.769 | 0.797 | 0.731 | 0.858 | 0.898 | |
| VAE | 0.579 | 0.497 | 0.692 | 0.615 | 0.661 | |
| XGBoost | All genes | 0.599 | 0.599 | 0.654 | 0.724 | 0.764 |
| Knowledge genes | 0.741 | 0.713 | 0.779 | 0.841 | 0.875 | |
| VSSRFE | 0.794 | 0.853 | 0.712 | 0.847 | 0.883 | |
| LASSO | 0.725 | 0.587 | 0.913 | 0.858 | 0.902 | |
| VAE | 0.628 | 0.839 | 0.337 | 0.660 | 0.709 | |
| RF | All genes | 0.741 | 0.748 | 0.731 | 0.820 | 0.855 |
| Knowledge genes | 0.700 | 0.720 | 0.673 | 0.792 | 0.820 | |
| VSSRFE | 0.810 | 0.818 | 0.798 | 0.889 | 0.919 | |
| LASSO | 0.717 | 0.573 | 0.913 | 0.860 | 0.903 | |
| VAE | 0.656 | 0.790 | 0.471 | 0.678 | 0.684 | |
| MLP | All genes | 0.761 | 0.839 | 0.654 | 0.838 | 0.873 |
| Knowledge genes | 0.721 | 0.790 | 0.625 | 0.803 | 0.829 | |
| VSSRFE | 0.757 | 0.804 | 0.692 | 0.828 | 0.863 | |
| LASSO | 0.765 | 0.720 | 0.827 | 0.855 | 0.890 | |
| VAE | 0.514 | 0.378 | 0.702 | 0.567 | 0.659 | |
| CNN | 0.765 | 0.895 | 0.587 | 0.810 | 0.845 | |
| VAE | 0.757 | 0.923 | 0.529 | 0.798 | 0.816 |