Skip to main content
. 2023 Oct 11;13:17191. doi: 10.1038/s41598-023-43956-4

Table 3.

Evaluation of classification algorithms on AD data.

Classification algorithm Feature selection Accuracy Sensitivity Specificity ROC-AUC prAUC
LR All genes 0.737 0.811 0.635 0.821 0.848
Knowledge genes 0.713 0.783 0.615 0.802 0.830
VSSRFE 0.733 0.755 0.702 0.812 0.842
LASSO 0.777 0.790 0.760 0.859 0.899
VAE 0.648 0.657 0.635 0.661 0.692
SVM All genes 0.769 0.853 0.654 0.842 0.860
Knowledge genes 0.737 0.797 0.654 0.800 0.822
VSSRFE 0.745 0.769 0.712 0.827 0.858
LASSO 0.769 0.797 0.731 0.858 0.898
VAE 0.579 0.497 0.692 0.615 0.661
XGBoost All genes 0.599 0.599 0.654 0.724 0.764
Knowledge genes 0.741 0.713 0.779 0.841 0.875
VSSRFE 0.794 0.853 0.712 0.847 0.883
LASSO 0.725 0.587 0.913 0.858 0.902
VAE 0.628 0.839 0.337 0.660 0.709
RF All genes 0.741 0.748 0.731 0.820 0.855
Knowledge genes 0.700 0.720 0.673 0.792 0.820
VSSRFE 0.810 0.818 0.798 0.889 0.919
LASSO 0.717 0.573 0.913 0.860 0.903
VAE 0.656 0.790 0.471 0.678 0.684
MLP All genes 0.761 0.839 0.654 0.838 0.873
Knowledge genes 0.721 0.790 0.625 0.803 0.829
VSSRFE 0.757 0.804 0.692 0.828 0.863
LASSO 0.765 0.720 0.827 0.855 0.890
VAE 0.514 0.378 0.702 0.567 0.659
CNN 0.765 0.895 0.587 0.810 0.845
VAE 0.757 0.923 0.529 0.798 0.816