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Summary

Mitochondria (MT) participate in most metabolic activities of mammalian cells. A near-

unidirectional mitochondrial transfer from T cells to cancer cells was recently observed to 
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“metabolically empower” cancer cells while “depleting immune cells”, providing new insights 

into tumor-T cell interaction and immune evasion. Here, we leverage single-cell RNA-seq 

technology and introduce MERCI, a statistical deconvolution method for tracing and quantifying 

mitochondrial trafficking between cancer and T cells. Through rigorous benchmarking and 

validation, MERCI accurately predicts the recipient cells and their relative mitochondrial 

compositions. Application of MERCI to human cancer samples identifies a reproducible MT 

transfer phenotype, with its signature genes involved in cytoskeleton remodeling, energy 

production and TNFα signaling pathways. Moreover, MT transfer is associated with increased 

cell cycle activity and poor clinical outcome across different cancer types. In summary, MERCI 

enables systematic investigation of an understudied aspect of tumor-T cell interactions that may 

lead to the development of therapeutic opportunities.

eTOC blurb:

Recent work observes mitochondrial transfer from T cells to cancer cells. Zhang et al. 

systematically investigate this process using single cell sequencing data from human cancers and 

identify a distinct phenotype related to mitochondrial transfer. Genes and pathways associated 

with this phenotype may serve as future therapeutic targets.

Graphical Abstract
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Introduction

The mitochondrion (MT) is a subcellular organelle that participates in critical physiological 

processes, such as energy production, calcium signaling, and programmed cell death1–3. 

Mitochondria have their own 16.6Kb genome (16.3Kb for mouse) of circular DNA 

(mtDNA) with high mutation rate4–6. Each somatic cell contains 102–104 copies of 

MT genomes7, with a subset of mutations reaching high levels of heteroplasmy8 due 

to cytoplasmic inheritance or random drift9. A few recent studies thus use the single 

nucleotide variations (SNVs) in the mtDNA as endogenous genetic barcodes to trace lineage 

relationships and clonal dynamics10,11. For example, new methods have been developed to 

reconstruct shared lineages with cellular heteroplasmy of MT variants from single cell RNA-

seq samples12–14. These studies provide evolutionary insights in the fields of developmental 

biology15,16, stem cell research17 and oncology18.

In the meanwhile, a growing body of literature reports that mitochondria are not only 

inherited through lineage, but also laterally shared between different mammalian cells19–21 

primarily through tunneling nanotubes (TNT)22–24. This phenomenon was first observed 

during coculture of mitochondria-deprived A549 lung cancer cells with mesenchymal 

stem cells, where the latter transfer mitochondria to the former to restore their aerobic 

respiratory functions23. Follow-up studies further demonstrate that this intercellular transfer 

occurs among diverse mammalian cell types in vitro and in vivo22,24,25. A recent work 

examines the nanotube-based communication between cancer and immune cells, and reports 

unidirectional mitochondrial trafficking from T cells to neighboring cancer cells26. As 

mitochondria provide both energy and the essential metabolites for T cell activation27,28, 

this finding may point to a different mechanism of T cell dysfunction.

Many exciting questions follow this discovery, such as how nanotubes initiate in selected 

cancer cells, what genes or pathways cause the preferential MT transfer from T cells to 

cancer cells, and what the consequences of this unidirectional MT transfer are. Currently, 

most related studies have been conducted in vitro20,29, which limited the generalizability 

of their findings. To better understand the mechanism of tumor mitochondrial interception 

and to identify precise, druggable targets, it is imperative to investigate this process under 

physiological conditions. However, in vivo tracking of MT transfer relies on genetic 

engineered mice with photo-activatable mitochondria30, which cannot be implemented in 

humans. Consequently, there is no practical approach to investigate this process in the 

human tumor microenvironment.

To bridge this gap, we developed a single cell deconvolution method, MERCI 

(Mitochondrial-Enabled Reconstruction of Cellular Interactions), to computationally infer 

the mitochondrial receiver cells in the patient tumor samples. MERCI takes the single cell 

RNA-seq (scRNA-seq) data as input, identifies the lineage-specific MT mutations through 

a verified mutational calling pipeline, and predicts receiver cells based on mutation and 

mitochondrial gene expression profiles. Application of MERCI to human tumor samples 

uncovered a reproducible cancer cell phenotype of MT transfer, which is associated with 

multiple pathways of nanotube formation and energy metabolism. The signature was also 

predictive of worse clinical outcome for diverse cancer types.
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Results

Cancer mitochondrial hijack recapitulated via scRNA-seq data

To reproduce the observation of mitochondrial transfer, we first conducted the in vitro 
experiment described in the recent literature but using a different cancer cell line20,26. 

Specifically, the murine KrasG12D/p53ko (KP) lung cancer cells31 were transfected with 

pDsRed2-Mito vector to label the mitochondria with red fluorescent signal. Primary 

autologous CD8+ T cells were isolated from mice spleen with mitochondria labeled with 

MitoTracker™ green. Coculture experiments were conducted to visualize and quantify the 

transfer of mitochondria between cancer and T cells (Figure 1A). Fluorescence imaging 

revealed a dominant translocation of T cell mitochondria into the cytoplasm of KP cells 

(Figures 1B, S1A and S1B). 24 hours after coculture, over 30% KP cells carried high level 

of T cell mitochondria, while very few of T cells were weakly positive for the cancer 

signal (Figures 1B and S1B). We repeated experiments with different time spans and made 

similar observations (Figure 1C). We also tested a range of cancer to T cell ratios and 

observed higher level of mitochondrial transfer with more T cells in the coculture (Figures 

S1C). These results confirmed the near unidirectional T cell to cancer mitochondrial flow 

reported by Saha et al26. Further, we repeated the coculture experiment using a different 

cell line, the MC38 colon cancer cells, and observed quantitatively similar MT transfer 

events (Figures S1D). Our observations suggested that mitochondrial hijacking is a common 

process initiated by diverse malignant cells.

We next performed single cell RNA sequencing (scRNA-seq) of three experimental groups: 

cocultured (CC) cancer cells and T cells as the treatment group and two controls including 

the monocultured (MC) cancer cells and primary CD8+ T cells (Figure 1A). Culture medium 

was diluted by a factor of 105 prior to loading to 10x chips to mitigate the potential 

contamination from cell-free DNA/RNA during cell culture (Figure S1E). Half of the CD8+ 

T cells were reserved for scRNA-seq data preparation before coculture with cancer cells 

to ensure the same mitochondrial genetic background. All the sequenced CC cells were 

positive for the T cell mitochondrial signal. In total, we obtained 12,145 high quality cells 

with over 1,000 reads mapped to mtDNA, including 2,904 CC cells, 7,572 MC cells and 

1,669 T cells (Table S1). Interestingly, the mtDNA read coverage profile of the CC cancer 

cells already exhibited an ‘intermediate’ pattern between MC cancer and T cells on the 

overall (Figure 1D) and cellular levels (Figure S2A). For example, CC cells expressed higher 

protein-coding gene mt-Co3 than the T cells but lower than the MC cells (Figure S2A). 

Uniform manifold approximation and projection (UMAP)32 analysis using mitochondrial 

transcriptomic profile also confirmed that most CC cells displayed a mixed phenotype of the 

two monocultured cell populations (Figure 1E). These results indicated that mitochondria 

transfer can be manifested on the single cell gene expression level.

We then investigated single nucleotide variants (SNVs) in the mtDNA, which have been 

used as genetic barcodes to track cell lineage11,12. We customized a variant-calling pipeline 

(MERCI-mtSNP) for fast retrieving mitochondrial genotypes on cellular level from single 

cell sequencing data (Figure S2B, STAR Methods). We tested MERCI-mtSNP by examining 

the downloaded benchmark scRNA-seq data33, which is a modified 10x scRNA-seq data 
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with targeted enrichment to increase the coverage of MT genome. There are 17 bona 
fide mitochondrial variants in this dataset that differentiate two pre-defined cell lineages. 

MERCI-mtSNP successfully captured all 17 MT mutations in the correct cell populations 

(Figure S2C).

We then used MERCI-mtSNP to examine scRNA-seq samples derived from KP/T cells 

and identified 21,341 passed-filtered mitochondrial SNVs (mtSNVs) across all the cells. 

Next, we sought to trace mitochondrial transfer in the CC cancer cells using T cell 

enriched mutations, which occurred at significantly higher frequencies in the primary T 

cells compared to the MC cancer cells (FDR<0.1). To be precise, ‘frequency’ refers to the 

percentage of cells carrying the mutation in a given population. In this analysis, we used 

half of the MC cells to define these mtSNVs, holding out the other half for testing to avoid 

data leakage. A total of 1,922 T cell enriched variants were identified. As expected, the 

depth-normalized counts of T cell enriched mtSNVs were significantly higher in the CC 

cells compared to the held-out MC cells (Figures 1F and S2D). This difference was reversed 

when using the T cell depleted mtSNVs (Figures 1F and S2E). Here, the depth-normalized 

count refers to the number of mutations observed in a cell within a given MT read count 

range (Methods), which is applied to avoid the bias caused by read coverage difference 

(Figure S2F). Consistently, 9 out of the top 10 most enriched mtSNVs were significantly 

more frequent in the CC population (Figure S2G). We provided a table listing all the T 

cell enriched variants used in this work (Table S2), which had been selected in the regions 

with ≥5X coverage in both cell types by MERCI-mtSNP (Figure S2H). Together, our data 

indicated that the genetic variants of the transferred mitochondrial genome can be captured 

by the scRNA-seq data as well.

Tracing MT receivers through single cell deconvolution

Following the above results, we developed MERCI to identify the MT receiver cells through 

quantifying the donor-derived mtSNVs and estimating the relative abundance of exogenous 

mitochondria (Figure 2A, STAR Methods). For a given cell, MERCI combines the MT 

gene expression and mtSNV profiles to predict if it is a receiver and infer the relative 

fraction of donor-derived mitochondria. Specifically, MERCI first defines T cell-enriched 

mtSNVs based on the reference (cancer and T cell) populations and calculate an ‘effective 

count statistic’ (Neff) for each cancer cell to assign each cell with a DNA rank score 

(Figure S3A). It then uses the averaged MT gene expression profiles of cancer and T cell 

populations as reference and applies support vector regression (SVR)34,35 to estimate the 

relative abundance of transferred MT in the target cancer cells (Figure S3B). Each cell of 

interest is assigned with an RNA rank score based on the ordering of the SVR coefficient: 

the relative proportion of T cell-derived MT. Rank transformation is necessary to make the 

scores robust to outliers and less sensitive to sequencing depth or cancer type. Cells with 

scores passing a predefined cutoff for DNA or RNA rank are considered as candidate MT 

receivers.

We evaluated the performance of MERCI with the ground-truth scRNA-seq data. T cells and 

half of the MC populations were used to generate the reference MT gene expression and T 

cell enriched mtSNVs. CC and the held-out MC cells were mixed to produce an in silico 
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sample to test MERCI. After deconvolution, we observed significantly higher proportion 

of T cell-derived mitochondria in the cocultured cancer cells (Figure 2B), consistent with 

our previous observation (Figure 1B). We next used the receiver operating characteristic 

(ROC) and precision-recall curves (PRC) to measure the prediction accuracy of MERCI. 

Both DNA and RNA rank scores reached a moderate level of area under the curve (AUC) 

ranging between 0.7 to 0.85 (Figures 2C and 2D), yet neither is accurate enough as a single 

predictor. As DNA and RNA ranks were estimated from independent sources, it is intuitive 

to combine them to achieve better performance. One simple approach is to take the averaged 

rank score as a predictor, which indeed reached an improved AUC of 0.88 for the ROC 

curve, and 0.85 for the PRC (Figures S3C and S3D). However, this strategy can become 

problematic when applied to real-world data, because a rank predictor will always make 

positive calls under a given cutoff even without any true positives in the data. Therefore, in 

the next section, we assessed a different approach to: 1) test if a sample contains any true 

MT receivers and 2) isolate the receiver cells based on MERCI rank scores.

Benchmark MERCI rank scores for real-world application

We implemented a simple strategy to call a ‘positive’ only if both ranks are higher than 

the given cutoff, thus putting an ‘AND’ gate after the DNA and RNA scores. Assume the 

cutoff is top rank 10%: in a null sample with no true positives, DNA and RNA ranks will 

be independent, following the same Uniform distribution. AND gate selection is expected 

to make 1% of positive calls. Alternatively, if the sample contains true positives, the two 

ranks will be correlated by MT receivers, and AND gate will predict higher percentage of 

positive calls. This rationale can be used to avoid making calls from disqualified samples. 

We first tested this strategy using the in-silico mixture sample with ~40% true positive 

cocultured cancer cells, and confirmed that DNA and RNA ranks are indeed correlated, 

leading to higher-than-expected positive calls across a range of cutoffs (Figure 3A). In 

contrast, when using the null sample (only monocultured cells) as the input, the reported 

positives were within the range established by 10,000 randomly permutated ranks (Figure 

3B). These results confirmed that the existence of MT receivers in the sample generates 

statistical dependence between the two MERCI ranks. To quantify this signal, we defined the 

‘ratio of cell number’ (Rcm) as MERCI reported number of positive calls over the maximum 

number from 10,000 random permutations. In MERCI, we used Rcm > 1 (empirical p value 

<0.0001) as the criterion to determine if the input sample contained any MT receivers. This 

criterion performed well as we applied it to the mixture and null samples: at all non-trivial 

cutoffs Rcm was greater than 1 with FDR<0.05 for the mixture sample, yet insignificant and 

smaller than 1 for the null sample (Figure 3C).

The power to detect true positives by MERCI is intuitively affected by the fraction of 

MT receivers in the sample. To assess the limit of MERCI when this fraction is small, 

we performed an in silico titration analysis by gradually lowering the percentage of CC 

cells from 20% to 0.5% in the mixture sample. We found that with over 7% CC cells, Rcm

values remained robustly above 1 at different rank cutoffs (10~50%) (Figures 3D–3F and 

S3E–S3F). Further, positive calls made by MERCI were significantly enriched for the true 

CC cells even with lower fraction (5~15%) of positive cells (Figure S3G). As the fraction 

of CC cells dropped below 5%, MERCI did not always detect the true signal, yielding 
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smaller Rcm and insignificant p values. We concluded that MERCI is sensitive to determine 

the existence of MT receivers for samples with over 7% of true positive cells. Depending on 

the cancer type, the fraction of receivers in the tumor could range between 13% to 45%26, 

which is sufficient for MERCI implementation.

Next, we assessed how rank cutoffs influence the prediction of MERCI using the criteria 

of sensitivity, specificity and precision. The benchmark in silico sample contained all the 

CC cells (n=2,904) as true positives and held-out MC cells (n=3,786) as true negatives, 

which was used to evaluate the performance of MERCI under different cutoffs (Figures 

3G–3I). MERCI achieved high specificity and precision with more rigorous cutoffs, at the 

cost of a reduced sensitivity. When using a less strict cutoff, for example, at the threshold 

of top rank 50%, MERCI reached approximately 90% specificity and 80% precision, with a 

moderate sensitivity of 56.3%. Therefore, in our downstream analysis, we consistently used 

a “lenient” cutoff up to 50% given Rcm > 1 to balance the sensitivity and precision.

Finally, in a real-world scenario, cancer samples are comprised of both “receiver” and 

“non-receivers” cells without known class labels. Thus, it is challenging to find the ‘pure’ 

non-receiver cancer cells to infer the reference MT gene expression and the T cell enriched 

mtSNVs. To solve this problem, we implemented a ‘Leave One Out’ (LOO) strategy: for 

a given cancer cell of interest, we considered all the cancer cells except the given one as 

the non-receiver reference to estimate the rank scores. This approach is reasonable because 

majority of tumor cells in the cancer population do not receive mitochondria from the T 

cells26. We assessed the performance of MERCI LOO using the same in silico sample 

described above (Figures 3G–3I). The slightly lower sensitivity (Figure 3G) is expected as 

the presence of the true receivers in the reference may diminish the cancer-T cell difference, 

which does not influence the specificity (Figure 3H). Together, our analysis provided a 

practical way to apply MERCI to real-world samples.

Evaluation of MT transfer and MERCI performance with mtscATAC-seq

Detection of mitochondrial transfer in our analysis so far is primarily based on 10x 

Genomics scRNA-seq platform, which, although heavily used in recent clinical studies, 

is not optimized for mtDNA profiling due to its limited and uneven coverage in this 

region11,36. Therefore, we repeated the coculture experiments (Figure 1A) and implemented 

a recently developed, cutting-edge technology for mtDNA single cell profiling (mtscATAC-

seq) (Table S1, Figure 4A)10 to profile the MT regions for CC, MC and primary T 

cells. In brief, mtscATAC-seq repurposed scATAC-seq to deeply sequence mtDNA (Figure 

S3H), offering significantly improved coverage (per-site, per-cell average 48X) within the 

mitochondrial region in our analysis (Figure 4B). In the same batch, we also generated 

matched scRNA-seq data (15X coverage) for each sample to evaluate MERCI.

We next called mtSNVs for each sample through the MERCI-mtSNP pipeline and identified 

1,989 T cell-enriched variants from mtscATAC-seq data (Table S2). As expected, CC 

cancer cells, the bona fide receivers, harbored significantly more T cell-enriched mtSNVs 

compared to the negative control (MC cancer cells), a finding also confirmed using matched 

scRNA-seq data (Figures S3I and S3J). A scrutiny over the variants called from mtscATAC-

seq revealed several interesting mtSNVs. For example, MT_2442: G→A, among others, 
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occurred in 94% of the T cells, while almost completely absent in the MC population. We 

observed that a sizeable fraction (7.5%) of cancer cells cocultured with T cells picked up this 

mutation (Figure 4C). These variants provided compelling genetic evidence of mitochondrial 

transfer from T cell to the cancer cell population. In contrast, cocultured T cells (Figure 

S3K) did not show higher amount of cancer-enriched mtSNVs (Figures S3L and S3M), 

supporting the nearly unidirectional mitochondrial transfer from T cells to cancer cells.

To further evaluate MERCI’s performance in identifying receiver cells, we applied MERCI 

to the mtscATAC-seq data from the mixed population of CC and MC cancer cells. The 

outcomes revealed that MERCI is capable of differentiating CC cancer cells from a blend 

of cancer cells with both ROC and PRC AUC values exceeding 0.8 (Figure 4D). We 

repeated this analysis using the scRNA-seq data matched to the mtscATAC-seq samples and 

confirmed that MERCI reached similar prediction accuracy as in the discovery cohort. These 

confirmed the ability of MERCI to uncover true MT receivers from single cell RNA-seq 

samples.

Distinct MT receiver phenotype in human solid tumor uncovered by MERCI

We next implemented MERCI to scRNA-seq samples in the public domain, which were 

derived from patients with basal cell carcinoma (BCC)37 or esophageal squamous-cell 

carcinoma (ESCC) 38. Both cohorts provided sufficient cancer and T cells that were ideal for 

discovery of gene markers related to MT transfer. We first analyzed the samples from three 

BCC patients and tested the existence of receivers in each sample using the Rcm criterion. 

These samples were selected as they contained sufficient numbers (n>500) of both cancer 

and T cells. While two samples showed no evidence of MT receivers (Rcm < 1, Figures 

S4A and S4B), positive signals were detected in one sample, ‘su006’ (Figures 5A and 5B). 

Specifically, its Rcm values were significantly greater than 1 at the rank cutoffs of 20%–60% 

(FDR<0.05, Figure 5B), thus qualified the next step implementation of MERCI. We then 

used the LOO approach to predict MT receivers using the recommended parameters (rank 

cutoff=50%), and called a total of 309 tumor cells (~30% of all tumor cells). Interestingly, 

the predicted receiver cells formed a tight subcluster within the original cancer cell cluster, 

which was not observed for the predicted non-receivers (Figures 5C and S4C), indicating a 

converged cancer cell phenotype associated with MT transfer.

We proceeded to investigate this phenotype through differentially expressed genes (DEGs) 

of the MT receivers against the other cancer cells. The genes associated with ATP 

synthesis and oxidative phosphorylation, such as BID, COX6A1, CYCS and SLC25A5, 

were significantly upregulated in the predicted receivers (Table S3, Figure 5D), supporting 

that these cells carried more mitochondrial-mediated energy production. As expected, 

genes involved in cytoskeleton regulation and actin polymerization, such as PIM1, ACTB, 

PFN1, PVRL2 and GBP1/2 etc., were also expressed at higher levels, consistent with 

the mechanism of nanotube formation. Interestingly, essential components of the tumor 

necrosis factor alpha (TNFα) pathway, including TGIF1, IFNGR2 and LITAF, were among 

the top upregulated genes. Functional enrichment analysis of the 608 DEGs also revealed 

‘TNFα signaling via NFκB’ was the most enriched pathway (Table S4, Figure S4D). 

Previous studies have reported that TNFα pathway is closely involved in nanotube initiation 
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and intercellular nanotube connectivity39,40, which is in line with our observations. This 

phenotype was further reproduced when we analyzed the scRNA-seq data of another three 

patients with ESCC, where MERCI-predicted receivers also showed distinct gene expression 

pattern from non-receivers (Figure S4E). The signature genes of the MT receivers from 

the ESCC patients significantly overlapped with those from the BCC sample (Figure S4F). 

Specifically, genes involved in cytoskeleton remodeling, cell junction and TNFα pathways, 

such as ACTB, PFN1, PVRL2 and TGIF1, were also upregulated (Figures S4G–S4J).

To verify the above findings, we extended MERCI analysis to incorporate more cancer 

samples from the public domain by releasing the requirements for sample inclusion: ≥100 

counts for both T cells and cancer cells. We assessed 156 samples with both cancer and T 

cells from recent clinical studies, as cataloged in CancerSCEM database41, and subsequently 

filtered in 61 samples from lung, gastric, skin, pancreatic, bladder, colorectal, and breast 

cancers (Table S1). We applied MERCI on each sample and found that the fraction of T 

cell-derived mitochondria in cancer cells was significantly associated the gene expression 

variations on UMAP plot in 61% (37/61) of these samples (|ρ| > 0.2, P < 0.001, Table S5, 

Figures 5E and S5A). Further, we observed that the 608 DEGs identified in BCC were also 

positively correlated with the estimated fraction of T cell-derived mitochondria in most of 

these 37 samples. Specifically, genes in pathways related to biological processes such as 

biosynthesis, cell activation, TNF-α signaling, and cell cytoskeleton remodeling were also 

significantly correlated with this fraction (Figure 5F). These findings suggested that the gene 

markers identified by MERCI from human samples are reproducible across multiple cancer 

types.

To further investigate cross-species conservation of MT transfer13, 26, we searched for all 

the genes positively correlated with the fraction of T cell-transferred mitochondria in cancer 

cells (Spearman ρ>0 and FDR<0.05) in the human BCC sample and the murine benchmark 

sample. We observed 95 overlapped genes as MT transfer related. The number of overlapped 

genes between human and mouse data is significantly higher than expected (p=1.28×10−8, 

Figure S5B), suggesting that these overlapped genes might be evolutionary conserved. Gene 

set enrichment analysis confirmed that MT transfer-related genes are mainly enriched in 

the pathways related to nanotube formation, such as cell-cell adhesion, actin polymerization 

and cytoskeleton organization (Figures 5G, S5C and S5D). These results indicated that 

nanotube-related genes could potentially serve as a marker of MT transfer.

Pan-cancer analysis of MT transfer in large human patient cohorts

To quantify the MT transfer activity in cancer cells or bulk tumors, we generated a 17-

gene signature from the 95 evolutionary conserved MT transfer-related genes (Table S6). 

Selection of the 17 signature genes was guided by prior knowledge of gene function, as 

these genes are directly involved in the pathways associated with nanotube formation or 

mitochondrial activity (Figure S6A). We excluded genes involved in various metabolic 

pathways, such as “Oxidative phosphorylation” and “Regulation of ATP synthesis”, as they 

are more likely the consequences, not the cause of mitochondrial transfer42. As our goal is 

to find markers related to the initiation of this process, these genes were not suitable to serve 

as signatures. We defined the gene set enrichment score43 based on the mRNA expression 
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of these 17 genes as tumor MT transfer (TMT) score, which served as a measure of MT 

transfer in tumor. To access its performance, we first calculated TMT score for each cancer 

cell in the murine benchmark and human BCC sample, and confirmed that the MT receivers 

showed significantly higher TMT scores than the non-receivers (Figures 6A and 6B). Next, 

the TMT score was highly correlated with the exogenous MT abundance in the cancer cells 

with a Spearman correlation coefficient higher than any of the 17 genes alone (ρ=0.34 for 

benchmark data and ρ=0.40 for BCC data, Figures S6B and S6C).

To further investigate the functional relevance of MT transfer in cancer, we estimated the 

TMT score of 10,628 human cancer or adjacent normal samples in The Cancer Genome 

Atlas (TCGA) database. To ensure statistical power, we analyzed the 22 major cancer types 

with over 100 patients. In 9 out of the 12 cancers with at least 10 adjacent normal samples, 

we observed significantly higher TMT scores in the tumors than in the matched normal 

tissues (Figure 6C), consistent with the enhanced ability of mitochondrial capture in cancer 

cells29,42,44. Further, as MT transfer is reported to promote recipient cell proliferation and 

survival through improved energy production45,46, we assessed the association of TMT 

score with cell cycle activity47. To get an unbiased estimation, we applied partial spearman 

correlation corrected for tumor purity for the related variables. Consistently, the TMT score 

is positively correlated with cell cycle score (CCS) in almost all cancer types (Figure S6D). 

In 12 out of 22 cancers, the TMT scores are highly correlated with CCS (partial Spearman 

ρ>0.2, FDR<0.05, Figure 6D), suggesting increased cancer cell proliferation induced by MT 

trafficking.

Hypoxia is a common signature of cancer48, and therefore, oxygen deficiency in the tumor 

microenvironment could influence the activity of MT transfer. We next investigated this 

potential connection using a recently published estimation of hypoxia status in the TCGA 

samples49. Interestingly, in non-small cell lung and pancreatic cancers, tumor hypoxia level 

is significantly correlated with the TMT score (partial Spearman ρ>0.2 adjusted for tumor 

purity, FDR<0.05, Figures S6E and S6F). One possible explanation to this result is the 

previously reported mechanism that limited oxygen supply promotes cancer cells to hijack 

foreign mitochondria to keep up with energy production50.

Finally, to investigate the potential role of MT transfer in prognosis, we performed univariate 

and multivariate Cox regression with TMT score as the primary predictor, while controlled 

for potential clinical confounders including age, tumor grade, clinical stage, tumor purity, 

etc. We observed that high TMT scores were consistently associated with poor survival 

in multiple cancer types (Figure 6E), including breast, head and neck, brain, liver, lung 

and pancreatic cancers (Figures 6F–6K). Given the high correlation between TMT score 

and cell cycle activity, we speculated that TMT score’s impact over patient outcome 

might be through CCS, which has also been reported to influence survival47. Interestingly, 

when adding CCS as a covariate in Cox model, the hazard ratio of TMT score became 

non-significant in brain (LGG) and pancreatic (PAAD) cancers, while the other cancer 

types remain unaffected (Figure 6E). These results provided evidence that MT acquisition 

by cancer cells might promote proliferation, which ultimately caused shortened survival in 

selected cancers. Meanwhile, TMT score still serve as an independent prognostic predictor 
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for other cancer types, which is in line with the fact that mitochondrial transfer metabolically 

empowers the aggressive behavior of cancer cells and causes immune cell dysfunction26.

Discussion

In this work, we described MERCI for tracing MT transfer from T cells to cancer through 

combined use of MT mutation and gene expression profiles from single cell RNA-seq 

samples. MERCI was validated and benchmarked using experimentally generated ground-

truth data, with demonstrated utilities in the real-world settings. Application of MERCI to 

the human cancer samples uncovered a previously unreported cancer phenotype related to 

MT transfer. Analysis of large human patient cohorts through TMT score further revealed 

that MT transfer might negatively influence patient outcome, partially through promoting 

cancer cell proliferation.

Nuclear mitochondrial DNA segments (NUMT)51,52 generated via the translocation of 

mtDNA fragments into the nuclear genome has been presented as a confounder in studies 

using MT variants as cell lineage markers. This is because variants derived from the 

NUMT regions usually satisfy the inclusion criteria designed for lineage tracing, such as 

high cellular heteroplasmy. NUMT were not explicitly handled our study, though, as they 

usually occur in all cell types and will unlikely contribute T cell enriched variants for the 

downstream inference in MERCI.

Horizontal MT transfer between mammalian cells is mediated by tunneling nanotubes 

(TNTs), gap junctions, microvesicles or direct extrusion and internalization24,53,54, with 

TNT formation being the most prevalent mechanism for intercellular mitochondrial 

transport20,29. TNT-mediated MT hijack from T cells might serve as another immune 

evasive approach in vivo26. Thus, selectively blocking the formation of TNTs can be a 

promising antitumor therapeutic opportunity. However, due to the lack of specific TNT-

markers, the current pan-inhibitors (such as farnesyltransferase inhibitors and cytochalasin) 

only partially prohibit TNT formation26,55, leading to limited tumor growth control. We 

discovered that MT transfer is highly associated with many putative regulators of the actin 

filament network (Table S3–4), such as PIM1, MYO1B, PFN1 and ABI1, which might be 

candidates for TNT disruption24,56,57. Another interesting target is cell adhesion molecule 

PVRL2 (encoding Nectin-2), a top predicted marker of MT transfer (Figure 5D). PVRL2 
might participate in MT transport, as its disruption results in morphologically aberrant 

spermatozoa of mice with defects in mitochondrial localization58.

The dysfunction of tumor infiltrating lymphocytes (TILs) is one of the main reasons 

for uncontrolled tumor progression59,60. In parallel to the heavily-investigated immune 

checkpoint molecules (such as PD-1, LAG3, TIM-3 and CTLA-4), the newly discovered 

mitochondrial drainage by cancer cells provided another possible mechanism for the 

metabolic dysfunction and exhaustion of TILs. As reported in previous work, partial loss 

of mitochondria in T cells may lead to shortage of energy production and dysfunction61,62. 

Capturing the signatures of T cell exhaustion resulted from MT transfer may reveal novel 

genes or pathways for T cell revitalization. Although MERCI was optimized to detect 

gain-of-MT signals in the cancer cells, its framework could be reconfigured to detect donor 
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T cells with proper benchmark experiments and training data. We thus anticipate a better 

understanding of tumor-immune interactions to unfold with the future investigation of the 

donor T cells in the process of MT transfer. Related to this point, in fact, both this study and 

Saha et al.26 observed a small fraction (3–5%) of T cells that received some mitochondria 

from cancer cells. This signal is much weaker compared to the transfer from T cells 

to cancer cells, both in receiver cell percentage as well as the amount of mitochondrial 

translocation. Although weak, this effect might be useful to detect antigen-specific T cells 

closely attached to the cancer cells.

Limitations of the Study

While our analyses provided more insights into this process, there are several important 

aspects that remain unknown. First, what is the driving mechanism that regulates 

mitochondria uptake by the cancer cells? GTPase Miro1 has been reported to mediate 

mitochondrial trafficking63,64, yet it did not emerge as a top hit in the unbiased genomic 

analysis. Our data suggests that MT receivers upregulated multiple genes involved in cell 

junction and cytoskeleton remodeling pathways (ACTB, GBP1/2, PIM1, PFN1, etc) that 

might directly or indirectly influence MT trafficking65,66. Selective knockout of these 

top targets will be useful to illustrate their roles in mitochondrial transfer. Second, can 

non-malignant cells acquire mitochondria from T cells under physiological conditions? 

Mitochondrial transfer to damaged or stressed epithelial cells has been repeatedly observed 

in previous studies as a way of quick tissue repair67,68. So far, mitochondrial drainage 

targeting T cells from any non-malignant cell types has not been reported. We posit that due 

to their small size and relatively smaller mitochondrial reservoir, T cells are not ideal donors 

of mitochondria in damaged tissues. Last, why different cancers (lung, breast, pancreatic, 

skin, etc) all demonstrated the same phenotype? Despite high-level of heterogeneity, cancer 

cells exhibited common hallmarks, such as sustained growth signaling, metastasis, immune 

evasion, etc69. It is possible that drainage of mitochondria from tumor-infiltrating T cells 

delivers selective advantages that caused the convergent evolution of cancer cells with 

diverse genetic backgrounds. While immune evasion is an apparent mechanism for survival 

benefit70, further investigations will be needed to confirm: 1) if tumor-associated T cells are 

preferentially targeted in this process and 2) if and how T cells become dysfunctional after 

mitochondrial transfer.

Low detection sensitivity is a potential limitation of MERCI because per cell MT read 

coverage could be low for some 10x libraries, leading to compromised detection power 

of MT mutations. Using libraries sequenced at 100K reads per cell (2.3K reads in the 

MT region), MERCI reached 56.3% sensitivity in our benchmark. Further increase of 

coverage of the mitochondrial genome is expected to improve its performance. Recently, 

Tyler et al. introduced the MAESTER scRNA-seq platform, which combined standard 

10x protocol with mitochondrial transcriptome enrichment to increase per site and per 

allele MT coverage for each cell, enabling high-confidence MT variant detection in scRNA-

seq dataset33. mtscATAC-seq implemented in this study is another example of successful 

mtDNA enrichment for single cell genomic analysis. Adaptation of these new technologies 

for future data generation will likely increase the prediction accuracy of MERCI and 

broaden its application. In addition, although we defined TMT score to investigate MT 
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transfer in the bulk tumor samples, it should be noted that this score is derived from a 

composite gene signature that might not be exclusive to this biological process. Conclusions 

regarding this analysis require future validations with tailored clinical samples.

STAR ★ METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources, reagents and codes should 

be directed to and will be fulfilled by the Lead Contact, Dr. Bo Li (lib3@chop.edu).

Materials availability—This study did not generate any new unique reagents or models.

Data and code availability—scRNA-seq datasets generated in this study, as well as 

the MT variants and coverage information are available at Zenodo https://doi.org/10.5281/

zenodo.8065206, and Gene Expression Omnibus (GEO) database with accession number 

GSE235675. The other scRNA-seq datasets of human cancer are available under the 

GEO accession codes provided in Table S1 and Key Resources Table. The TCGA data is 

available at https://portal.gdc.cancer.gov/. The source codes of MERCI-mtSNP and MERCI 

R package, and the codes to run example data are available at: https://github.com/shyhihihi/

MERCI. Any additional information is also available from the corresponding author (Dr. Bo 

Li) upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Cancer cell line and culture—The KP lung cancer cells were provided initially by Dr. 

Esra Akbay. The KP-mito-DsRed stable cell line was generated in the lab with pDsRed2-

Mito vector (Takara, Cat# 632421) transfection using PEI MAX® (Polysciences, Cat# 

24765–1) with long-term selection using G418 following manufacture’s protocol. KP cell 

lines were grown in 5% FBS (ThermoFisher Scientific, Cat# 26140079) supplemented 

RPMI 1640 (Millipore Sigma, Cat# R8758). Cell lines were routinely tested using a 

mycoplasma contamination kit (E-myco, Cat# 25233, Bulldog Bio) and cultured under 

5% CO2 at 37 °C. The MC38 cell lines were purchased from the American Type Culture 

Collection and cultured in DMEM supplemented with 10% heat-inactivated FBS, 100 U 

ml−1 penicillin and 100 U ml−1 streptomycin under 5% CO2 at 37 °C.

Mice—6–8 weeks old female C57BL/6J mice were purchased from Jackson Laboratory and 

housed at UTSW Animal Resource Center. All mice were maintained at 68–79°F, 30–70% 

humidity, in individually ventilated cages, with no more than five mice per cage on 12-hour 

on:off light:dark cycles. Mice had unrestricted access to RO chlorinated water and irradiated 

2916 Teklab global diet (Envigo, Cat# 2916). The mice were housed at least for a week 

before starting the downstream process. Animal care and experiments were performed to 

comply with institutional and National Institutes of Health protocols and guidelines. This 

study has been approved by the Institutional Animal Care and Use Committee of University 

of Texas Southwestern Medical Center.
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METHOD DETAILS

T cell isolation, activation and mitochondria labeling—Splenocytes were isolated 

by harvesting the spleen from 6–8 weeks old mice following red blood cell lysis with 

ACK buffer. CD8+ T cells were isolated by immunomagnetic negative selection using 

EasySep™ mouse CD8+ T cell isolation kit (Stem Cell Technologies, Cat# 19853). 

Isolated T cells were activated with 1ug/mL anti-CD3/CD28 (Biolegend, Cat#100239 and 

Cat#102115) antibodies for 24h. Activated CD8+ T cells were then stained with 100 nM 

MitoTracker™ green FM (ThermoFisher, Cat# M7514) at 37°C for 30 min following 

the manufacturer’s instruction. MitoTracker™ green FM (ThermoFisher, Cat# M7514) at 

indicated concentration would not stain all T cell mitochondria positive, to avoid non-

mitochondrial labeling. Stained CD8+ T cells were then washed with medium, centrifuged 

down, and then resuspended to remove exceeded dye in the medium. Isolated CD8+ T cells 

were maintained in 10% heat deactivated FBS supplemented RPMI 1640 (Millipore Sigma, 

Cat# R8758). In the control experiment, KP-mito-DsRed cancer cells were labeled with 

MitoTracker™ red CMXRos (ThermoFisher, Cat# M7512) using the same procedure.

Coculture assay and flow cytometry analysis—The KP-mito-DsRed cancer cells 

were plated at 2×106 cells/well of 6 well plate overnight to allow cell attachment before co-

culturing. MitoTracker™ green FM stained CD8+ T cells were then added to the tumor cells 

at 2×105 cells/well with a final volume of 2ml of RPMI 1640 supplemented with 10% heat 

deactivated FBS in each well. Cancer cells and CD8+ T cells were then cocultured under 

5% CO2 at 37 °C for 24h before mitochondria horizontal transfer evaluation. Co-cultured 

supernatant containing CD8+ T cells were then collected, as well as 0.25% trypsinized co-

cultured KP-mito-DsRed cells. All the cells were spined down, and a single cell suspension 

was used to perform staining and analysis. Samples were incubated with anti-FcγIII/II 

receptor (clone 2.4G2) for 15 min at 4 °C to block potential non-specific binding of 

conjugated antibodies. Anti-mCD8α (Biolegend, Cat# 100730) were incubated with single-

cell suspension for 30 min at 4 °C. Fixable viability Dye eFluor 506 (eBioscience, Cat# 

65–0866-18) was used to exclude the dead cells. Subsequently, the dissociated cells were 

filtered through a 70 μM cell strainer and resuspended in FACS buffer before analysis. Data 

were collected and analyzed on CytoFlex flow cytometer (Beckman Coulter, Inc). To control 

the effect of different co-culture ratios on mitochondrial transfer. A wide range of co-culture 

ratios (10:1, 5:1 and 2:1) were also tested in our control experiments for KP and MC38 

cancer cells.

Single cell suspension preparation and flow sorting—CD8+ T cells successfully 

labeled with MitoTracker™ were sorted as FITC positive through BD FACSMelody™ sorter. 

Single-cell suspension of co-cultured KP cells (either DsRed or mitoTracker Red labeled 

cells) and CD8+ T cells were prepared and stained as described during flow cytometry 

analysis. KP cells containing mitochondria derived from T cells (CD8 negative, FITC and 

DsRed/MitoTracker Red positive) and CD8+ T cells were sorted with BD Melody flow 

sorter. Monocultured cancer cells and CD8+ T cells were prepared as single-cell suspension 

simultaneously following the same protocol as the cocultured cancer cells.
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mtscATAC-seq libraries preparation and sequencing—Mitochondrial single-cell 

assay for transposase-accessible chromatin with sequencing (mtscATAC-seq) technique was 

performed strictly following the revised 10x scATAC-seq protocol developed by Lareau 

et al.10,71. Briefly, after washing, the sorted cells were fixed in 1% formaldehyde (FA; 

ThermoFisher #28906) in PBS for 10 min at RT, quenched with glycine solution to a final 

concentration of 0.125 M before washing cells twice in PBS via centrifugation at 400 g, 

5 min, 4°C. Cells were subsequently treated with lysis buffer (10mM Tris-HCL pH 7.4, 

10mM NaCl, 3mM MgCl2, 0.1% NP40, 1% BSA) for 3 min for CD8+ T cells and 5 min 

for KP cells on ice, followed by adding 1 ml of chilled wash buffer and inversion (10mM 

Tris-HCL pH 7.4, 10mM NaCl, 3mM MgCl2, 1% BSA) before centrifugation at 500 g, 

5 min, 4°C. The supernatant was discarded, and cells were diluted in 1x Diluted Nuclei 

buffer (10x Genomics) before counting using Trypan Blue and a Countess II FL Automated 

Cell Counter (Invitrogen). mtscATAC-seq libraries were generated using the 10x Chromium 

Controller and the Chromium Next GEM Single Cell ATAC Kit v2 (PN-1000406) according 

to the manufacturer’s instructions (CG000496 Rev-B), and sequencing was run on Illumina 

NovaSeq 6000 using paired-end sequencing of 150-bp read length, aiming to allocate 35,000 

paired-end reads per cell in a mtscATAC-seq library.

scRNA-seq libraries preparation and sequencing—scRNA-seq was performed by 

the 10x Genomics single-cell 5′ V(D)J library platform. Single-cell suspension of negative 

controls and sorted cells were counted manually under a microscope stained with trypan 

blue. The concentration of single-cell suspensions was adjusted to 900–1000 live cell/μl. 

Cells were loaded at 10,000 cells/chip position. Single-cell libraries were generated with 

Chromium Single Cell V(D)J Reagent Kit (10x Genomics, PN-10000006, PN-10000009) 

following per manufacturer’s instruction. Purified libraries were analyzed by Illumina 

NovaSeq with 150-bp paired-end reads at a targeted median read depth of 100,000 reads 

per cell.

Data processing and read alignment—For each scRNA-seq library used in this study, 

fastq files were processed using the Cell Ranger (v6.0.0) Software Suite. Cellranger count 

was used to align reads to mouse mm10 or human GRCh38 reference genome, as well 

as to filter and quantify. The generated files of Cell Ranger for each library included 

a cell barcode file, a feature file and a gene expression matrix (in unique molecular 

identifier (UMI) count). Seurat pipeline (v3.1.2) was applied to the raw UMI count table, 

following log-normalization. A normalized gene expression matrix was generated for each 

sample. The cell barcode file was used for subsequent mitochondrial variant calling, and 

only MT reads associated with cell barcodes listed in this file were retained. The raw 

data from mtscATAC-seq libraries underwent preprocessing with the Cell Ranger ATAC 

pipeline (version 2.0.0) and alignment with the mm10 reference via the cellranger-atac count 

command. The cell barcodes listed in ‘filtered_peak_bc_matrix’ of the output files were 

utilized for subsequent mitochondrial variants calling.

Analysis of mouse scRNA-seq data—All normalized expression matrices were 

merged into one file by the standard Seurat v3 integration workflow72 to remove potential 

technical variabilities. Since our purpose is to analyze the mitochondrial genomic feature of 
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every single cell, we performed an additional filtering operation to remove those cells with 

low read depths in the mitochondrial genome region. The aligned and processed .bam files 

generated from Cell Ranger were further processed using customized Python scripts. Cells 

with at least 1,000 reads uniquely mapping to the mitochondrial genome were considered for 

downstream analysis.

UMAP projection using mitochondrial reads—To visualize the mitochondrial 

transcriptional data in a 2-dimensional space, we performed a uniform manifold 

approximation and projection (UMAP) embedding of the cells by their mitochondrial read 

coverage. First, we extracted all the high-quality reads (mapping score=255) that uniquely 

mapped to the mitochondrial genome, and calculated the basewise coverage for each cell. 

When counting the coverage for each base, we only considered the reads with base quality 

> 15. The 16.3-kb long genome of mouse MT provided a read-depth matrix, with 16.3 k 

rows and columns corresponding to each cell. Raw read counts were then log-normalized for 

each cell using Seurat. The ScaleData function was used to calculate the scaled z-scores for 

mitochondrial genome sites, which were used as input of the principal component analysis 

(PCA). With the first 10 principal components as features, the UMAP projections were 

generated using the RunUMAP function.

Overview of MERCI

Mitochondrial variant calling by MERCI-mtSNP: To efficiently retrieve the cell-level 

mitochondrial variants from single-cell sequencing data, we developed a mutation calling 

pipeline called MERCI-mtSNP (Figures S2B). MERCI-mtSNP was designed to call single-

nucleotide variants (SNV) in MT genomics data generated from popular bulk or single-cell 

sequencing technologies, such as 10x Genomics scRNA-seq, smart-seq2 and ATAC-seq. 

More specifically, the aligned bam file was used as the input of MERCI-mtSNP, and all 

reads uniquely aligned to the mitochondrial genome were extracted. For 10x scRNA-seq and 

mtscATAC-seq data, the reads were further separated by cell barcodes. This step generated 

a new mitochondrial bam (MT bam) file only containing those extracted mitochondrial 

reads. We performed variant calling for each cell independently, keeping cells with at least 

K mitochondrial reads for the scRNA-seq (K=1,000) and mtscATAC-seq (K=2,000) data. 

The imported MT bam file using the pysam module determined per base and per allele 

read counts. We removed those reads marked with ‘duplicate’, ‘secondary’, ‘supplementary’ 

or ‘ummaped’, and only kept the reads with the high mapping score (255 for scRNA-seq, 

>=5 for mtscATAC-seq). In mtscATAC-seq data, we observed that some regions in the 

mtDNA regions are similar to the mouse genome, resulting in multiple mapping locations 

low mapping score. To include reads in these regions, we lowered the mapping quality cutoff 

while restricted the primary mapping location to mtDNA. Per-based coverage statistics 

were then calculated using the remaining mitochondrial reads. For each altered base at a 

given locus, the variant allele frequency (VAF) was computed by using the number of the 

supporting reads divided by the total read depth. To get high-quality variants, only the 

aligned reads with base-quality score >15 (>25 for mtscATAC-seq) were used to calculate 

the VAF values. In the scRNA-seq data, we noticed the existence of ‘mutation clusters’, 

which are consecutive variants occurring within a small genomic region, which are likely 

to be some false positives due to technical artifact. Therefore, variants observed in the 

Zhang et al. Page 16

Cancer Cell. Author manuscript; available in PMC 2024 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



clustered genome loci (within 5 bp) with only supported by one altered read were removed. 

A csv file and txt file would be generated as the output of MERCI-mtSNP, representing the 

information of MT coverage and MT variants, respectively.

Since MERCI-mtSNP ignores the mutations in the nuclear genome, it has a favorable 

computational efficiency with 52s for running out a single cell smart-seq2 data (450,358 MT 

reads) or 2.5h for a normal-sized10x scRNA-seq data (8,721 cells, 1,147 MT reads per cell) 

with 256G memory and 12 CPU nodes.

Binomial model-based filtering of MT variants: Assuming a mitochondrial single 

nucleotide variant (SNV) with a true heteroplasmy level p, the statistical power for detecting 

this mutation depends on the local sequencing coverage n at the site of this variant. It should 

be noted that heteroplasmy indicates the proportion of mitochondrial genomes containing 

a specific mutation, which is different with observed VAF. VAF is usually determined by 

multiple factors including heteroplasmy, sequencing error and read depth. Assuming the 

sequencing error to be e e = 0.001), the probability of observing at least one alternate read 

can be written as:

P p, n = 1 − pw
n

in which

pw = 1 − pmut

pmut = p × (1 − e) + (1 − p) × e
3

Where pmut and pw represent the probabilities of a read being altered and wild type, 

respectively. The probability of detecting mutation at a heteroplasmy of 0.2 is greater than 

60% when read coverage is 5 or higher (Figures S2F). Therefore, only variants with at 

least 5 total reads (wild-type and variant) reads were kept. For a given cell and a given 

variant, if the coverage at the locus is >= 5, we define this variant “observable” in this cell. 

Variants observable in less than 10% of cells were removed. Unobservable positions are 

represented as missing values. We implemented additional filtering for mtscATAC-seq data 

because its comparatively higher coverage per site per cell can result in more sequencing 

errors. Specifically, the probability of observing at least m identical alternate reads due to 

sequencing error can be expressed as follows:

P(m) =

1 if m = 0

1 −
i = 0

m − 1
Binom i ∣ n, e

3 if m > 0

The minimum number of alternate reads k supporting that P k  is less than a given false-

positive rate (FPR) is:
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k = min m ∣ P m ≤ FPR

With FPR set to 5×10−4, we can compute a k value for each variant. All variants with 

supporting reads fewer than k were considered as potential sequencing errors (FPR > 

5×10−4), and removed from the mtSNV profile. Finally, we obtained a matrix of VAF with 

rows being SNPs and columns being cells, which was further transformed into a binary 

matrix: with 0 being VAF=0 and 1 VAF>0.

Defining T cell enriched/depleted MT variants: The monocultured cancer cells were 

randomly split into a training and a validation set. T cell enriched mtSNVs were defined as 

those more frequently occurring in T cells than in cancer cells of the training set (FDR<0.1, 

OR>1). Similarly, T cell depleted variants represented the mutations less observed in T cells 

(FDR<0.1, OR<1). Statistical significance was estimated using Chi-square test followed by 

FDR correction with the Benjamini–Hochberg (BH) procedure.

‘Effective count statistic’ of T cell enriched mtSNV: The observation of T cell enriched 

mtSNVs in cancer cells provides key evidence of MT transfer. In this study, we consider 

each cancer cell as a potential receiver of mitochondria from T cells. Let S denote the set 

of mutations that are enriched in the T cell population. For a given cancer cell and mutation 

i in S, we observe the coverage of this site ni and the count of mutated reads mi mi > 0). 

Although the ratio mi/ni is an unbiased estimation of the heteroplasmy of the mutation i, 
given the relatively shallow per-cell coverage of the single cell RNA-seq data, this estimate 

is noisy and can be inaccurate. Therefore, we used the following hierarchical Bayesian 

approach to determine if mutation i is resulted from MT transfer from T cells or otherwise. 

We define a weight wi associated with mutation i as the ratio of marginal likelihood:

wi = P i

Qi
, i ∈ S (1)

where

P i = Pr mi ∣ ni, MT transfer

Qi = Pr mi ∣ ni, no MT transfer

Intuitively, if MT transfer occurs, we anticipate wi > 1 for mutation i. Next, we calculate the 

likelihood given the probability pi
0 of observing a mutated read:

Pr mi ∣ ni, p = mi

ni
× pi

0 mi × 1 − pi
0 ni − mi (2)

Under the null scenario, i.e. variant coming from either sequencing error or as a result of the 

background population heteroplasmy pi
c:
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pi
0 = pi

c × (1 − e) + 1 − pi
c × e

3 (3)

The variable pi
c in equation (3) can be estimated by pooling all the single cells from the 

given cell population. Assuming that a total of Mi altered reads support the mutation i, with 

sequencing depth Ni, then E pi
c = Mi

Ni
. According to the Central Limited Theorem, when Ni is 

a sufficiently large number, pi
c is asymptotically Normal with estimated deviation:

σi
C = Mi × Ni − Mi

Ni
3

Then the standard deviation of pi
0 should be:

σi
o = 1 − 4

3e × σi
C

We hypothesized that the condition of with or without MT transfer will alter the range of 

the true heteroplasmy of the variant allele in the expressions of Pi and Qi in equation (1). 

Specifically, when there is no MT transfer, it is reasonable to believe that the mutation allele 

frequency pi is unlikely to take a value that is ‘a lot’ higher than pi
0, with ‘a lot’ quantified by 

σi
o. Given the property of Normal distribution, we set the upper limit of pi in the case of no 

MT transfer to be s1 = min pi
0 + 1.96σi

o, 1 , such that pi will be smaller than this limit 97.5% of 

the chance. As it is not possible to learn which T cells had been in contact with the cancer 

cell of interest, when MT transfer occurs, we assume that the heteroplasmy of the variant in 

the T cell population can uniformly take value somewhere between pi
c to 1. Considering the 

statistical uncertainty, we anticipate pi to be higher than s2 = max pi
0 − 1.96σi

o, 0 . Accordingly,

P i = ni!
mi! × ni − mi ! ×

s2

1

pi
mi × 1 − pi

ni − mi dpi

Qi = ni!
mi! × ni − mi ! ×

0

s1

pi
mi × 1 − pi

ni − mi dpi

The integral can be written as a form of incomplete Beta function to get the expression of wi:

wi = P i

Qi
= 1 − Is2 mi + 1, ni − mi + 1

Is1 mi + 1, ni − mi + 1 (4)

where
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Ix mi + 1, ni − mi + 1 =
∫o

xtmi × (1 − t) ni − mi dt
Beta mi + 1, ni − mi + 1

= ∑j = mi + 1
ni + 1 ni + 1

j
xj(1 − x)ni + 1 − j

Therefore, the final expression of wi is:

wi =
1 − j = mi + 1

ni + 1 ni + 1
j s2 j 1 − s2

ni + 1 − j

j = mi + 1
ni + 1 ni + 1

j s1 j 1 − s1
ni + 1 − j

(5)

All the variables in the equation (5) can be estimated from the single cell RNA-seq data. 

Based on the value of wi, we define the ‘effective count statistic’ (Neff) of each cancer cell as 

follows:

Neff =
i ∈ S

I wi

in which I  is indicator function:

I(x) = 1 if x > 1
0 otℎerwise

Effective count Neff is an estimate of MT transfer occurrence for each cancer cell of interest 

based on T cell enriched MT mutations, while controlled for sequencing error and read 

depth. We use Neff in MERCI as the DNA source of information, which is further taken the 

rank transformation to reduce the impact of outliers.

Deconvolution model with support vector regression: The mixed mitochondrial 

transcriptome expressed in receiver cells allowed us to propose a deconvolution model 

on mitochondrial mRNA mixture m for imputing an unknown fraction of mitochondrial 

composition for each cell34,73,74. The mitochondrial genome contains 13 protein-coding 

genes (MT genes) that provide essential functions for making enzymes involved in oxidative 

phosphorylation. The mRNA expression of each MT gene in a receiver cell is expected to 

be contributed by both intrinsic (endogenous) MT and donor-transferred (exogeneous) MT. 

Thus, the deconvolution problem can be represented by the equation:

m = f * g + δ

Where f denotes a vector of the mitochondrial fraction of different source of origins in the 

mixture and g is the signature matrix of MT gene expression profiles (MGEP) in purified 

donor and receiver cell types. δ is the random noise following a normal distribution with 

zero mean. In this work, MERCI adopted epsilon-support vector regression (ε-SVR) with 
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linear kernel application35 to estimate the fraction of external mitochondria by decomposing 

the relative RNA transcripts of MT genes. ε-SVR is an extended use of support vector 

machine (SVM) in regression problems. Unlike ordinary linear regression, the objective of 

ε-SVR is to find an appropriate line (or hyperplane in higher dimensions) to fit the data 

with acceptable error (ε) instead of minimizing the squared error sum. Therefore, ε-SVR can 

largely reduce overfitting and be robust to noisy data, making it suitable for deconvolving 

the mixture profile of gene expression34,75.

For a given receiver cell, the regression line of ε-SVR can be written in the equation:

ŷ = w * x + b (6)

Where w = w1, w2  denotes the weights of the exogenous w1  and endogenous w2  MT 

within the cytoplasm of this cell, and x is the vectorized reference MGEP of potential 

donor cells and receiver cells. This formula represents the linear mixture of different cell 

types’ gene expression pattern with trainable weights. The goal is to minimize the difference 

between the mixed expression pattern and the observed data at given constraints. Let y
denote the observed expression of a MT gene. To solve the weights, the following objective 

function of ε-SVR (L2-norm penalty function) and constraints are used:

min 1
2 |w| 2 + C ∑

i = 1

N
ξi + ξi

*
(7)

With Constraints:

yi − ŷi ≤ ε + ξi (8)

ŷi − yi ≤ ε + ξi
*

(9)

where N is the number of data points, C > 0 is the input penalty coefficient and ξi, ξi
* are 

positive slack variables ensuring equality. ε is set as 0.1 in this study.

To solve this constrained optimization problem, Lagrange multipliers α = a1, α2…, αN  and 

α* = α1
*, α2

*, …, αN
*  are introduced76,77 and the Lagrangian function L can be obtained to be:

L w, b, ξ, ξi
*, α, α* = 1

2 |w| 2 + C ∑
i = 1

N
ξi + ξi

* + ∑
i = 1

N
αi yi − wxi − b − ε − ξi

+ ∑
i = 1

N
αi

* wxi + b − yi − ε − ξi
*

(10)

By using the Lagrange multiplier techniques, the optimization problem in support vector 

regression is transformed to:
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min
w, b

1
2 |w| 2 + C ∑

i = 1

N
ξi + ξi

* = min
w, b

max
α, α*

L w, b, ξ, ξ*, α, α* (11)

This leads to the following dual optimization problem35.

min
w, b

max
α, α*

L w, b, ξ, ξ*, α, α* = max
α, α*

min
w, b

L w, b, ξ, ξ*, α, α* (12)

Using the condition that the partial derivatives of L with respect to the primal variables will 

be zero at optimality. The dual problem can be written as following77:

Maximize

max
α, α*

−ε∑
i

N
αi

* + ai + ∑
i

N
yi αi

* − ai − 1
2 ∑

i, j = 1

N
αi

* − ai (αj
* − aj) < xi ⋅ xj > (13)

s.t.

i = 1

N
ai − αi

* = 0

0 ≤ ai, αi
* ≤ C

w in the primal formulation can expressed easily in terms of α and α*.

w = ∑
i = 1

N
ai − αi

* xi (14)

Thus, the linear ε-SVR hyperplane can also be represented by

y = ∑
i = 1

N
ai − αi

* xi ⋅ x + b (15)

where b is computed using the fact that (8) becomes an equality with ξi = 0 if 0 < αi < C and 

(9) becomes an equality with ξi * = 0 if 0 < αi * < C. The current implementation of ε-SVR in 

MERCI is based on the R package e1071. The estimated regression coefficients (w1 and w2) 

in MERCI denote the relative, not absolute, quantity of intrinsic and foreign mitochondria in 

a receiver cell.

Rank score calculation: MERCI generated two rank scores (DNA rank, RNA rank) for 

each input candidate cell. Based on the Neff statistic of donor cell (T cell in this study) 

enriched MT variants N0 , the DNA rank score is calculated as the descending order of 

N0 RN0 . The RNA rank score is obtained from decreasingly ranking the estimated abundance 

of donor cell derived MT calculated from the equation (14) Rw1 . In Figures S3C–S3D, the 
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combined rank score of each cell was computed by averaging the DNA rank score and RNA 

rank score. MERCI considers both DNA and RNA rank scores to predict receiver cells using 

an AND gate. A candidate cell will be assigned as a receiver only if its DNA and RNA rank 

scores are both within the user-defined threshold Rc :

max RN0, Rw1 ≤ Rc

Depth-normalized counts of T cell enriched mtSNVs—The probabilities of 

observing a mtSNV are influenced by the read depth (Figure S2F). Therefore, we compared 

the observed counts of T cell enriched/depleted mtSNVs between CC cells and MC cells 

only within the same read depth range. We explored different ranges (1000–2000, 2000–

3000, 3000–4000, 4000–5000) and showed the comparison using cells with 1000–2000 MT 

reads (Figure 1F) because this range covered the most of cells. We did not consider cells 

with MT reads > 5000 because this range contains very few (<100) MC cells.

MERCI LOO strategy for real-world application—In case the reference data of true 

non-receivers is not available, we used a leave-one-out strategy to get the reference MGEP 

and donor-enriched MT variants. When MERCI calculates the rank scores for a given cell, 

we left this cell in the input cell set and used remaining cells as reference non-receiver 

cells. The reference MGEP was then obtained by averaging the expression of MT genes in 

these cells. Donor cell enriched MT variants are derived from comparing the mitochondrial 

mutation profile of these non-reference receiver cells to the potential donor cells. The other 

steps are the same as the regular MERCI pipeline.

Significance estimation—Bona fide mitochondrial receivers are expected to have higher 

DNA and RNA rank scores. This effect causes an association between the two scores, 

enabled us to test if the sample contains true receivers. For example, if no receiver cell 

is included, the two rank scores are expected to be independent. When we set the rank 

threshold at top rank 10%, theoretically ~1% of input cells will be randomly captured By 

MERCI as the intersection of two cell sets: one with top 10% DNA rank scores and the other 

with top 10% RNA rank scores. However, if the input cells include a certain proportion of 

true receivers, the fraction of captured cells will be significantly higher than 1%. Thus, we 

used randomly permutated ranks to produce a null distribution R  of captured cell numbers. 

At a given rank cutoff, MERCI predicts N receivers based on two lists of random rank 

scores. This process is repeated 10,000 times to generate the empirical estimate of R (with 

a list of N, or N). Let Nc denotes count of predicted receivers using the original ranks, we 

define a statistic Rcm as below:

Rcm = Nc
max N

We used a strict criterion to determine whether the receiver cells are included in the input 

cells or not. The captured cell number is considered significant only if Rcm > 1, with 

empirical p value < 0.0001, i.e. all the predicted cell counts by random permutations are 

smaller than the real value.
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Down-sampling analysis—In the ground-truth data, the fraction of cocultured cancer 

cell accounts for 43% of total input cancer cells. To analyze the dependence of the number 

of MERCI captured cells on the faction of true receiver cells in the input cell set, down-

sampling was performed to test the influence of signal/noise ratio on Rcm. Down-sampling 

of cocultured cancer cells generated simulated data sets with different fraction (from 

0.5%~20%) of true receivers (Figures 3D–3F). There were 100 simulated data sets produced 

for each fixed fraction. Significance estimation and Rcm calculation was then repeated for 

these subsets of cells from ground-truth data, which enabled us to determine whether the 

number of captured cells is stably significant when analyzing each subset with smaller 

positive signal. We then calculated the Rcm values for each simulation to determine the power 

of MERCI at lower receiver cell percentage.

Analysis of BCC scRNA-seq data—We downloaded the expression data of 11 patients 

with advanced basal cell carcinoma (BCC) from the GEO database (GSE123814)37. Of 

these patients, only three of them, ‘su005’, ‘su006’ and ‘su008’ contained both T cells 

and tumor cells, with each subset comprising more than 500 cells, and were kept for 

the downstream analysis. We accessed the raw fastq files of these patients from the SRA 

database (PRJNA509907), which were further processed with Cell Ranger and Seurat as 

described above. We directly used the cell type labels provided by the cell information 

table37. Different subpopulations of T cells such as CD8+ memory, CD8+ active and CD4+ 

T cells were merged into one T cell cluster. After obtaining the MT mutation profile for 

each cell, MERCI significance estimation was then performed for each patient. A significant 

signal was observed for the tumor cells from samples of patient ‘su006’. Thus, the MERCI 

LOO pipeline was applied to predict the mitochondrial receiver tumor cells and quantify the 

MT composition.

Analysis of DEGs and MT transfer related genes—The DEGs of the predicted 

receiver cells in BCC sample ‘su006’ were identified using the FindMarkers function 

with a Wilcoxon rank-sum test. A total of 608 DEGs were called with an adjusted FDR 

< 0.05 (Benjamini–Hochberg method) (Table S3). Candidate genes of MT transfer were 

defined as those with a significantly positive correlation with the estimated abundance of 

exogenous MT across cancer cells (Spearman ρ > 0, FDR<0.05, two-sided Spearman’s 

correlation coefficient test following BH correction). Totally, 398 and 1,678 MT transfer 

related genes were obtained for murine CC cells and BCC tumor cells, respectively. The two 

lists overlapped by 95 genes, which were defined as MT transfer related genes.

Analysis of ESCC scRNA-seq data.—The scRNA-seq data sets of 58 patients 

with esophageal squamous-cell carcinoma (ESCC) were downloaded from the GEO 

(GSE160269) and SRA (PRJNA672851) databases38. Of them, we only analyzed the raw 

fastq files for twenty-seven patients because they contained both sufficient T cells and tumor 

cells (n>500). The preprocess of single cell data is the same as the BCC data. Using T 

cells as potential donors, we calculated Rcm statistics for tumor cells (epithelial cells) of 

all samples. Significant signals of receiver existence were detected in samples of three 

patients ‘P16T’, ‘P52T’ and ‘P39T’. Next, we used MERCI LOO pipeline to predict the MT 

receivers from tumor cells of these three patients using the rank parameter cutoff 50%.
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Analysis of other single cell transcriptome data—We investigated the single cell 

RNA-seq datasets in the CancerSCEM database41 and downloaded the scRNA-seq data of 

156 samples with both cancer and T cells reported in the original publications. We used the 

same data processing workflow as described in CancerSCEM to process the downloaded 

data and reproduced the T cell and cancer clusters for each sample. We then applied 

MERCI LOO pipeline to the 61 samples that contained sufficient number (>100) of T 

cells and cancer cells. Subsequently, we calculated Pearson’s correlation coefficient between 

the estimated fraction of T cell-derived mitochondria and two UMAP coordinates (umap1, 

umap2) for each sample to measure the phenotypic impact of MT transfer (Table S5). We 

further evaluated if a gene is associated with MT transfer by calculating the Spearman’s 

correlation coefficient between the estimated T cell mitochondrial fraction and the gene 

expression level and corrected the FDR using the Benjamini-Hochberg method.

Gene set enrichment analysis—The R packages fgesa (v1.16.0) and msigdbr (v7.2.1) 

were used to perform the gene ontology and pathway enrichment analysis. The pathway 

gene sets used in this work were extracted from the online databases Kyoto Encyclopedia 

of Genes and Genomes (KEGG), Gene Ontology, BioCarta, Reactome and curated Hallmark 

gene sets78. Function terms or pathways were considered significant if Benjamini–Hochberg 

adjusted FDR<0.05. To investigate the programs associated with MT transfer, we extracted 

the common GO biological processes enriched by the candidate genes of MT transfer 

using the benchmark data and human BCC sample, respectively. An enrichment map 

was produced based on these ontologies using simplifyEnrichment (v1.0.0) and Cytoscape 

(v3.9.1).

Analysis of MT transfer score for TCGA samples—From 95 MT transfer related 

genes, we selected a 17 gene signatures (ABI1, ARF6, F11R, BAIAP2L1, MYADM, 

ACTR3, ARHGEF5, SRC, CAPZA2, GOLPH3, RAB10, ARF4, CAP1, PSEN1, YWHAG, 

YWHAZ, HSPA4) that are involved in pathways of mitochondrial transportation or 

nanotube formation (Table S6). We excluded genes with direct association with oxygen-

dependent metabolism. The tumor MT transfer (TMT) score for each cell or tumor sample 

was calculated by using gene set variation analysis43 based on the mRNA expression of 

these 17 genes. The Wilcoxon paired signed-rank test was used to assess the statistical 

difference between TMT scores of tumoral and match normal samples in different cancer 

types. The cell cycle scores (CCS) and hypoxia scores of TCGA cancer samples were 

obtained from Lundberg et al.47 and Ye et al.49. Partial Spearman’s rank correlation 

coefficient was used to assess the correlation of TMT scores with CCS and hypoxia scores in 

TCGA cancer types by adjusting for tumor purity.

QUANTIFICATION AND STATISTICAL ANALYSIS

All sequencing data were analyzed using R v4.0.2 and Python v3.8. The statistical 

analyses in this work, including two-sided Wilcoxon rank-sum or signed-rank, chi-squared, 

odds ratio, correlation tests and downsampling analysis were implemented with the 

R programming language. All P values from multiple tests were corrected using the 

Benjamini–Hochberg method and p.adjust function. Survival analyses were conducted with 

Kaplan–Meier and Cox proportional hazards regression methods using R package survival 
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v3.3.1. Cox regression was adjusted for age, race, gender (excluding BRCA), tumor purity, 

molecular subtypes (for BRCA), clinical stage (for CESC and HNSC), histologic diagnosis 

(for CESC, HNSC, LGG, LIHC and PAAD), tobacco smoking history (for CESC, HNSC, 

LUAD and PAAD), tumor grade (for HNSC, LGG, LIHC and PAAD) and clinical TNM 

stage subgroups (for HNSC) as clinical covariates. Survival curves were compared across 

groups with log-rank test. The other method details (such as sequencing data processing and 

gene set enrichment analysis etc.) and the related software or packages could be found in 

METHOD DETAILS.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

• Cancer cells ‘hijack’ mitochondria from nearby T cells

• Development of MERCI for tracing intercellular mitochondrial (MT) transfer

• Genomic inference of receiver cancer cells at single cell resolution using 

MERCI

• Receiver cancer cells exhibit a distinct phenotype from the rest
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Figure 1. MT transfer signal captured by scRNA-seq data.
(A) Cartoon illustrating the process of generating the ground-truth data by coculturing 

KP cancer cells and CD8+ T cells, followed by single cell RNA-seq library construction 

and next generation sequencing. (B) The contour plots showing the percentage of double 

positive cells (left: KP cancer cells, right: T cells) after 24 hours of coculturing (lower) 

and monoculturing (upper). Double positive cells are those carrying both endogenous and 

donor cell-derived mitochondria. (C) Bar plots showing the percentage of double positive 

cells for the KP cancer cells (upper) and the T cells (lower) at different coculture time 
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points. Statistical significance was evaluated using two-sided Student t test. Error bars 

indicate the range (min to max) of the data. (D) The distribution of per site read coverage 

in mitochondrial genome for CC, MC and T cells. Read depth is normalized by the total 

reads mapped to the mtDNA region. (E) UMAP plot showing mitochondrial transcriptional 

profiles of cells. Cells are colored by different experimental groups. (F) Boxplots showing 

the counts of T cell enriched (upper) and T cell depleted (lower) mtSNVs in CC and 

MC cancer cells with the MT read-depth range 1000–2000. Lower and upper box hinges 

represent 25th to 75th percentiles, central line the median and the whisker extend to highest 

and smallest values no greater than 1.5× interquartile range; the violin component refers to 

the kernel probability density and encompasses all cells. Two-sided Wilcoxon rank sum test 

was applied to calculate the P values. See also Figures S1–S2.
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Figure 2. Overview of MERCI and application to the ground-truth data.
(A) Schematic illustration of MERCI. Single cell RNA-seq data from reference donor and 

non-receiver cells were used to deconvolute MT fractions in the cancer cell population. 

By combining ranks from DNA and RNA information, MERCI estimates the statistical 

significance of the existence of true MT receivers, and evaluates each candidate cancer cell 

as a receiver or not. (B) Boxplots showing the estimated abundance (SVR coefficients) 

of T cell transferred (upper) and endogenous mitochondria (lower) in CC and MC cancer 

cells. Lower and upper box limits represent 25th to 75th percentiles, central line the median 

and the whiskers extend to highest and lowest values no greater than 1.5× interquartile 

range; the violin component refers to the kernel probability density and encompasses all 

cells. Statistical significance was evaluated using two-sided Wilcoxon rank sum test. (C-D) 

Receiver operating characteristic (ROC) (C) and precision-recall (PR) (D) curves using 

MERCI-derived rank scores as predictors of mitochondrial receivers, i.e. CC cells. Area 

under the ROC and PR curves (AUC) were labeled. See also Figure S3.
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Figure 3. Benchmarking of MERCI for real-world application.
(A-B) Dot-line plots showing the number of positive calls captured by using AND gate 

to MERCI DNA and RNA rank scores across a range of cutoffs. Purple dots represent 

the results of in silico mixture sample and gray intervals indicate the ranges established 

by 10,000 randomly permutated ranks. Error bars indicate the range (min to max) of 

the data. (C) Barplots showing the Rcm values at different rank cutoffs. Red dotted line 

indicates Rcm = 1. (D-F) Significance estimation of positive calls when different fractions 

of true receivers are included. Barplots showing the averaged Rcm values reported by 

MERCI for down-sampled datasets at rank cutoffs at top 10% (D), 20% (E) and 30% 

(F) respectively. Black dots indicate the Rcm values of down-sampled datasets. (G-I) The 

sensitivity, specificity and precision of MERCI when using different rank cutoffs to predict 

the MT receivers. See also Figure S3.
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Figure 4. Independent validation using mtscATAC-seq technique.
(A) Diagram showing the process of generating mtscATAC-seq and matched scRNA-seq 

datasets. (B) Boxplots showing the distribution of read coverage per cell in the mtscATAC-

seq dataset (upper) and the matched scRNA-seq dataset (lower). Box center line: median; 

box limits: upper and lower quantiles; box whiskers: 1.5×interquartile range (IQR). (C) 
The cell frequencies of three T cell-specific variants in T cells, CC and MC cancer cell 

populations. Label of the variant marks the 0-index coordinate, followed by the nucleotide 

change. (D) Receiver operating characteristic (ROC) and precision-recall (PR) curves using 

MERCI-derived rank scores as predictors of mitochondrial receivers. As it is not feasible to 

estimate the RNA rank scores from mtscATAC-seq dataset, the upper panel only shows the 

performance DNA rank scores. See also Figure S3 and Tables S1–S2.
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Figure 5. Distinct MT receiver phenotype predicted by MERCI in human tumor samples.
(A) UMAP plot showing the cell clusters and distribution of single cells from BCC patient 

‘su006’. (B) Significance estimation of the number of positive calls reported by MERCI 

for scRNA-seq data of BCC patient ‘su006’. (C) UMAP plots showing the projection of 

MERCI predicted receiver cells. (D) Volcano plot showing DEGs of the predicted receiver 

cells versus non-receivers, with fold change calculated using the mean values of the two 

groups. Statistical significance was evaluated using two-sided Wilcoxon rank sum test, 

with FDR corrected using Benjamini-Hochberg procedure. (E) UMAP plots illustrating 
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the estimated fraction of transferred MT in cancer cells (left) and the distribution of 

predicted receivers (right) for three selected cancer patients. These patients were chosen 

based on the highest Pearson correlations between the fraction of transferred mitochondria 

(Fr.T-Mito) and the gene expression phenotype measured with UMAP (either umap1 or 

umap2). (F) Heatmap showing the Spearman correlation coefficients between the expression 

of 608 DEGs identified in BCC dataset and the Fr.T-Mito in cancer cells across 37 

samples of different cancer types. LUAD: lung adenocarcinoma, LUSC: lung squamous 

cell carcinoma, NSCLC: non-small cell lung cancer, MCC: merkel cell carcinoma, CRC: 

colorectal cancer, MIUBC: muscle-invasive urothelial bladder cancer, PDAC: pancreatic 

ductal adenocarcinoma, TNBC: triple negative breast cancer. The selected representative 

genes of different pathways were marked with different colors. (G) Gene ontology network 

based on the commonly enriched GO terms of the 95 MT transfer-related genes. Each node 

represents a gene ontology. Node size corresponds to gene ratio of each GO term vs total 

analyzed genes in human BCC sample. See also Figures S4–S5 and Tables S3–S5.
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Figure 6. Functional and clinical impact of TMT score across different cancer types.
(A-B) TMT scores of cancer cells showing high correlation with the estimated foreign 

mitochondrial abundance for both murine training (A) and human BCC (B) data. The 

Spearman correlation test was used to calculate the P values. (C) The TMT scores of 

primary tumor and adjacent (Adj) samples in 12 cancer types. BLCA: bladder urothelial 

carcinoma, BRCA: breast invasive carcinoma, HNSC: head and neck cancer, KICH: kidney 

chromophobe, KIRC: kidney renal clear cell carcinoma, KIRP: kidney renal papillary cell 

carcinoma, LIHC: liver hepatocellular carcinoma, PRAD: prostate adenocarcinoma, THCA: 
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thyroid carcinoma, UCEC: uterine corpus endometrial carcinoma. Statistical significance 

was estimated using non-parametric paired Wilcoxon signed-rank test, with FDR adjusted 

using Benjamini-Hochberg procedure. Box center line: median; box limits: upper and lower 

quantiles; box whiskers: 1.5×IQR. (D) Lowess smooth curves showing positive correlations 

between TMT scores and CCS in selected cancer types. (E) Association of TMT score 

with patient overall survival based on both univariate and multivariate Cox proportional 

hazards models in different cancer types. CESC: cervical squamous cell carcinoma 

and endocervical adenocarcinoma, COAD: colon adenocarcinoma, GBM: glioblastoma 

multiforme, LGG: lower-grade glioma, OV: ovarian serous cystadenocarcinoma, PAAD: 

pancreatic adenocarcinoma, PCPG: pheochromocytoma and paraganglioma, READ: rectum 

adenocarcinoma, SARC: sarcoma, SKCM: skin cutaneous melanoma, TGCT: testicular 

germ cell tumors. We applied two multivariate Cox models: one with just well-known 

clinical confounders as covariates and the other with clinical confounders plus CCS as a 

covariate. Size denotes statistical significance at the cutoff of FDR=0.1; color denotes the 

hazard ratio. (F-K) Kaplan-Meier estimates of overall survival, according to TMT score 

calculated from RNA-seq data of BRCA (F), HNSC (G), LGG) (H), LIHC (I), LUAD (J) 
and PAAD (K). The patients were stratified into two groups (TMT high and low) based on 

median value of TMT scores. Statistical significance was evaluated using log-rank test. See 

also Figure S6 and Table S6.
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Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Alexa Fluor® 700 anti-mCD8α (clone53–6.7) Biolegend Cat# 100730

Ultra-LEAF™ Purified anti-mouse CD3 Antibody Biolegend Cat# 100239

Ultra-LEAF™ Purified anti-mouse CD28 Antibody Biolegend Cat# 102115

Chemicals, peptides, and recombinant proteins

MitoTracker™ green FM ThermoFisher Cat# M7514

MitoTracker™ red CMXRos ThermoFisher Cat# M7512

PEI MAX Polysciences Cat# 24765–1

Fixable viability Dye eFluor 506 eBioscience Cat# 65–0866-18

Critical commercial assays

CD8+ T cell isolation kit Stem Cell Technologies Cat# 19853

Chromium Next GEM Single Cell ATAC Kit v2 10x Genomics PN-1000406

Chromium Single Cell V(D)J Reagent Kit v1.1 10x Genomics PN-1000167

Chromium Next GEM Chip H Single Cell Kit 10x Genomics PN-1000162

Agilent High Sensitivity DNA Kit Agilent Technologies Cat# 5067–4626

Mitochondria Isolation Kit for Cultured Cells Thermo Fisher Scientific Cat# 89874

Deposited data

Raw and processed data This paper GEO: GSE235675

Processed data This paper Zenodo:https://doi.org/10.5281/
zenodo.8065206

Human reference genome UCSC, GRCh38; Murine 
reference genome UCSC, mm10

University of California Santa 
Cruz

https://genome.ucsc.edu/cgi-bin/hgGateway

Full list of public single cell datasets used in this study N/A Table S1

scRNA-seq data for BCC samples Yost et al.37 GEO: GSE123814

scRNA-seq data for ESCC samples Zhang et al.38 GEO: GSE160269

scRNA-seq data for NSCLC samples Zeng et al.41 EBI: E-MTAB-6149

scRNA-seq data for CRC samples Zeng et al.41 EBI: E-MTAB-8410

scRNA-seq data for MCC samples Zeng et al.41 GEO: GSE117988

scRNA-seq data for MCC samples Zeng et al.41 GEO: GSE118056

scRNA-seq data for LUAD samples Zeng et al.41 GEO: GSE123904

scRNA-seq data for STAD samples Zeng et al.41 GEO: GSE134520

scRNA-seq data for NSCLC samples Zeng et al.41 GEO: GSE143423

scRNA-seq data for TNBC samples Zeng et al.41 GEO: GSE148673

scRNA-seq data for MIUBC samples Zeng et al.41 GEO: GSE145137

scRNA-seq data for PDAC samples Zeng et al.41 GSA: PRJCA001063

bulk RNA sequencing data for cancer samples TCGA https://portal.gdc.cancer.gov/
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REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Cell lines

KrasG12D/p53ko (KP) lung cancer cells Dr. Esra Akbay N/A

KP-mito-DsRed This paper N/A

MC38 colon cancer cells ATCC N/A

Experimental models: Organisms/strains

C57BL/6J Jackson Laboratory Cat# 000664

Recombinant DNA

pDsRed2-Mito Takara Cat# 632421

Software and algorithms

MERCI-mtSNP and MERCI R package code This paper https://github.com/shyhihihi/MERCI

CytExpert Beckman Coulter, Inc https://www.beckman.com/coulter-flow-
cytometers/cytoflex/cytexpert

FlowJo Tree Star Inc. https://www.flowjo.com/solutions/flowjo

GraphPad Prism software 7.0 GraphPad Software, Inc. https://graphpad.com/scientific-software/prism/

Python version 3.8 Python Software Foundation https://www.python.org/downloads/

R version 4.0.2 The R Foundation https://www.r-project.org/

Cell Ranger 3.1.0 10x Genomics https://10xgenomics.com/

Cell Ranger ATAC 2.0.0 10x Genomics https://10xgenomics.com/

Seurat 3.1.2 Seurat developers https://satijalab.org/seurat/articles/
get_started.html

pysam pysam developers https://github.com/pysam-developers/pysam

e1071(version 1.7.4) N/A https://cran.r-project.org/web/packages/e1071/
index.html

fgesa(version 1.16.0) N/A https://bioconductor.org/packages/release/bioc/
html/fgsea.html

msigdbr (version 7.2.1) N/A https://cran.r-project.org/web/packages/
msigdbr/index.html

simplifyEnrichment (version 1.0.0) N/A https://bioconductor.org/packages/release/bioc/
html/simplifyEnrichment.html

Cytoscape (version 3.9.1) Cytoscape developers https://cytoscape.org/

GSVA Hänzelmann et al.43 https://bioconductor.org/packages/release/bioc/
html/GSVA.html

BioRender biorender.com https://www.biorender.com/
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