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Abstract

Accurate quantification of renal fibrosis has profound importance in the assessment of chronic 

kidney disease (CKD). Visual analysis of a biopsy stained with trichrome under the microscope 

by a pathologist is the gold standard for evaluation of fibrosis. Trichrome helps to highlight 

collagen and ultimately interstitial fibrosis. However, trichrome stains are not always reproducible, 

can underestimate collagen content and are not sensitive to subtle fibrotic patterns. Using the 

Dual-mode emission and transmission (DUET) microscopy approach, it is possible to capture both 

brightfield and fluorescence images from the same area of a tissue stained with hematoxylin and 

eosin (H&E) enabling reproducible extraction of collagen with high sensitivity and specificity. 

Manual extraction of spectrally overlapping collagen signals from tubular epithelial cells and 

red blood cells is still an intensive task. We employed a UNet++ architecture for pixel-level 

segmentation and quantification of collagen using 760 whole slide image (WSI) patches from six 

cases of varying stages of fibrosis. Our trained model (Deep-DUET) used the supervised extracted 

collagen mask as ground truth and was able to predict the extent of collagen signal with a MSE 

of 0.05 in a holdout testing set while achieving an average AUC of 0.94 for predicting regions of 

collagen deposits. Expanding this work to the level of the WSI can greatly improve the ability of 

pathologists and machine learning (ML) tools to quantify the extent of renal fibrosis reproducibly 

and reliably.
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1. INTRODUCTION

Renal fibrosis is the process by which extracellular matrix (ECM) is deposited in the tubules, 

interstitium, and glomeruli as a result of the progression of a variety of chronic kidney 

diseases1, 2. ECM components, including collagen fibers, accumulate as a result of an 
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overactive or failed wound healing response to excessive stresses sustained by injured renal 

components1, 3. Although the prevalence of renal fibrosis is a common symptom in kidney 

diseases ranging from diabetic nephropathy to chronic allograft rejection, there are a wide 

variety of pathways that are involved in its pathogenesis4, 5. Because of this diversity in 

underlying cause, the study of renal fibrosis has garnered a large amount of interest in a 

number of pathology communities.

The gold standard for evaluation of renal fibrosis is through the preparation of histology 

sections using histochemical stains to highlight structures of interest. These stains include 

hematoxylin and eosin (H&E), periodic acid schiff (PAS), and trichrome to highlight nuclei 

and extracellular matrix, basement membranes, and collagen, respectively. However, these 

stains are not innately specific at the cellular level. Technical expertise in preparing stained 

histological sections, differing suppliers and protocols for handling of reagents, and whole 

slide image (WSI) scanning can result in variability in fibrosis grading between institutions. 

Furthermore, the precise quantification of fibrosis between patients is an exceedingly 

difficult task for even experienced pathologists. This is partially due to the diffuse 

nature of collagen deposition in the renal cortex. Diagnostic criteria for fibrosis typically 

involve semi-quantitative determinations of total presence of fibrosis in a specific biopsy. 

Expanding the quantification of renal fibrosis is an essential step towards characterizing the 

heterogeneous clinical manifestations and developing specific treatment options.

In an effort to increase the ability of pathologists and diagnostic machine learning 

(ML) tools to discern collagen fibers in relation to clinical features of H&E stained 

biopsies, we have developed the dual-mode emission transmission (DUET) microscopy 

technique6, 7. Using this technique, the ability to capture pixel-matched brightfield histology 

and fluorescence images is demonstrated. This method allows collagen detection from 

fluorescence images using standard spectral unmixing tools including spectral phasor 

approach8. However, as the goal in this line of research is to specifically capture 

tubulointerstitial fibrosis and glomerulosclerosis, additional processing of these images is 

required. Manual segmentation of tubular epithelial cells, red blood cells, and smooth 

muscle represent a highly labor-intensive task which is also difficult to automate with 

conventional spectral unmixing methods. Due to the complex nature of these images, this 

problem is well suited for the application of deep learning (DL), specifically a convolutional 

neural network (CNN) to automate the process.

2. Methods

Image Acquisition:

DUET microscopy was used on six cases of varying grades of fibrosis to generate both H&E 

stained brightfield images and fluorescent images highlighting collagen deposits (Figure 

1A). DUET images are generated using epifluorescent excitation of H&E stained tissue 

using a 405 nm LED (LZ1-00UB00-LED Engin) directed towards the sample using a 

broadband dichroic (Di03-R405-t1-25 × 36, Semrock) and focused using a 10X objective 

(Nikon, Plan Apo, 0.45 NA)6. Due to the large time requirement in manual annotation of 

ground truth (GT) collagen masks, a small dataset of 760 512×512 images were available 

for this study (Figure 1B). While only three cases were examined, these cases were selected 
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from varying stages of interstitial fibrosis. This additional variation should expose the model 

to a larger amount of diversity. GT masks for this study were continuous grayscale images 

representing strength of collagen signal at each pixel extracted using spectral phasor method 

explained elsewhere6. These continuous masks were then binarized with a uniform threshold 

value to allow for binary prediction of the locations of collagen deposits.

DL Approach:

Because of the relatively small sample size, one of the first technical concerns was how to 

maximize the utility of image data for training data-hungry models. This was accomplished 

by chaining together multiple paired image augmentation methods. Transformations were 

performed using the Albumentations library and included random horizontal and vertical 

flipping, affine transforms, perspective shifts, and random scaling and rotation (Figure 1C)9. 

Augmentation, in conjunction with weight decay and learning rate scheduling helped reduce 

the risk of overfitting in our experiments.

The CNN architecture we used in our experiments was Unet++ as implemented in the 

Segmentation Models Pytorch library in Python (Figure 1C)10. Softmax activation in the 

penultimate layer allowed us to predict regions of collagen deposits in the GT masks. Adam 

was used to optimize the Dice loss while training of the network (Figure 1C). Multiple 

networks were trained using the different kinds of data that are produced using DUET and 

the segmentation performance in terms of MSE as well as area under the receiver operating 

curve (ROC) were compared (Figure 2A).

3. RESULTS

The best performing model was obtained using the DUET fluorescence images as input. 

Interestingly, what was observed when using brightfield images as input was that the 

network was not able to distinguish all regions of collagen resulting in sporadic predictions 

(Figure 2B). This was particularly evident in images where tubules were very close together 

as in the slide with the lowest amount of interstitial fibrosis11. The observation that the 

network trained using brightfield images as input under-predicted collagen deposits is 

further supported by the metrics reported in Table 1. We also observed that the predictions 

using Deep-DUET were more consistent than those made by the model trained using 

brightfield images. Erroneous predictions by Deep-DUET were constrained to specific 

regions within an image (select tubular casts, for example) whereas the brightfield model 

had several images which completely failed to predict collagen.

Initial experiments revealed that the contents of select training images had a significant 

impact on the model’s ability to predict interstitial collagen. Renal biopsies are comprised of 

a number of tissues including tubules (whose morphology is variable depending on cortical 

depth), glomeruli, and various blood vessels. As the goal of this work was to accurately 

segment regions of collagen deposits across a given biopsy, the resulting model should be 

robust to the varying tissue contents of input images. We observed that Deep-DUET using 

fluorescence image significantly outperformed the brightfield model in images containing 

multiple different types of tissue, in particular in recognizing very thin regions of collagen 
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between tubules (Figure 2). This is a promising result towards the eventual application of 

this model on a WSI-basis for the precise quantification of interstitial fibrosis.

4. DISCUSSION

DUET increases the ability of computational models as well as pathologists to recognize the 

presence and extent of collagen deposition. Using our automated collagen segmentation and 

quantification method, Deep-DUET, we demonstrate the ability to quickly render precise 

assessments of collagen matrix in an image region. In our ongoing work with this dataset, 

we plan to extend predictions to the WSI level, combine image inputs to maximize the added 

information from both brightfield and fluorescence images, and explore the application of 

this imaging approach to other histological markers of disease.

Virtual staining has garnered a great deal of attention in recent years for various applications 

in digital pathology. One of the important contributions of DUET towards this goal is the 

direct pixel-matching of fluorescence and brightfield images in order to establish a verifiable 

ground truth for collagen. In previous works, DUET has outperformed traditional trichrome 

staining in its fidelity and reproducibility6. The use of DUET for generating ground truth 

data for DL models helps reduce the number of variables that are incurred using traditional 

brightfield imaging of trichrome stained tissue as fundamental tissue properties are used to 

determine collagen localization. More importantly, DUET can identify pure collagen signal 

from fluorescence image with fine spatial structure which can be used to automatically 

estimate fibrosis score and with deep learning algorithms to predict patient outcome.
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Figure 1: 
(A) Example of DUET images allowing for collection of both brightfield and fluorescence 

images from H&E slides. (B) Supervised unmixing of fluorescence images to obtain mask 

of collagen in each image. (C) Deep learning model (UNET++) used with both sets of image 

data as input to predict underlying collagen distribution.
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Figure 2: 
(A) Performance comparison for brightfield and DUET fluorescence models trained on 

the same set of training images (brightfield AUC = 0.89, Deep-DUET AUC = 0.94). (B) 

Example prediction outputs from both fluorescence and the same model trained using 

brightfield images. Missing regions of collagen were identified throughout predictions made 

using the model trained on brightfield data.
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Table 1:

Segmentation metrics over 153 holdout testing images, ± indicates one standard deviation

Network Fluorescence Brightfield

Metric Value

Dice 0.89±0.06 0.82±0.15

MSE 0.09±0.05 0.13±0.09

Optimal AUC 0.94±0.05 0.89±0.08

Sensitivity 0.86±0.15 0.79±0.17
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