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Abstract 

Background  Cigarette smoking and aging are the main risk factors for pulmonary diseases, including cancer. Epige‑
netic aging may explain the relationship between smoking, electronic cigarette vaping, and pulmonary health. No 
study has examined smoking and vaping-related epigenetic aging in relation to lung biomarkers.

Methods  Lung epigenetic aging measured by DNA methylation (mAge) and its acceleration (mAA) was assessed 
in young (age 21–30) electronic cigarette vapers (EC, n = 14, including 3 never-smoking EC), smokers (SM, n = 16), 
and non-EC/non-SM (NS, n = 39). We investigated relationships of mAge estimates with chronological age (Horvath-
mAge), lifespan/mortality (Grim-mAge), telomere length (TL-mAge), smoking/EC history, urinary biomarkers, lung 
cytokines, and transcriptome.

Results  Compared to NS, EC and SM had significantly older Grim-mAge, shorter TL-mAge, significantly accel‑
erated Grim-mAge and decelerated TL-mAge. Among SM, Grim-mAA was associated with nicotine intake 
and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL). For EC, Horvath-mAA was significantly correlated 
with puffs per day. Overall, cytokines (IL-1β, IL-6, and IL-8) and 759 transcripts (651 unique genes) were signifi‑
cantly associated with Grim-mAA. Grim-mAA-associated genes were highly enriched in immune-related pathways 
and genes that play a role in the morphology and structures of cells/tissues.

Conclusions  Faster lung mAge for SM is consistent with prior studies of blood. Faster lung mAge for EC compared 
to NS indicates possible adverse pulmonary effects of EC on biological aging. Our findings support further research, 
particularly on epigenetic markers, on effects of smoking and vaping on pulmonary health. Given that most EC are 
former smokers, further study is needed to understand unique effects of electronic cigarettes on biological aging.
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Background
While tobacco consumption has been falling in recent 
decades, cigarette smoking is still by far the leading 
preventable risk factor for lung cancer [1]. Of emerg-
ing tobacco products, electronic cigarettes have been 
marketed as a safe alternative to combustible cigarette 
smoking and may foster smoking cessation [2]. The major 
constituents of electronic cigarette liquids, including pro-
pylene glycol (PG) and vegetable glycerine (VG) as sol-
vent carriers, are considered safe by the Food and Drug 
Administration (FDA) when used in foods and cosmetics. 
However, the long-term effects on the lung when these 
constituents are heated and inhaled during vaping are 
largely unknown.

Smoking-related disease pathogenesis involves mul-
tiple processes, including accelerating the process of 
organ aging and declining lung function [3–5]. Smoking 
is associated with biological aging indicated by telomere 
length [6], and lung aging is a critical risk factor for lung 
diseases and cancer, causing structural and physiological 
changes.

DNA methylation is an epigenetic marker that reflects 
recent and longer-term tobacco smoke exposure and 
is reversible after smoking cessation [7–11]. Studies, 
including ours [12], show smoking-related methylation 
enrichment in genes related to lung function, lung dis-
eases, and cancer, including xenobiotic pathways, oxida-
tive stress, and inflammation [7, 13–15]. While altered 
methylation has been well-studied for cigarette smoking 
[16–19], there is relatively little understanding of its asso-
ciation with electronic cigarettes in humans [12, 20–23].

DNA methylation age (mAge), known as “epigenetic 
aging,” has drawn significant attention as a tool for 
understanding age-related diseases [24–27]. Given that 
advancing age is the most important key risk factor for 
many cancers, including lung cancer [28], accelerated 
mAge reflecting faster biological aging in young indi-
viduals may indicate adverse health outcomes later in life. 
The discrepancy between mAge and chronological age 
is defined as mAge acceleration (mAA). mAA has been 
reported in comparisons of smokers to never-smokers 
in blood samples [24, 29–33]. Blood epigenetic aging 
(i.e., Grim-mAge) is suggested to be one of the biologi-
cal mechanisms linking lifetime exposure to smoking and 
death in later life [34]. However, effects are unknown 
of electronic cigarette vaping on the lung, as the target 
organ, on epigenetic aging.

Given that mAge may be an important pathway to 
explain the association between smoking, electronic 
cigarette vaping, and target organ pathological effects, 
we investigated epigenetic aging in the lungs of smok-
ers (SM) and electronic cigarette users (EC) compared 
to never-smokers (NS). We utilized three well-studied 

mAge estimates, Horvath-mAge for chronological aging 
[35], Grim-mAge for lifespan and mortality [36], and TL-
mAge for telomere length [31]. Further, we examined the 
relations of mAge acceleration in lung with other bio-
markers, including inflammation and gene expression 
and explored their potential implications in age-related 
pulmonary diseases, including lung cancer and chronic 
obstructive pulmonary disease (COPD).

Results
Assessment of DNA methylation age estimates and their 
accelerations in relation to chronological age in lungs
To investigate mAge in lungs of healthy EC, SM, and 
NS, we calculated Horvath-mAge, Grim-mAge, and TL-
mAge, and their acceleration (faster or slower mAge, 
-mAA), including Horvath-mAA, Grim-mAA, and TL-
mAA. Chronological age was significantly positively cor-
related with Grim-mAge (r = 0.72, FDR = 1.54E−11) and 
Horvath-mAge (r = 0.48, FDR = 9.41E−05), while signifi-
cantly negatively correlated with TL-mAge (r = − 0.24, 
FDR = 9.91E−02) (Fig.  1A–D). None of the mAA esti-
mates were significantly correlated with chronological 
age. Comprehensive correlations between mAge esti-
mates, their accelerations, and chronological age for EC, 
SM, and NS are provided in Additional file 2: Table 1.

Associations of lung DNA methylation age estimates 
and their accelerations between smokers, electronic 
cigarette users, and never‑smokers
All three mAge estimates were significantly different in 
SM compared to NS (Table 1). Additionally, when com-
paring EC to NS and SM, EC had significantly older 
Grim-mAge (41.47 vs. 37.85, Tukey’s HSD test P = 0.002, 
Fig. 1E) and shorter TL-mAge (6.01 vs. 6.11, Tukey’s HSD 
test P = 0.02, Fig. 1F) compared to NS, but similar to SM 
(42.07, Tukey’s HSD test P = 0.88, for Grim-mAge and 
5.99, Tukey’s HSD test P = 0.94 for TL-mAge) (Table 2). 
SM did not have significantly different Horvath-mAge 
compared to NS (Tukey’s HSD test P = 0.10) and EC 
(Tukey’s HSD test P = 0.84) (Table 1, Fig. 1G).

When it comes to mAA, SM and EC had a signifi-
cant acceleration of Grim-mAA compared to NS (Tuk-
ey’s HSD test P < 0.0001 for SM and Tukey’s HSD test 
P = 0.001 for EC, Table  1, Fig.  1H). SM had a signifi-
cant deceleration of TL-mAA compared to NS (Tukey’s 
HSD test P = 0.008), and EC had a borderline significant 
decelaration of TL-mAA compared to NS (Tukey’s HSD 
test P = 0.05, Table 1, Fig. 1I). Horvath-mAA was not sig-
nificantly different between any groups (Table 1, Fig. 1J).

Given that mAA is a more biologically meaningful 
predictor than mAge as it is associated with age-related 
diseases independent of chronological age [24, 27], we 
investigated mAge-Accel for further analyses.
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Fig. 1  Correlations of between chronological age, methylation age (mAge), and accelerated mAge (mAA) estimates and associations with smoking 
and vaping status. A Pearson correlation plots displaying the associations between chronological age, mAge, and mAA measures. The scale 
bar displays the correlation coefficients (r) ranging from − 1 (blue) to 1 (red). B–D Correlation plots of associations between chronological age 
(x-axis) and mAge estimates (y-axis) for B Grim-mAge, C TL-mAge, and D Horvath-mAge. Each open dot represents individual never-smokers (NS, 
blue), electronic cigarette vapers (EC, green), and cigarette smokers (SM, red). Black X’s represent never-smoking EC (NS EC). B–D The line displayed 
reflects the linear regression line. E–G Plots with fitted normal curves displaying the age range (x-axis) and density of each given age value (y-axis). 
Each solid line represents the E Grim-mAge, F TL-mAge or G Horvath-mAge, for NS (blue), EC (green), or SM (red), while each dotted line represents 
chronological age for NS (blue), EC (green) or SM (red). Histograms of raw values (non-fitted) in Additional file 1: Fig. 1. H–J Bar charts comparing 
mean mAA estimates (y-axis) between NS (blue), EC (green), and SM (red) (x-axis) for H Grim-mAA, I TL-mAA, and J Horvath-mAA. Error bars display 
the standard error. P-values by Tukey’s HSD pairwise test are provided

Table 1  Associations of mAge measures with smoking group

NS never-smokers, EC e-cig users, SM smokers

Tukey HSD adjusted P < 0.05 in bold

Mean (SD) Tukey HSD testing, P

All participants (n = 69) NS (n = 39) EC (n = 14) SM (n = 16) EC versus NS SM versus NS SM versus EC

Chronological age 26 (2.8) 25.6 (3.0) 26.8 (2.7) 26.2 (2.7) 0.40 0.77 0.85

mAge

Grim-mAge 39.56 (3.82) 37.85 (3.36) 41.47 (2.61) 42.07 (3.73) 0.002 0.0002 0.88

TL-mAge 6.06 (0.14) 6.11 (0.14) 6.01 (0.12) 5.99 (0.12) 0.02 0.006 0.94

Horvath-mAge 24.95 (4.23) 24.01 (4.10) 25.72 (5.13) 26.59 (3.14) 0.38 0.10 0.84

Age-Accel

Grim-mAA 2.90E−11 (2.64) − 1.35 (2.08) 1.15 (1.98) 2.29 (2.35) 0.001  < 0.0001 0.31

TL-mAA − 1.61E−18 (0.14) 0.05 (0.13) − 0.05 (0.13) − 0.07 (0.11) 0.05 0.008 0.88

Horvath-mAA 1.45E−11 (3.72) − 0.68 (3.21) 0.22 (4.52) 1.48 (3.89) 0.71 0.12 0.62
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Table 2  Top ten canonical pathways for Grim-mAA-associated transcript genes

Ingenuity canonical pathways P Molecules

Neuroinflammation signaling pathway 1.59E−07 AKT3, CD40, CREB3L4, CX3CL1, CX3CR1, CXCL10, FOS, GABRB2, GAD1, HLA-DPB1, HLA-DQA1, 
HLA-DQA2, HLA-DQB1, HLA-DQB2, IL1B, MR1, MYD88, NFKB1, NOX1, PIK3CG, SLC1A2, SOD2, 
TGFB1, TLR4, TLR5, TLR7, TYROBP

Estrogen biosynthesis 1.68E−07 AKR1B15, AKR1C1/AKR1C2, AKR1C3, AKR1C4, CYP1B1, CYP2A6 (includes others), CYP4F8, 
CYP4X1, HSD17B11, HSD17B13

B cell development 2.48E−07 CD40, HLA-DPB1, HLA-DQA1, HLA-DQA2, HLA-DQB1, HLA-DQB2, IL7R, PTPRC, RAG2

ICOS-ICOSL signaling in T helper cells 1.02E−06 AKT3, CD4, CD40, HLA-DPB1, HLA-DQA1, HLA-DQA2, HLA-DQB1, HLA-DQB2, IL2RG, ITPR1, 
LCP2, NFKB1, NFKBIA, PIK3CG, PLEKHA2, PTEN, PTPRC, TRGV8

IL-17A signaling in airway cells 2.82E−06 AKT3, CCL20, CXCL1, CXCL3, MAP2K1, MUC5AC, NFKB1, NFKBIA, PIK3CG, PTEN, TRAF3IP2

PD-1, PD-L1 cancer immunotherapy pathway 4.27E−06 AKT3, CDK2, HLA-DPB1, HLA-DQA1, HLA-DQA2, HLA-DQB1, HLA-DQB2, IL2RG, LCP2, MR1, 
PIK3CG, PTEN, TGFB1

Granulocyte adhesion and diapedesis 9.19E−06 CCL20, CCR2, CLDN1, CLDN10, CX3CL1, CXCL1, CXCL10, CXCL16, CXCL2, CXCL3, CXCL9, IL1B, 
ITGA4, MSN, SDC4, SELP, SELPLG

NRF2-mediated oxidative stress response 9.40E−06 ABCC1, CBR1, CYP2A6 (includes others), DNAJC14, FOS, GCLC, GCLM, GPX2, GSR, GSTA4, 
JUNB, MAP2K1, MAP2K6, NQO1, PIK3CG, PRDX1, SOD1, SOD2, TXNRD1

PKCθ signaling in T lymphocytes 1.32E−05 CACNA1C, CACNA1D, CACNA2D3, CACNG4, CACNG6, CD4, FOS, HLA-DPB1, HLA-DQA1, HLA-
DQA2, HLA-DQB1, HLA-DQB2, ITPR1, LCP2, MAP3K9, NFKB1, NFKBIA, PIK3CG, TRGV8

IL-17 signaling 1.32E−05 AKT3, CCL20, CXCL1, CXCL3, DEFB1, DEFB105A/DEFB105B, FOS, IL1B, MAP2K6, MUC5AC, 
NFKB1, PIK3CG, TGFB1, TNFSF13, TRAF3IP2, TRAF5, VEGFD

Fig. 2  Relationships between Grim-mAA with urinary biomarkers, smoking indicators, and inflammatory biomarkers. Dot plots of correlations 
between A nicotine equivalent (Cotinine + 3-hydroxycotinine) and B NNAL (4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol) with Grim-mAA (y-axis) 
among SM (red). Each open dot represents individual smokers. Dot plot of the correlation between C puffs per day (x-axis), D years smoked (x-axis), 
and Horvath-mAA (y-axis) among EC. Each open dot represents an individual electronic cigarette user. Black X’s represent never-smoking EC (NS EC). 
E–G Dot plots of associations between Grim-mAA (x-axis) and log10 transformed inflammatory cytokines (y-axis) displaying the partial correlation 
coefficient (r), effect size (β), and significant P value after adjusting for chronological age and gender including E IL-1β, F IL-8, and G IL-6. Each open 
dot represents an individual never-smoker (blue), electronic cigarette vaper (green) or cigarette smoker (red). Black X’s represent never-smoking EC
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Associations of smoking and vaping intensities on lung 
DNA methylation age accelerations
In SM, Grim-mAA was significantly positively correlated 
with nicotine equivalents (r = 0.60, P = 0.03, Fig. 2A) and 
4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL, 
r = 0.72, P = 6.00E−03, Fig. 2B) (Additional file 3: Table 2).

For EC, puffs per day (Fig. 2C) were significantly posi-
tively correlated with Horvath-mAA (r = 0.56, P = 0.04), 
but no association was found with former smoking his-
tory (Fig. 2D) (Additional file 3: Table 2).

Propylene glycol (PG) levels were not significantly cor-
related with any mAA estimates. None of the aforemen-
tioned urinary biomarkers or smoking history indicators 
were significantly correlated with TL-mAA (Additional 
file 3: Table 2).

Associations of lung DNA methylation acceleration 
with lung inflammatory cytokines and genome‑wide gene 
expression
We further investigated overall lung inflammatory mark-
ers and genes to be associated with lung mAA estimates. 
Among ten cytokines measured, IL-1β (r = 0.52, β = 0.076, 
P = 1.30E−04), IL-8 (r = 0.41, β = 0.058, P = 4.20E−03), 
and IL-6 (r = 0.35, β = 0.043, P = 0.02) were each signifi-
cantly positively associated with Grim-mAA independent 
of age and gender (Additional file 4: Table 3, Fig. 2E–G). 
There were no significant associations between any 
inflammatory cytokines and Horvath-mAA or TL-mAA.

For gene expression, we identified 759 transcripts 
(Additional file  5: Table  4) that were significantly asso-
ciated with Grim-mAA, independent of gender and age 

(FDR < 0.1). None were associated with Horvath-mAA 
and TL-mAA. The majority of the transcripts (n = 626) 
were found to be significantly associated with smoking 
status (FDR < 0.1) (Additional file 6: Table 5). The top net-
works of the genes that were significantly correlate with 
Grim-mAA (Grim-mAA-associated genes) include cell 
morphology, cellular function and maintenance, molecu-
lar transport (network1), cellular movement, immune 
cell trafficking, organismal injury and abnormalities (net-
work2), hematological system development and function, 
lymphoid tissue structure and development, and tissue 
morphology (network3) (Fig. 3). The top canonical path-
ways of these genes were highly enriched in immune-
related pathways (Table 2).

Potential involvement of genes that are associated 
with DNA methylation age acceleration in age‑related 
pulmonary diseases
Given that Grim-mAA was significantly associated with 
inflammatory cytokines and expression of genes enriched 
in inflammation and the morphology and structures of 
cells/tissues, we explored the potential involvement of 
Grim-mAA-associated genes alterations in age-related 
lung diseases such as lung cancers and COPD.

For lung cancer in The Cancer Genome Atlas (TCGA) 
datasets, there were 618 genes of 651 unique Grim-
mAA-associated genes available, 13 and 59 genes 
had significantly altered expression in ≥ 90% of lung 
adenocarcinoma samples and lung squamous cell car-
cinoma samples compared to their adjacent normal 
tissue, respectively (Fig. 4A, Additional file 7: Table 6). 

Fig. 3  IPA top networks for Grim-mAA-associated genes. A–C The top three networks of genes significantly associated with Grim-mAA are 
displayed. Red molecules indicate genes that were positively correlated with Grim-mAA, and the green represents those that were negatively 
correlated. Nodal relationships are presented as solid lines, which represent direct interactions, and dashed lines, which indicate indirect interaction, 
as provided by ingenuity pathways analysis. The different functional classes of proteins are represented by varying shapes. A more in-depth 
description of the different shapes can be found at https://​qiagen.​secure.​force.​com/​Knowl​edgeB​ase/​artic​les/​Basic_​Techn​ical_Q_​A/​Legend

https://qiagen.secure.force.com/KnowledgeBase/articles/Basic_Technical_Q_A/Legend
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Ten genes were altered in both subtypes, includ-
ing ANGPTL1, CALCOCO1, DPYSL2, FIGF, GLIPR2, 
OR2D2, TACC1, TTTY5, VWC2L, and ZNF645. Com-
pared to adjacent normal tissue, these ten genes had 
lower expression in both subtypes (Fig. 4A). Some genes 
altered in either subtype are known to be involved in 
the cellular movement (ALDH2, ANGPT1, RAG2, and 
TLR4), cell morphology (ALDH2, ARRB1, LRRK2), 
and cell-to-cell signaling/interaction (ANGPT1, CD81, 
TLR4).

Of the 651 unique Grim-mAA-associated genes in the 
lungs of healthy individuals, 47 genes were significantly 
differentially expressed between COPD cases and 
healthy controls at FDR < 0.1 (Additional file 8: Table 7). 
Several genes had multiple transcripts for a gene (n = 3 
for CYP1B1, n = 2 for GAD1, n = 2 for TRIM7, n = 2 for 
VSIG10), and all had higher expression in COPD com-
pared to controls. Of the 47 genes altered in COPD 
cases, the top ten with the greatest fold changes were 
AHRR, CYP1B1, CYP4F2, CYP4F3, GAD1, LOC284825, 
MATN2, MCL1, MEP1A, and TPRXL (Fig.  4B). Fig-
ure  4C shows similarities and differences of genes 
between Grim-mAA-associated genes, TCGA, and 
COPD datasets. TACC1 was identified to be different in 

lung adenocarcinoma, lung squamous cell carcinoma, 
and COPD patients.

Discussion
This cross-sectional study of epigenetic aging in the lung 
revealed significant differences in comparisons of SM 
and EC to NS: more and faster aging, particularly Grim-
mAge, and shorter and decelerated TL-mAge. It is gen-
erally considered that EC use is less toxic than smoking, 
including in the lung [12, 22, 37, 38]. However, this study 
indicates there may be some effect of EC on age-related 
pulmonary diseases.

Lung aging is an important risk factor for lung diseases, 
resulting in structural and physiological changes, includ-
ing early carcinogenesis [39, 40]. In contrast to normal 
lung aging, we found that exposure to smoking or vaping 
was associated with accelerated lung aging. That aging 
may increase the rate of senescent cell accumulation and 
lung disease progression [3–5, 41]. mAge estimates have 
been predominantly examined in surrogate tissues, such 
as blood. Two recent studies focused on lung as the tar-
get organ, examining Grim-mAge and TL-mAge in lung 
epithelial tissue from those with HIV-associated COPD 
[42, 43]. However, there are, to our knowledge, no studies 

Fig. 4  Differentially expressed Grim-mAA-associated genes in TCGA and COPD datasets. A Stacked bar charts display the percentage of altered 
samples with higher (orange) or lower (gray) expression in tumors compared to adjacent normal tissues (y-axis) for adenocarcinoma and squamous 
cell carcinoma by the gene (x-axis). Asterisks represent overlapping genes between adenocarcinoma and squamous cell carcinoma datasets. B 
Dot plots comparing the log2 expression (y-axis) between COPD cases (red) and controls (gray). Each open circle represents individual COPD cases 
and controls. Each line represents the mean log2 expression for each group. C Venn diagram of overlapping significant genes from TCGA, COPD data 
sets, and Grim-mAA-associated genes
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of mAge measures in the lungs of non-diseased individu-
als. Given our finding of significantly faster Grim-mAA 
and slower TL-mAA in SM and EC in a young adult 
cohort, these patterns could potentially be more acceler-
ated in older populations. Also, because the duration of 
exposure to electronic cigarettes is necessarily short in 
young adults, we do not know the impact of more pro-
longed exposure on mAA.

While we observed significantly older Grim-mAge 
and shorter TL-mAge in healthy EC compared to NS, 
a conflicting finding was reported in saliva conducted 
in another study [22]. Differing duration of exposure to 
electronic cigarette between the studies (weekly vapers 
(ref ) vs mostly daily vapers in our study) may explain 
this difference. Another possible explanation may be tis-
sue type-specific DNA methylation differences (saliva vs 
lung) in epigenetic aging [20–22, 44]. Further, there may 
be some residual effects of former smoking among some 
of the EC. However, due to the limited sample size, we 
were not able to determine if there are unique EC effects. 
Determining such effects would require larger studies of 
EC users that include both those with and without for-
mer smoking.

Regarding smoking and epigenetic aging, consistent 
with previous blood studies [3, 24, 29–33], we observed 
significantly faster lung Grim-mAA in SM compared 
to NS, indicating that blood Grim-mAA may be a use-
ful surrogate for aging in the lung. In a recent study of 
patients with COPD, blood Grim-mAA reflecting airway 
epigenetic age was suggested as a robust surrogate for 
airway epithelia aging [45]. Notably, we reported a pos-
sible effect of a tobacco-specific carcinogen (NNAL) on 
the rate of lung aging; to our knowledge, this report is the 
first of this association.

Altered inflammation is one of the major hallmarks 
of cancer [46], cell senescence-associated phenotype 
[47], and is associated with smoking and vaping [48]. 
While CpGs underlying Grim-mAge are known to be 
involved in cytokine-mediated signaling pathways [36], 
what cytokines are associated with altered Grim-mAA is 
unclear. We observed overall significant positive associa-
tions of Grim-mAA with the pro-inflammatory cytokines 
IL-1β, IL-8, and IL-6. These cytokines are known to be 
induced by increased reactive oxygen species (ROS) [49], 
are affected by smoking as reported by our group [12], 
and are associated with risk of lung cancer and lung dis-
eases [48].

Separately, we identified several Grim-mAA-associated 
genes involved in immune-related gene pathways and 
in the morphology and structures of cells/tissues. Given 
that smoking and vaping generate ROS [50], it is plausible 
that faster lung epigenetic aging in SM and EC compared 
to NS affects the immune response and immune-related 

gene expression that may promote inflammation and 
related disease. However, further studies are needed to 
investigate the biology of this potential relationship and 
to understand the clinical relevance of our findings.

Of Grim-mAA-associated genes to be differentially 
expressed in lung adenocarcinoma and squamous cell 
carcinoma compared to their adjacent normal tissues, 
ANGPTL1, angiopoietin‑like protein 1, is a putative 
tumor suppressor in the lungs by repressing lung cancer 
cell motility [51]. CALCOCO1 is an autophagy-associ-
ated protein and a transcriptional coactivator with TCF/
LET and beta-catenin [52], but its role in lung cancer 
is unclear. DPYSL2 is involved in tumor metastasis and 
has been elevated in smokers with COPD compared to 
never-smokers [53]. TACC1 is involved in the process 
of transcription and translation [54], and found to be 
downregulated in LUAD compared to matched normal 
tissue [55]. Moreover, we found Grim-mAA-associated 
genes to be altered in COPD compared to controls. These 
identified genes with the greatest differences in expres-
sion are known to be associated with smoking, including 
gene families mediating the metabolism of xenobiotic 
substances [56], such as AHRR, CYP1B1, and CYP4F3. 
These genes are involved in oxidative stress upregu-
lated by smoking exposure [57] and are associated with 
lung diseases such as COPD [58]. Additionally, GAD1 in 
airway cells was found in COPD patients and is associ-
ated with increased epithelial MUC5AC [59]. Interest-
ingly, we found several mucin families, including MUC2, 
MUC5AC, MUC12, and MUCL1, to be positively associ-
ated with Grim-mAA (Additional file 5: Table 4). Mucins 
are complex glycoproteins that are essential for protect-
ing airways [60] and are typically induced by inhaled 
environmental insults such as smoking exposure and 
are associated with the initiation, promotion, and pro-
gression of COPD [61]. Mucins are overexpressed in 
NSCLC [62] and related to lung cancer prognosis [62, 
63]. Although our findings do not provide a causal rela-
tionship between Grim-mAA and lung diseases, it may 
be plausible that smoking and vaping alter Grim-mAA-
associated genes and increase susceptibility to respira-
tory diseases.

There are several strengths of our study. We examined 
lung tissue, providing evidence regarding direct target 
organ effects of smoking and vaping. The study subjects 
were young and would have less lung-related damage 
than older users. We investigated potential associations 
of mAA with exposure biomarkers for tobacco use and 
other lung biomarkers, allowing for a broad view of the 
potential effects of epigenetic aging on disease suscepti-
bility. Further, we utilized publicly available datasets to 
understand the potential contribution of the observed 
mAA in age-related lung diseases.
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However, it is also important to note the limitations 
of this study. As no lung tissue-specific mAge is avail-
able, estimated mAge may not reflect accurate biologi-
cal aging. Thus, we focused on a relative comparison 
of mAge across the groups. Due to the cross-sectional 
nature of our study design, we cannot derive causal infer-
ences. Consequently, our results require replication in 
prospective studies. Although we adjusted for poten-
tial confounding by chronological age and gender, other 
factors (e.g., occupation, social determinants of health-
related variables, etc.) might need consideration. Addi-
tionally, EC reported a wide variety of devices, flavors, 
and nicotine concentrations, which each could have dif-
ferent effects which would influence our results. Due to 
the small sample size, we could not determine the impact 
of smoking or unique effect of EC on biological aging.

In summary, faster lung mAge for SM is consistent 
with prior studies in blood. Our finding of faster lung 
mAge for EC compared to NS indicates possible adverse 

pulmonary effects of EC on biological aging. Our find-
ings support further research on the role of smoking 
and vaping in health and pulmonary diseases. Given that 
most EC are former smokers, further study is needed to 
uncover the unique effects of electronic cigarettes on bio-
logical aging.

Methods
Study participants
Participants, chronologically aged 21–30  years, were 
recruited (2015–2017) through the Ohio State University 
(OSU) Study Search and Research Match websites, local 
print, television media, and Craig’s List [12, 23, 37, 64]. 
Participants included EC vapers (EC; n = 14, including 3 
never-smoking EC), smokers (SM; n = 16), and non-EC/
non-SM (NS; n = 39) (Table  3). The study protocol was 
approved by the OSU’s Institutional Review Board. Par-
ticipants were classified as EC, SM, or NS as follows: 
EC were those who had been using nicotine-containing 

Table 3  Characteristics of study participants

Never-smokers non-EC users/non-smokers. Nicotine equivalent [Cotinine + 3-hydroxycotinine]. NNAL [4-(methylnitrosamino)-1-(3-pyridyl)s-butanol]

Cr creatinine

*Below quantification limit was replaced by half of the limit of quantification
a Prior smoking EC users

Cross sectional study (n = 69) All subjects (n = 69) Never-smokers (n = 39) Electronic cigarette 
users (n = 14)

Smokers (n = 16)

Age, years, median (IQR) 26.5 (23.6–28.0) 25.7 (23.4–27.7) 27.2 (25.3–28.9) 26.3 (23.7–28.2)

Gender

Females, N (%) 32 (46%) 24 (62%) 4 (29%) 4 (25%)

Race

White, N (%) 55 (80%) 30 (77%) 11 (79%) 14 (88%)

Non-White, N (%) 14 (20%) 9 (23%) 3 (21%) 2 (13%)

Smoking

Former, N (%) – – 11 (79%) –

Current, N (%) – – – 26 (100%)

Never, N (%) – 43 (100%) 3 (21%) –

Years of smoking, median (IQR) – – 6.5 (4.3–10.0)a 9.5 (4.0–10.0)

Pack Years, median (IQR) – – 3.7 (0.8–7.7)a 6.8 (2.9–10.0)

Cigarettes per day, median (IQR) – – 15 (2.8–20.0)a 20.0 (10.0–20.0)

Days since last cigarettes, median (IQR) – – 737.0 (316.5–1125.0)a –

Electronic cigarette (EC) use

Years of EC use, median (IQR) – – 3.0 (2.0–3.3) –

Puffs per day, median (IQR) – – 100.0 (28.8–200.0) –

EC–liquid (ml) per day, median (IQR) – – 9.0 (5.0–10.0) –

Nicotine (mg/ml), median (IQR) – – 6.0 (3.0–13.5) –

Urinary biomarkers* –

Nicotine equivalent (nmol/mg Cr), median (IQR) – 0.003 (0.001–0.006) 12.1 (4.3–35.6) 19.5 (6.6–43.5)

Nicotelline (ng/mL), median (IQR) – – 2.0 (2.0–23.0) 1011.2 (124.2–1274.8)

Anatabine (ng/mL), median (IQR) – 0.1 (0.1–0.1) 0.1 (0.1–2.0) 8.5 (2.5–19.8)

NNAL (pg/mg Cr), median (IQR) – 0.5 (0.2–0.9) 12.4 (1.2–35.3) 278.1 (126.1–505.3)

Propylene glycol (mg/mL), median (IQR) – 2.0 (0.9–5.0) 27.9 (5.5–54.2) 6.6 (2.7–20.8)
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EC daily for ≥ 1  year and had not smoked a cigarette 
for > 6  months; SM were those who had used > 10 ciga-
rettes per day for > 6  months and had not used an EC 
for ≥ 1  year; and NS were those who had smoked < 100 
cigarettes in their lifetime (CDC Guideline) and had not 
used a cigarette or EC for ≥ 1  year before enrollment. 
Participants were excluded from the study if they had an 
immune system disorder requiring medication, pulmo-
nary diseases, kidney or liver disease, or additional health 
conditions that would increase their risk from bron-
choscopy or potentially influence biomarker outcomes. 
Participants were also excluded if they had: undergone 
general anesthesia, bronchoscopy or other lung proce-
dure ≤ 12 months before the study; used inhalant medica-
tions; allergies to study medications; reported past usage 
of marijuana or combustible tobacco more than 10 times; 
used marijuana or other combustibles ≤ 3 months before 
the study; or, reported pregnancy.

Bronchoscopy
Participants completed an orientation session and eligi-
bility evaluation and provided informed consent before 
undergoing bronchoscopy. During a bronchoscopy, a 
bronchoalveolar lavage (BAL) and bronchial epithelial 
brushing of grossly normal airway epithelium from the 
main bronchus were conducted followed by OSU stand-
ards of care.

Urinary biomarkers of exposure
Liquid chromatography–tandem mass spectrometry 
(LC–MS/MS) was performed as previously described 
[64, 65] for NNAL, nicotine equivalent, and PG.

Inflammatory cytokines
Cell-free BAL fluid was assayed using the Meso Scale 
Discovery Sector Imager 2400A (Meso Scale Discovery, 
Rockville, MD) with a V-PLEX Plus Proinflam Combo 10 
panel.

Genome‑wide DNA methylation and gene expression 
in lung tissues
Genome-wide DNA methylation and gene expression 
analyses in lung tissues include data from our previous 
study (32 out of 69)[12]. Samples for each assay were 
randomized by permuted block randomization. Batch 
effects were removed by ANOVA with the feature as the 
dependent variable and batch as the independent variable 
for both analyses. For genome-wide DNA methylation, 
bisulfite conversion of 500  ng of DNA was performed 
on each sample according to the manufacturer’s recom-
mendations for the Infinium MethylationEPIC BeadChip 
(Illumina, San Diego, CA) on lung tissue samples col-
lected via bronchoscopy. Raw data were transformed by 

subset-quantile within array normalization (SWAN) and 
logit-transformation of β-values to convert M-values for 
normality using Partek Genomics Suite™ 6.6 (St. Louis, 
MO). Probes with a detection P > 0.05 were excluded 
from the analysis.

GeneChip® Human Transcriptome Array 2.0 (Affym-
etrix Inc, Santa Clara, CA) was used for transcriptome 
analysis. CEL files were log2 transformed and underwent 
quantile normalization in Partek.

Epigenetic age calculation
mAge estimates for DNA methylation-based chronologi-
cal aging (Horvath-mAge) [35], lifespan and mortality 
risks (Grim-mAge) [36], and telomere length (TL-mAge) 
[31] were determined by using Horvath’s New Methyla-
tion Age Calculator (https://​dnama​ge.​genet​ics.​ucla.​edu/​
new) with Advanced Analysis [32]. SWAN normalized 
β-values were processed using the calculator’s internal 
normalization method. mAA estimates were obtained 
as the residuals calculated by a linear model of mAge on 
chronological age [35].

Statistical analysis
All mAge and mAA estimates were normally distrib-
uted. mAge estimates were correlated with each other 
and with chronological age using Pearson’s correlation, 
and FDR < 0.05 for significance was considered. Between-
group differences for mAge and mAA estimates were 
assessed using Tukey’s honestly significant difference 
(HSD), and P < 0.05 was reported as significant. Spear-
man correlations were used to correlate between smok-
ing/EC variables and mAge estimates. Years smoked for 
never-smoking EC were considered 0. P < 0.05 was used 
as the cut-off for significance. To associate Grim-mAA 
with other biomarkers (cytokines and transcriptome), 
we used multiple regression adjusting for age and gen-
der. Partial correlations and P-values were obtained from 
the models. Multiple testing adjustment was conducted 
within each analysis type (10 cytokines and 33,494 
transcripts, separately), and FDR < 0.1 was considered 
significant.

Ingenuity pathway analysis (IPA)
The canonical pathway analysis function included in IPA 
was used for mAA-associated genes to explore consist-
ent empirical and biological relationships between genes. 
The significance of canonical pathways was determined 
by IPA’s default threshold [− log(P value) > 1.3], and we 
presented the top 10 most significant pathways at a sig-
nificance level of < 10–5.

https://dnamage.genetics.ucla.edu/new
https://dnamage.genetics.ucla.edu/new
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Lung cancer and COPD public datasets
To investigate the potential association between mAA-
associated genes and lung cancer, we utilized lung can-
cer datasets from TCGA. We used the PanCancer Atlas 
(n = 566 tumor and paired normal tissue for lung adeno-
carcinoma and n = 487 tumor and paired normal tissue 
for squamous cell carcinoma) using cBioPortal (https://​
www.​cbiop​ortal.​org). mAA-associated genes from this 
study were investigated as z-scores calculated relative to 
matched adjacent normal tissue. A z-score of ≥ 2 or ≤ − 2 
in any investigated genes was considered altered expres-
sion. We considered genes important if ≥ 90% of samples 
were altered. We also investigated expression data from 
GSE11906 and utilized the GEO2R web tool from GEO 
(Gene Expression Omnibus). We defined healthy smok-
ers as “controls” and COPD samples as “cases” (20 cases 
and 44 controls) [66]. A FDR < 0.1 determined signifi-
cantly different expressions between cases and controls.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
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