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ABSTRACT: Ovarian cancer (OC) is a common gynecological cancer
worldwide. Unfortunately, the lack of early detection methods translates
into a substantial cohort of women grappling with the pressing health
crisis. The discovery of extracellular vesicles (EVs) (their major
subpopulation exosomes, microvesicles, and apoptotic bodies) has
provided new insights into the understanding of cancer. Exosomes, a
subpopulation of EVs, play a crucial role in cellular communication and
reflect the cellular status under both healthy and pathological
conditions. Tumor-derived exosomes (TEXs) dynamically influence
ovarian cancer progression by regulating uncontrolled cell growth,
immune suppression, angiogenesis, metastasis, and the development of
drug and therapeutic resistance. In the field of OC diagnostics, TEXs
offer potential biomarkers in various body fluids. On the other hand,
exosomes have also shown promising abilities to cure ovarian cancer. In

(it

Therapeutics

this review, we address the interlink between exosomes and ovarian cancer and explore their theragnostic signature. Finally, we

highlight future directions of exosome-based ovarian cancer research.

1. INTRODUCTION

Ovarian cancer (OC) is a formidable foe that threatens
women’s lives.' OC was the third most common health
complication in women worldwide in 2020.> The complica-
tions of ovarian cancer require a smart solution with early
detection and a promising therapeutic approach. Extracellular
vesicles (EVs) address this requirement. EVs are actively
involved in cell-to-cell communication in the tumor micro-
environment.” Biofluid-circulated EVs carry the signature of
early stage ovarian cancer markers (diagnostic markers) and
prognostic biomarkers.” EVs Based biomarkers are more
effective solution for OC. Exosomes are a subpopulation of
EVs that originated from endosomes. They transport several
molecular ingredients such as DNA, RNA, proteins, and
lipids.” These components play significant roles in ovarian
cancer progression, especially in the early stages of cancer cell
development promoted by exosomes.® Exosomes derived from
tumor cells also influence angiogenesis.” These pesky
exosomes also aid in immune system evasion by shutting
down the alert function of immune cells like macrophages,
dendritic cells, NK cells, B cells, T cells, and myeloid-derived
suppressor cells (MDSCs).® In addition, tumor-derived
exosomes (TEXs), derived from ovarian tumor cells, modify
the extracellular matrix via fibronectin, resulting in epithelial—
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mesenchymal transition (EMT).” This event makes ovarian
cancer cells more motile and promotes premetastatic niche
formation.'® Ovarian cancer cells can then move across blood
vessels and enter the bloodstream.'' The exosome surface
intragrain serves as a guide for cellular migration paths and is
also linked to the development of ovarian cancer stem cells."”
Advanced ovarian cancer stages can trigger drug and
therapeutic resistance via exosomes.'”'* Early detection of
ovarian cancer is challenging, but exosome-based investigations
offer hope for overcoming this obstacle. Female body fluids,
such as blood, plasma, serum, and urine, are excellent sources
for exosome-based expression profiling of ovarian cancer
biomarkers."> Exosomes are also potential delivery tools for
ovarian cancer therapeutics'®’ and a platform for the
development of a strong immune response against ovarian
cancer.'® Ongoing clinical trials are exploring the theragnostic
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Figure 1. Exosome biogenesis and its component. (a) Exosome biogenesis. (b) Components of exosomes (created with BioRender.com).
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Figure 2. Exosome-mediated immune suppression in ovarian cancer. (a) Macrophage, (b) dendritic cell, (c) natural killer (NK) cells, (d) B-cell,
(e) T-cell, and (f) myeloid-derived suppressor cells (MDSCs) (created with BioRender.com).

potential of exosomes in the treatment and detection of
. 18
ovarian cancer.
In this review, we shine a spotlight on the connection
between exosomes and ovarian cancer progression, emphasiz-

ing their theranostic signatures and the future impact of

precision oncology.

2. UNLOCKING THE MYSTERY BIOGENESIS OF
EXOSOMES

Exosome biogenesis is an intriguing sign of cellular activity.
These tiny extracellular vesicles are formed by the fusion of the
plasma membrane and multivesicular bodies."” They contrib-
ute to intracellular communication.”’ Exosome-based molec-
ular transport (DNA,”" RNA, and proteins) transforms the
nature of the recipient cell.””*” In the cellular system, the
maturation and secretion of exosomes go through several
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Figure 3. Fibronectin expression in ovarian cancer patients during chemotherapy. (a) Atomic force microscopic view of ovarian ascite fluid
exosomes. (b) Western blot analysis of EV marker: (1) ovarian tumor cells derive EVs and (2) ovarian ascite fluid EVs. (c) Fibronectin expression
analysis via Western blot ovarian ascite fluid. (d) Fibronectin expression analysis via Western blot tumor cell lysates. (e) Fibronectin expression
analysis via a Western blot patient sample. (f) Fibronectin expression pattern before and after chemotherapy in the clinical sample. Fibronectin is
one of the key molecular cargos of EVs that lead to the remodeling of the extracellular matrix (ECM). Adapted with permission from ref 59.
Copyright 2021. Molecular Oncology published by John Wiley & Sons Ltd.

stages such as early endosome, late endosome, intraluminal
vesicle (ILV), and multivesicular bodies.”*** The biogenesis of
exosomes is classified into two pathways: ESCRT-dependent
and ESCRT-independent.”*>* ESCRT-dependent pathways
are regulated via the ESCRT complex (ESCRT-0 to ESCRT-
I1).”° The ESCRT-independent pathway is regulated via a
cytoplasmic molecular response, with ceramide playing a vital
role in MVB fusion with the plasma membrane and the release
of exosomes.”’ This pathway has a vital role in cancer cell
exosome biogenesis.3 Exosome biogenesis and its molecular
signature are illustrated in Figure 1.

3. UNLOCKING THE PUZZLE: HOW TEXS
REPROGRAM THE IMMUNE SYSTEM IN OVARIAN
CANCER

Tumor-derived exosomes (TEXs) carry immunosuppressive or
immunostimulatory signaling molecules from the parent tumor
cells and promote ovarian origin (Figure 2). TEX-mediated
tumor immune microenvironment functional alteration
depends on the nature of their payload (miRNAs, or
proteins).33 In ovarian cancer (OC), TEXs can alter the
activity of macrophages, dendritic cells (DCs), natural killer
cells (NK cells), B cells, T cells, and myeloid-derived
suppressor cells (MDSCs) for OC development. In the
immune system, M2 polarization led to immune suppression

36616

for OC development via TEX-derived miRNA-221-3p.** In
OC, TEXs promote premetastasis nish formation.”” The
polarization of macrophages to M2 by exosomes plays a
significant role in chemoresistance.”® Dendritic cells are
involved in the immune system for antigen presentation, but
in OC the TEXs surface FasL induces the apoptosis of DCs
and suppresses the immune system.’” Natural killer cells are
part of the innate immunity, and in OC TEXs surface NKG2D
and DNAM-1 receptors reduce the cytotoxic effect of NK cells
against cancer.” B cells play a major role in humoral immunity
(antibody production) in the immune system. In OC TEXs
reduce the antibody production and suppress humoral
immunity.”” T cells are the major player in cell-mediated
immunity, and during the OC development event, TEXs FasL
and ARG-1 (arginase-1) inhibit the Tell cells development and
induce its apoptosis.”*’ Exosomes isolated from the ovarian
cancer ascite fluid are responsible for T cell arrest and can
cause immunosuppression. Shenoy et al. have shown that the T
cell arrest is linked to GD3, a ganglioside expressed on the
surface of exosomes.*' Further, ovarian TEXs suppress the T-
cell-mediated immune response.”” In OC, blood analysis
concludes that a group of exosome-associated molecules
present in blood circulation accelerates OC metastasis.”’ The
higher expression of FasL is one sign of aggressive OC
development.** Research evidence noted that ovarian cancer
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Table 1. Exosome Molecular Signature in Ovarian Cancer Progression

Cancer development Exosome

event molecule Function References
Uncontrolled cell growth miRNA-29a-3p  Related to develop OC via down-regulation of FOXO3 6
Immune response Arginase-1 Suppress T-cell activity and develop ovarian cancer 8
reprogramming
Angiogenesis MALAT1 Promote angiogenesis-associated gene expression 7
Metastasis TGFp1 Ovarian tumor microenvironment-related fibroblast-derived exosome cargo associated TGEf1 9
promotes EMT via the SMED signaling pathway
Drug and therapeutic miRNA223 Macrophage-derived exosome miRNA223 involved developing chemoresistance in ovarian cancer via 68
resistance the PTEN—PI3K/AKT signaling pathway
Cancer stem cell CD24 and Both proteins are involved in ovarian cancer stem cell development 12
development EpCAM

patients’ liquid biopsies express high levels of FasL."' TEXs
heat shock protein 70 (HSP70) suppresses the myeloid-
derived suppressor-cell-mediated anticancer activity.* Exo-
somes can also activate myeloid-derived suppressor cells
(MDSCs) and regulatory T cells, apart from inducing the
differentiation of fibroblasts into cancer-associated phenotypes
(cancer-associated fibroblasts CAFs)).*' Thus, the micro-
RNAs, proteins, and lipids transported by the exosomes to the
tumor microenvironment can enhance the proliferation of
ovarian cancer cells and promote invasion and metastasis.
Currently, there are several strategies to tweak the exosome
payload or target the exosomes for tumor suppression.
Targeting the heat shock protein 70 (HSP70) expressed in
the exosomes can inhibit MDSC progression and reprogram
the TME for immunosuppression of ovarian cancer.
Similarly, microRNA-7 enrichment in macrophages can cause
tumor sufpression via inhibition of the EGFR/AKT/ERK1/2
pathway.”” TEXs-based immune suppression develops an
ecosystem for cancer promotion in OC.

4. MASTERMINDS OF THE BATTLE: HOW DO TEXS
RESHAPE THE EXTRACELLULAR MATRIX IN
OVARIAN CANCER?

In cancer metastasis, cell development is regulated via a
potential event called extracellular matrix (ECM) remodel-
ing.48 TEXs plays a vital role in the ECM remodeling. The
underlying mechanism regarding the exact role of these
exosomes in the pathogenesis of cancer is still under
investigation.”” These tumor-derived exosomes (TEXs) trans-
fer the required genetic information from one cell to another
cell (cancer cell to normal cell). They alter the genotypic
programming of normal cells, which are present both
intracellularly within the cell and extracellularly in the
extracellular matrix (ECM). This genetic alteration modifies
the cells to actively participate in all cellular events that occur
in the progression of cancer, such as angiogenesis, metastasis,
etc. Exosomes alter cell genotyping in different cancers.’”>" A
study done by José Luis Palacios-Ferrer et al. indicates that
exosome oncogenic protein cargos regulate cancer meta-
stasis.”> The ECM is present between the cells, and it
comprises cytokines, lymphokines, matrix metalloproteinase
(MMPS), and cells like fibroblasts, endothelial cells, and
immune cells.>® In cancer, the development phage alters the
architecture of the ECM. The collagen structure also affects the
treatment outcome in cancer patients. The collagen cross-
linking in the ECM influences tumor progression. Lysyl
oxidase enzyme, which helps in cross-linking of collagen,
increases its rigidity, making it impermeable and promoting
tissue fibrosis, thereby enhancing cancer progression.””>> The

collagen alignment in the ECM also gets altered in cancer
patients due to the transport of genetic information from
tumor cells to normal cells in the ECM by exosomes.”" Cancer
cells use this altered direction of collagen molecules to migrate
to distant organs, which results in the further spread of tumor
tissue. This collagen also provokes cancer cells to dissociate the
extracellular matrix by stimulating matrix metalloproteases
(MMPs).>* MMP-2 and MMP-9 are expressed in the stromal
epithelium of patients with ovarian cancer. They destroy the
extracellular matrix as a result of stimulation by cancer cells.
Thereafter, collagen molecules will change their direction and
help the tumor cells in further metastasis.””*® In OC, TEX
mediates higher fibronectin expression, a key molecule in the
ECM, and it also interlinks with OC chemoresistance
development (Figure 3).>” TEXs play a significant role in
OC progression.

5. UNRAVELING THE ENIGMA: THE ROLE OF TEXS IN
THE PROGRESSION OF OVARIAN CANCER

Exosomes, tiny extracellular vesicles, are released by all active
cells and tissue types and are surrounded by a lipid bilayer.
They facilitate cell-to-cell communication by transporting
molecules like DNA, RNA, and proteins.60 Once these
biomolecules reach cells, they alter their protein production
and gene expression and play a critical role in cancer biology
by detecting neoplastic cell progression and metastasis.” In
ovarian cancer, exosomes act as a Gpromising biomarker due to
their diverse pathological features.”* Aggressive ovarian-cancer-
derived exosomes carry MMP-2, thereby promoting meta-
stasis.'” The molecular cargo of ovarian TEXs, such as CD147,
enhances angiogenesis and vascular permeability.”* In the
ovarian tumor microenvironment (TME), fibroblast-derived
exosomes promote cancer progression.17 Under hypoxic TME
conditions, exosomes’ molecular cargos play a role in
macrophage polarization.***® TEXs mediate higher expression
of miRNA-99, which upregulates expression of fibronectin
(enhances extracellular matrix remodeling in ovarian cancer)
and vimentin (related to the EMT—epithelial-mesenchymal
transition).” In ovarian cancer, immune cell escape is a vital
event in preaggregation, with cytokines like IL-6 and STAT3
jointly implicated in immune escape.”> Furthermore, OC-
associated TEXs play a key role in cancer progression and
metastatic niche formation. For instance, in ovarian cancer
ascites, exosomes express ARGl and FasL, which together
downregulate the immune response against cancer.” The role
of exosomes in ovarian cancer progression and metastasis is
summarized in Table 1. Exosomes play a critical role in cellular
communication and ovarian cancer progression, with their
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Figure 4. Exosome miRNA-led EMT in ovarian cancer. (a) Electron microscopic view of the exosome of a patient with ovarian cancer. (b)
Expression of an exosome’s marker (CD63, CD9, and calnexin) in Western blot. (c) Exosomes size analysis using a NTA (nanoparticle tracking
assay). (d) Exosome size analysis via DLS (dynamic light scattering). (e) Analysis of exosome marker expression using flow cytometric analysis. (f)
Exosome uptake of ovarian cancer cell analysis via immunofluorescence detection (in exosomes, PKH67 was labeled with green, and F-actin was
labeled red; nuclei were labeled with DAPI). (g) miRNA analysis in three ovarian cancer cell lines. (h) Seven miRNAs’ higher expression detects in
thermograms among 25 miRNAs. (i) gqRT-PCR analysis of the seven most expressive miRNAs in three ovarian cancer cell lines. (j) Venn diagram
of common higher expression miRNA (miR-6780b-Sp). (k) Gene function annotation indicates the target gene of miR-6780b-Sp. (1) KEGG
analysis of the possible target genes of miR-6780b-Sp. (m) qRT-PCR comparative analysis miR-6780b-Sp expression. (n) Kaplan—Meier analysis of
miR-6780b in pancancer analysis with a K—M plotter. (0) qRT-PCR comparative analysis of miR-6780b-Sp expression in four ovarian cancer cell
lines. (p) Comparative qRT-PCR analysis of miR-6780b-Sp expression in four sets of clinical samples. (q) EMT marker expression in four ovarian
cancer cell lines via Western blot (WB). (r) qPCR validation of the effects of the miR-6780b-Sp agomir and antagomir in four cell lines. (s)
Migration assay analysis after miR-6780b-Sp transfection. (t) Migration assay results represented via histograms. (u) WB analysis of EMT marker
expression after transfection of miR-6780b-5p. Adapted with permission from ref 83. Copyright 2021. Cell Death and Disease, Springer Nature.

diverse pathological features holding promise as biomarkers for
early detection and diagnosis.

6. BEYOND THE FACADE: HOW DO TEXS DRIVE
EPITHELIAL-TO-MESENCHYMAL TRANSITION IN
OVARIAN CANCER?

The tumor cells undergo a development wherein the functions
related to epithelial cells are subdued and thereby transformed
into mesenchymal cells. This change is termed the epithelial—
mesenchymal transition (EMT). This is because the properties
of mesenchymal cells allow cancer cells to undergo metastasis.
A recent study shows that TEXs are associated with the tumor
microenvironment alteration that is required for EMT.*”°
The EMT process hinges on a complex web of molecular
interactions, involving miRNA, IncRNA, proteins, mRNA, and
DNA, all choreographed to facilitate cancer progression,”'
which governs the migratory behavior of cancer cells during
EMT and contributes to the production of key proteins such as
MMP-1, MMP-2, PKM2, and SPARC.””""* One of the most
significant events in EMT is the downregulation of E-cadherin,
triggering the upregulation of the fibronectin receptor aSf1-
integrin and ultimately leading to metastatic spread.”” Delving
deeper, researchers have discovered a direct connection

between miRNAs and EMT in ovarian cancer, with various
miRNAs indirectly regulating the EMT program.”> As our
understanding of the role of miRNA in cancer progression
expands,”®”” we uncover new layers of complexity, such as the
interactions between malignant cells and healthy cells, the
regulation of miRNA through methylation, and the interplay
between miRNA and IncRNA.”*7® These IncRNAs, like their
molecular counterparts, can either promote or suppress
cancerous properties,”’ with certain IncRNAs, such as
DNM3O0S, MEG3, and MIAT, significantly influencing the
expression of EMT-related genes.”” Take a captivating visual
journey through the signature exosome miRNA in EMT as
depicted in Figure 4 and immerse yourself in the fascinating
world of cancer cell metamorphosis and its molecular
orchestrators.

7. ROLE OF TEXS IN OVARIAN CANCER
ORGAN-SPECIFIC CANCER METASTASIS

Metastasis is a process by which malignant cells migrate to
their secondary site of infection. The cell acquires the ability to
migrate when the epithelial function of cancer cells evolves to
mesenchymal cell properties. Ovarian cancer cells separate
from their primary sites of genesis (the ovary and/or fallopian
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Table 2. Exosome-Based Biomarkers of Ovarian Cancer

Opvarian cancer Exosome

biomarker Source Exosome molecule
Diagnostic Plasma  miRNA-320
marker

Serum miRNA-21, miRNA-141, miRNA-200a, miRNA-200c, miR-

200b, miRNA-203, miRNA-205, miRNA-214
Urine RNA-30a-Sp

Prognostic Plasma  let-7f (miRNA)
marker Serum  aHIF (IncRNA)
Urine RNA-30a-Sp

Clinical impact References
Higher expression involved in epithelial ovarian 103
cancer
This group of miRNA is highly expressed compared 13
to the healthy individual
Ovarian cancer cells derived higher expression of this 15
miRNA as a diagnostic biomarker
Lower expression indicates low recovery 112
Expression level is high in ovarian cancer 113
Lower expression 15

tube) during the process of peritoneal migration. These
malignant cells then invade the peritoneal molecular signal to
reach specific organs and develop a secondary tumor.®” Studies
show that tumor-derived exosomes (TEXs) play a pivotal role
in the development of the premetastatic environment and
cancer metastasis.”* Later on, discoveries stated that the
creation of premetastatic environments is triggered by exosome
integrins (ITGs), the key molecule that led to organ-specific
metastasis.”> Integrins constructed by two subunits such as
and B and the combination of both subunits can guide
circulated cancer cells in different destinations (bone, lung,
liver brain, and lymph node)*>*® (Figure 5). An experiment
was performed on human peritoneal mesothelial cells using
Western blot, which showed overexpression of the aSf1-
integrin (ITGASB1) and colocalization with cysteine protease,
suggesting the imgortance of the aSfl-integrin in ovarian
cancer metastasis.”” A study conducted with orthotropic
xenografted mice was done to conclude which integrin and
molecular network epithelial ovarian cancer follows. The result
stated that the IGFIR-6 integrin S100A4 network plays a
pivotal role in the reoccurrence of EOC.*® Another study was
conducted for high-grade serous ovarian cancer where it
showed that the function of the @4 integrin was changed
during metastasis.”” It is possible that TEX integrin expression
will target a potential therapeutic strategy for metastatic OC in
the future.

8. TEXS LEAD TO OVARIAN CANCER THERAPY AND
DRUG RESISTANCE

TEXs of OC actively participate in the development of therapy
and drug resistance. The internal cargo of TEXs regulates the
event. A study conducted by Magee et al. concluded that miR-
214 has an important role to play in cisplatin resistance in a
few specific types of ovarian cancer.”’ In ovarian cancer,
adiposity and cancer-associated fibroblast-derived exosome
miRNA-21 result in lower sensitivity of OC cells to the drug
paclitaxel.” A scientific study suggests that the ovarian cancer
TEX precursor phage miRNA-21—Sp induces drug resistance
to cisplatin by downregulating the NAV3 gene.”” TEXs
miRNA and IncRNA play a vital role in inducing drug
resistance. Studies reveal that Inc MALAT1 and LINCO1118
prompt upre§ulation of ABCC1 which then helps in drug
resistance.”””" The presence of a protein-coding gene,
Amphiregulin (AREG), plays a vital role in ovarian cancer
stemness. Studies reveal that AREG also plays an important
role in resisting drugs by taking up the AREG-EGFR-ERK
pathway’.95 Epigenetics investigation suggests that E2F6
ceRNA inhibited miRNA193a, which resulted in the
promotion of ovarian cancer stemness.”® In OC, a tumor
microenvironment associated macrophage derives exosome

miRNA-223 to develop chemoresistance.”” Exosomes are also
involved in radioresistant development.”

9. TEXS ARE A SOURCE OF OVARIAN CANCER
BIOMARKERS
99—102

Exosomes are a promising source of cancer biomarkers.’
In OC, it supports early detection of it. Exosome association in
OC biomarker research is explained in Figure 6. Body fluid
circulated exosomes help overcome the limitation of several
barriers and showed promising OC screening in the early
stage.lm’m’15 Exosome cargo, such as proteins, cell surface
receptors, and miRNAs, is the major focus in exosome-based
biomarker development. OC TEXs are capable of transforming
normal cells into cancerous cells. Exosomes from ovarian
cancer contain an increased level of some types of protein
(CD24 and Claudin-4)."** Small heat shock proteins (HSPs)
are another potential biomarker present in the serum of
ovarian cancer patients.45

Ascites of ovarian cancer contain an exosome proteome that
is used in monitoring the therapeutic response. The elevated
expression of exosome-derived plasma gelsolin (Ex-pGSN) is a
prognostic marker of the poor survival of patients of ovarian
cancer.'” There are also OC drug-resistant cancer cell derived
exosome-associated molecular signatures of OC drug resist-
ance development. Chemoresistance-related molecules such as
annexin A3, MRP2, ATP7A, and ATP are expressed here,
which indicates the effectiveness of chemotherapy methods.
The microfluidic device is used for the isolation of exosomes
for the advanced stage of OC biomarker investigation.mé
Exosome-based biomarkers are indicators of the therapeutic
outcome in OC. Exosome-associated biomarkers are classified
into two major classes, diagnostic and prognostic. These are
indicators of several cellular changes during OC develop-
ment.'”” Exosome-derived miR-6126 link with chemoresist-
ance development in OC.'" Plasma exosomes derive miRNA-
320, miRNA-200, miRNA-21, and miRNA-100 as early
diagnostic biomarkers of ovarian cancer. Exosome miRNA-
associated biomarker investigation is the most challenging
because of the molecular instability and exosome hetero-
genicity.'””"'’ Hence, exosomes are the mastermind of
aggressive OC development, so efficient instrumental develop-
ment and single exosome profiling''”""" support efficient
biomarker development. Further extensive clinical studies with
exosomes could make a breakthrough in the medical field.
Several exosome-based OC biomarkers are listed in Table 2.

10. EXOSOME-BASED THERAPEUTIC STRATEGIES
FOR OVARIAN CANCER

Exosome-based cancer healing is a potential approac
The therapeutic impact of exosomes in OC is summarized in

114-118
h!

https://doi.org/10.1021/acsomega.3c02837
ACS Omega 2023, 8, 36614—-36627


http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c02837?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Omega http://pubs.acs.org/journal/acsodf
Stem cell derived exosome
as=k 2
s Pas \-"\/-—‘

Incubation >

exosome + drugs

Figure 7. Exosome-based therapeutic approaches for ovarian cancer. Created with BioRender.com.

Table 3. Exosome-Based Clinical Trial in Ovarian Cancer

Trail ID Status Timeline Core study
NCT03738319  Unknown”  2018—2019  Sequencing of miRNA/
IncRNA
NCT02063464  Completed ~ 2014—2016  Ovarian cancer ovarian,
epithelial, and fallopian tube
cancer patients” blood
NCT02662621  Completed ~ 2015—2019  Isolation of exosomes from

blood and urine

Clinical impact Funding

Study based on noncoding RNA of exosome, role Professor Lei Li, Peking
in epithelial ovarian cancer and diagnosis, and Union Medical College
prognosis marker development Hospital, China

Monocytes’ anticancer activity and exosome NIH, USA

interlink

Exosome HSP70 protein role in ovarian cancer and  Centre Georges Francois
earlier detection of the biomarker of ovarian Leclerc, France
cancer

“The study has passed its completion date, and the status has not been verified in more than two years (source: https://clinicaltrials.gov/).

Figure 7. It is a smart drug delivery tool for cancer.®1°

Exosomes overcome the toxicity limitations of several
traditional approaches. It shows that integrin and tetraspanin
expressive proteins control cell-specific drug transport.'"”
Through the application of advanced nanotechnology,
exosomes deliver multiple therapeutic cargos such as water-
soluble drugs, micro-RNA (miRNA), and small interfering
RNA (siRNA), to ovarian cancer cell sites.'*’ Transfection
gene products like miRNA-143, miRNA-146b, and let-7a are
packaged into the exosome lumen, which inhibits ovarian
cancer growth. Dendritic cells derive exosomes that have an
important role in the development of an antitumor
response.'>' This activation cascade interlinks with the NK
cells and T-cell-mediated antitumor cytotoxic activity in the
immune system with higher expression of the MHC molecule.
Research data show that the combination of exosomes and the
granulocyte-macrophage colony-stimulating factor (GM-CSF)
elevates the antitumor response via cytotoxic T-cell (Tc, CD8*
is the major cell population work against cancer) activation.'®
This is a potential exosome-based immune therapeutic
approach. Exosome-based miRNA-484 transportation in OC
cells develops more chemotherapy sensitivity (via reducing the
expression of VEGR-A)."* Stem cell derived exosome miRNA
reduces OC cell proliferation.'”” Lemon-derived exosome-
mediated anticancer drug delivery in OC shows promising
results.'”’ The engineered exosome is a new platform for the
development of exosome-based cancer therapies (the more

specific way it works).”> The chimeric antigen receptor T cell
(CAR-T) derived exosome is an innovative initiation of CAR-
T technology because it overcomes the limitation of toxicity (it
develops acute inflammation) of CAR-T cell therapy, but the
CAR-T cell-derived exosome is less toxic than CAR-T cell
therapy.'”*'*> We hope that exosomes will become a smart
solution for ovarian cancer in the future. Exosome-based
cancer therapeutic applications require more clinical and
toxicological investigation for affordable and efficient cancer
therapy development.

11. CLINICAL TRIALS

Exosomes and ovarian cancer are associated with several
clinical studies conducted globally. A clinical investigation is
underway in China to understand the role of exosome-derived
noncoding RNA in the development of ovarian cancer. This
work is also dedicated to the development of noncoding RNA-
based diagnostic and prognostic biomarkers for ovarian cancer.
The National Institute of Health (NIH) funded a clinical
investigation report that showed blood-circulated exosome and
monocyte crosstalk in anticancer activity in ovarian cancer,
epithelial ovarian cancer, and fallopian tube cancer. Another
clinical trial based on the exosome express heat shock protein
70 (HSP70) is being conducted in France in patients with
ovarian cancer. In the future, a more clinical investigation need
next-generation exosome-based ovarian cancer theranostic
development. Clinical trials are listed in Table 3.

36621 https://doi.org/10.1021/acsomega.3c02837
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12. EXPLORING TOMORROW'’S HORIZONS:
ENVISIONING THE FUTURE OF CANCER
RESEARCH

Exosome-based cancer research faces several critical questions
that require in-depth exploration, including (a) standard
isolation protocols, (b) exosome heterogeneity,''’ (c)
therapeutic exosome toxicity, and (d) comprehensive study
of molecular components of exosomes. The complexity of
exosome heterogeneity arises from factors such as origin, size,
molecular diversity, and source diversity."'’ In the context of
ovarian cancer, blood-circulating exosomes represent a mixture
of cell-secreted exosomes from various parts of the female
reproductive system. To effectively address these challenges, a
single exosome profiling approach (Figure 8) is proposed,
encompassing exosome isolation and downstream profiling.
Techniques such as microfluidic devices, magnetic bead-
associated methods,” and aptamer-based affinity principles
for isolation'*® can be employed. Exosome molecular cargo
profiling can be achieved through various molecular
approaches,'”” including nanopore-based detection for indi-
vidual molecular signaling'*® and CRISPR-based sensors for
surface protein analysis in cancer.'”” Classifying specific
exosome subpopulations can be facilitated by plasmonic
sensors'*’ and electrochemical sensors.” The final stage of
single exosome profiling incorporates multiple omics ap-
proaches (genomic, transcriptomic, and proteomic)'’' and
machine learning'*” to identify specific cancer biomarkers.
This comprehensive profiling process brings us closer to
achieving precision and personalized medicine in cancer
treatment.””" Toxicological profiling of exosomes represents
another essential aspect of exosome research. Exosome
secretion patterns and the presence of internal cargo can

alter the behavior of the recipient cell when exposed to various
components such as drugs and chemicals.'”” While current
research suggests that mesenchymal stem cell (MSC)-derived
exosomes are nontoxic'>* and various exosome sources possess
therapeutic potential (e.g, plant exosomes'*” and dendritic-
cell-derived exosomes), further in-depth toxicology profiling
research is necessary. Additionally, the establishment of
standardized protocols for exosome downstream applications
is crucial. Overcoming these barriers will usher in a new era of
exosome-based cancer vaccines.'*® Exosome-based cancer
research supports the reach of a precision medicine era.

13. UNRAVELING THE ENIGMA OF OVARIAN
CANCER: HARNESSING THE POWER OF
EXOSOMES FOR A BRIGHTER TOMORROW

The extraordinary potential of exosome-based theranostics in
revolutionizing the diagnosis and treatment of ovarian cancer
metastasis is indisputable. Exploiting the distinctive properties
and communicative capabilities of exosomes enables research-
ers to uncover invaluable insights into the intricacies of cancer
progression, metastasis, and drug resistance. While challenges
remain in aspects such as exosome heterogeneity, isolation,
toxicity, and molecular profiling, the unyielding pursuit of
knowledge and technological advancements propel us toward
overcoming these obstacles. In turn, we advance closer to
realizing the full potential of exosomes as formidable allies in
combating ovarian cancer. The significant clinical implications
of exosome-based ovarian cancer screening establish a solid
foundation for more efficacious early detection and inter-
vention approaches. A comprehensive understanding of
exosome biology is critical to ensure the safety and efficacy
of exosome-based theragnostics while mitigating potential
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health risks. By bridging the gap between our current
knowledge and the untapped potential of exosome-based
theranostics, we are venturing into a transformative age of
precision and personalized medicine. This paradigm shift is
poised to reshape our approach to ovarian cancer metastasis,
instilling hope for more precise interventions, enhanced patient
outcomes, and the development of new, innovative cancer
vaccines. Delving into the enigma of exosomes and their
potential applications reveals a world of possibilities for next-
generation cancer therapy. With unwavering optimism and
commitment, the future of exosome research is primed to
inaugurate a ground-breaking era of precision and personalized
medicine, ultimately culminating in the invention of cutting-
edge cancer vaccine solutions.
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