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SUMMARY

We conducted high coverage (>30X) whole-genome sequencing of 180 individuals from 12 

indigenous African populations. We identify millions of unreported variants, many predicted to be 

functionally important. We observe that the ancestors of southern African San and central African 

rainforest hunter-gatherers (RHG) diverged from other populations >200 kya and maintained a 

large effective population size. We observe evidence for ancient population structure in Africa 

and for multiple introgression events from “ghost” populations with highly diverged genetic 

lineages. Although currently geographically isolated, we observe evidence for gene flow between 

eastern and southern Khoesan-speaking hunter-gatherer populations lasting until ~12 kya. We 

identify signatures of local adaptation for traits related to skin color, immune response, height, 

and metabolic processes. We identify a positively selected variant in the lightly pigmented San 

that influences pigmentation in vitro by regulating the enhancer activity and gene expression of 

PDPK1.

Graphical Abstract
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In Brief:

Fan et al. studied the complex demographic history and the genetic basis of local adaptation for 

traits related to skin color, immune response, and metabolic processes across African populations 

using high-coverage whole-genome sequencing data of 180 individuals from 12 indigenous 

African populations.

INTRODUCTION

Africa is the continent where anatomically modern humans originated within the past 

300 ky and the source of migration of anatomically modern humans out of Africa 

within the past 80 ky.1 Africa is also a continent of tremendous cultural, linguistic, 

phenotypic, and genetic diversity.2,3 More than 2,000 ethnolinguistic groups have been 

identified in Africa, representing around one-third of the world’s languages.3,4 These 

languages are classified into four major phyla: Afroasiatic, Nilo-Saharan, Niger-Congo, 

and Khoesan.5 The Afroasiatic phylum, consisting of ~400 languages, is mainly spoken 

by agro-pastoralist and agriculturalist populations in northern and eastern Africa. The Nilo-

Saharan phylum, comprised of ~206 languages forming ~12 subfamilies, is predominantly 

spoken by pastoralists in central and eastern Africa. Genetic, linguistic, and archeological 

data suggest a possible common ancestry of Nilo-Saharan-speaking populations originating 

near the Ethiopian and Sudanese border within the past 10,500 years.3,6 The Niger-Congo 

phylum, consisting of ~1,500 sub-languages, is the largest language phylum in Africa.4 

The largest subfamily of languages are the Bantu languages, which originated near the 

border of Cameroon and Nigeria. Bantu-speaking populations used iron tool technology and 

slash-and-burn agriculture facilitating larger population sizes and migration to eastern and 

southern Africa beginning ~5 kya (a.k.a, the “Bantu expansion”).7 The Khoesan languages, 

which are characterized by click consonants, are mainly spoken by the San populations 
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in southern Africa and the Hadza and Sandawe in Tanzania, all of whom currently, 

or until recently, practice hunting and gathering.5,8 Yet, the San, Hadza, and Sandawe 

languages are highly divergent and their classification as a single language family remains 

contentious.9,10 Linguistic studies suggest that the Sandawe language is more similar to that 

of the southern African San than that of the Hadza.11 Additionally, African populations 

live in various environments including desert, tropical rainforest, savanna, swamps, and 

high-altitude mountains, and have adapted to diverse selection pressures such as climate, 

diet, and pathogen exposure, driving local adaptation.12–14

Despite the essential role that Africa has played in the origin and evolution of anatomically 

modern humans, Africans are still underrepresented in human genomic studies.15,16 People 

of African ancestry in the United States have a disproportionately higher burden of 

common diseases, such as hypertension, diabetes, and kidney failure, likely due to both 

environmental (including sociodemographic, economic, and health access) and genetic 

factors.16,17 Therefore, a lack of representation of African populations in genetic research 

not only hinders our understanding of human evolutionary history, but also limits the 

development of equitable precision medicine.16

While prior WGS studies in Africa focused on targeted geographic regions18,19 or used 1 - 

6 individuals from particular ethnic groups20–25, in this study, we generated high-coverage 

whole-genome sequencing of 180 individuals from 12 indigenous African populations (15 

individuals per population): the Amhara, Dizi, Chabu, and Mursi from Ethiopia, the Hadza 

and Sandawe from Tanzania, the RHG (Baka and Bagyeli merged into one population), 

Fulani, and Tikari from Cameroon, and the Herero, Ju|’hoansi and !Xoo (the latter two 

collectively referred to as “San”) from Botswana (Figure 1A). These populations speak 

languages encompassing all four African language phyla. The Hadza and San, still practice 

traditional hunter-gatherer subsistence styles (though the San now receive food subsidies), 

whereas the Sandawe have adopted agriculture and herding within the past few hundred 

years.3 The RHG who, based on their short stature, have been referred to as “Pygmies”, have 

lost their traditional language and now speak Bantu languages.3 Such language replacement 

also happened to the Fulani, who are traditionally nomadic pastoralists living across a 

broad range of Africa encompassing the Sudan, Central, and Western Africa.3 The Fulani 

now speak a Niger-Congo language most similar to languages spoken on the west coast of 

Africa.26 The Chabu have a census population size of only 1,000-2,000 individuals,27 live 

in a mountainous region in southwestern Ethiopia, and practice a foraging lifestyle. Their 

language is considered a ‘language isolate’ and one of the ‘severely endangered languages’ 

of the world. Linguistic studies suggest that the proto-Chabu language may have originated 

as an early branch of the Nilo-Saharan phylum.4,28

Across these populations, we characterized millions of genomic variants, many of which 

were predicted to be functional and of potential biomedical relevance. We used multiple 

approaches to reconstruct the phylogenetic relationship, admixture events, and effective 

population sizes of these populations. Moreover, we identified population-specific signals 

of positive selection that may have contributed to local adaptation, and we identified the 

functional impact of some of these variants on adaptive phenotypes.
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Results

We generated high coverage (> 30X) WGS data from 15 individuals per population from 12 

African populations (180 individuals total), representing the most diverse genetic ancestries 

in sub-Saharan Africa based on prior admixture analyses (Figure 1A).3,29 After quality 

control (STAR Methods), we identified a total of 35,201,568 variants: 32,438,935 single 

nucleotide polymorphisms (SNPs) and 2,762,633 small insertions and deletions. Further 

analyses were restricted to 32,044,896 biallelic SNPs. The average number of SNPs varies 

greatly among populations (Figure 1B). The San and RHG individuals have greatest number 

of SNPs (Figure 1B) and the highest levels of genetic diversity (Figure 1C), whereas 

individuals from populations that experienced strong non-African admixture (e.g., Amhara 

from Ethiopia) or small census sizes (e.g., Hadza or Chabu), carry the fewest SNPs (Figure 

1B) and have the lowest genetic diversity (Figure 1C).

We identified 5,344,342 SNPs that are not reported in dbSNP version 155 nor gnomAD 

version 2.1 (Figure 1D). Around 78% of the unreported SNPs are population-specific, 15% 

are shared by populations in the same country, and 7% are shared by populations residing in 

different countries (Figure 1E). Variants at unreported SNPs are significantly rarer than those 

at previously reported SNPs (Wilcoxon rank sum test, p < 0.001). The Dizi, Ju|’hoansi and !

Xoo have the greatest numbers of population-specific unreported variants (Figure 1F), and 

the Ju|’hoansi and !Xoo shared the greatest number of unreported SNPs among populations 

in the same country (Figure 1G). Of the unreported variants shared between populations in 

different countries (Figure 1H), most are shared between the hunter gatherer populations in 

Southern (Ju|’hoansi and !Xoo) and Eastern (Hadza and Sandawe) Africa and between the 

Hadza and Sandawe and Ethiopian populations (Amhara, Dizi, Mursi, and Chabu).

Among the unreported SNPs, we identified 28,901 and 499 causing amino acid changes 

or stop codon gain/loss, respectively, as well as 95,844, 253,334, and 47,777 located in 

transcription factor binding site regions, enhancers, and active promoter regions, respectively 

(Figure 1D) based on functional annotations using ANNOVAR. Further, 154 SNPs in our 

dataset were reported as “Pathogenic” or “Likely Pathogenic” in the ClinVar database 

(STAR Methods). Of these, 44 are at frequencies higher than 0.05 in at least one of the 

populations from this study but are either absent or at frequencies lower than 0.01 in 

non-African populations in gnomAD (Table S1). For example, rs74853476-C is a splice 

donor variant at dopamine beta-hydroxylase (DBH) associated with orthostatic hypotension 

1 in non-African samples.30 While rs74853476-C is rare in all super-populations in 

gnomAD, it reaches 13% in the Fulani (Figure S1A). Another example consists of three 

missense mutations (Figures S1B–D), rs139426141-G, rs140482516-T, and rs34097903-A, 

in Peptidyl Arginine Deiminase 3 (PADI3) reported to associate with central centrifugal 

cicatricial alopecia in patients of African ancestry.31 Each of these variants is at a high 

frequency in at least one of the studied populations (Figures S1B–D) but is rare in the 

non-African super-populations in gnomAD. Thus, a number of variants that are labeled 

by ClinVar as putatively pathogenic are seen at high frequencies in one or more of our 

populations and, in fact, may be benign. These observations emphasize a strong need to 

include ethnically diverse populations in human genetic studies, especially because rarity is 

used as a criterion for determining a variant’s pathogenicity in clinical studies.16
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Phylogenetic relationship of African populations in a worldwide context

After merging our African WGS data with WGS data for Papuans from the Simons Genome 

Diversity Project (SGDP) and the Northern and Western Europeans from Utah, Tuscans, 

and Han Chinese in Beijing from the 1000 Genomes Project (1KGP) (STAR Methods), we 

constructed a neighbor-joining phylogenic tree using MEGA, which neglects migration and 

recombination. Therefore, admixed populations may cluster near each other. We observed 

that the Ju|’hoansi and !Xoo have the most basal lineages of all modern humans, followed 

by the RHG (Figure 2). The remaining populations largely clustered by their current 

geographical locations with a few exceptions. For example, the Fulani from Cameroon 

clustered with Afroasiatic-speaking populations in East Africa, suggesting common ancestry 

with those populations and a language replacement during their migration across the Sahel.3

Further, the Chabu clustered with the Nilo-Saharan-speaking Mursi, consistent with the 

linguistic classification of the Chabu language.28 The Hadza and Sandawe clustered near 

each other, though they did not form a monophyletic group, possibly due to strong 

admixture between the Sandawe and other East African populations (Figures 3E and S2). 

Consistent with previous studies3,21,32, the Fulani and two Ethiopian Afroasiatic-speaking 

populations, the Amhara and Dizi, are genetically closest to non-African populations. Yet, a 

more careful analysis with D-statistics suggests that the out-of-Africa source population was 

ancestral to all non-RHG, non-San populations in our dataset (Note S1). This suggests that 

the clustering of non-African populations with the Fulani, Amhara, and Dizi in Figure 2 is 

due to gene flow from non-Africans into these populations (directly or indirectly), which we 

confirmed using D-statistics (Note S1).

Complex demographic history of African populations

Principal component analysis (PCA) of the current dataset merged with a global WGS 

dataset from the SGDP reveals both continental and population-specific patterns of genetic 

variation. PC1 separates Africans and non-Africans, with the exception of populations in 

North Africa and the Middle East, consistent with prior studies (Figure 3A).3,21,33 PC2 

distinguishes the San from other Africans (Figure 3A). Subsequent principal components 

differentiate the Hadza, Chabu, Dizi, and Mursi from other populations along PC3 

(Figure 3B), and RHG populations (Baka, Bagyeli, Bakola, Biaka, Bedzan and Mbuti) 

are distinguished along PC4 (Figure 3C). Including 55 ancient Eastern and Southern 

African samples dated from 10,000 – 160 BP in the PCA, we observed a wide geographic 

distribution of Khoesan-related individuals in Africa as previously noted (Figure 3D)34; 

15 ancient samples either overlap or fall onto a geographic cline between the present-day 

Eastern and Southern African Khoesan-speaking hunter-gatherer populations (Figure 3D). 

For example, Mota from Ethiopia (4524 – 4418 BP) and ancient foragers from Tanzania 

and Kenya (4080 – 160 BP) overlap in the PCA with the Sandawe and Hadza. Five ancient 

samples from South Africa (8173 – 1069 BP) either overlap or are close to the present-day 

southern African San populations, consistent with prior studies.34

ADMIXTURE analysis of the merged dataset separated African and non-African 

populations at K = 2 (Figure S2). At K = 4, San ancestry (yellow) becomes distinct, which 

is also common in the RHG, Sandawe and Hadza. At K=7, east African populations (e.g., 
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Hadza, Sandawe, Chabu, Dizi, Amhara, and Mursi) emerged as a cluster (teal). The Fulani 

formed a distinct cluster at K = 8 (purple). The Hadza emerged as a cluster at K = 10 

(brown) and the RHG (dark purple), and Chabu (light green) became distinct clusters at K 

= 12 (Figure S2). At K = 16 the Ju|’hoansi (dark green) who speak a northern Khoesan 

language and the !Xoo and Khomani San (yellow) who speak a southern Khoesan language 

become distinguished (Figure 3E). Additionally, Nilo-Saharan-speaking populations (e.g., 

the Dinka, Mursi, and Sengwer) became a single cluster (beige) at K = 16. Niger-Congo-

related ancestry (red) was inferred to be widely spread across sub-Saharan Africa, but 

was most common in west and central African Niger-Congo-speaking populations (e.g., 

Lemande and Tikari) compared to eastern and southern Niger-Congo-speaking populations 

that have admixed to varying degrees with neighboring populations. The Herero, who speak 

a Bantu language, have low levels of admixture with the San.3,35 Furthermore, the Sandawe 

have high levels of Afroasiatic-related (light blue, ~50%) and Niger-Congo-related (red, 

~25%) ancestries, but also low levels of ancestries related to the Hadza (brown) and San 

(yellow/dark green), reflecting shared common ancestry and/or ancient gene flow among 

southern and eastern African hunter-gatherer populations.

We modeled more complex demographic histories using TreeMix and qpgraph. When no 

admixture is allowed, the topologies based on qpgraph (Figure 4A) and TreeMix (Figure 

S3A) are consistent with the topology of the neighbor-joining tree (Figure 2), with the 

San as an outgroup to all other populations. However, the topologies of qpgraph (Figures 

4B and S4) and TreeMix (Figure S3) vary tremendously when allowing admixture among 

populations. When modeling 10 admixture events, qpgraph estimated that the East African 

Khoesan populations, the Hadza and Sandawe, respectively derive 71% and 38% ancestry 

from a population ancestral to the Southern African Khoesan population (consistent with 

migration events between the Hadza, Sandawe and San inferred from TreeMix with 9 

migration events). These populations, particularly the Sandawe (Figure 4B), also derive 

ancestries from an Afroasiatic-like population, likely reflecting recent Afroasiatic gene 

flow (Figure 3E), consistent with TreeMix with 4 migration events (Figure S3E). We 

estimated that the Ethiopian populations (Amhara, Dizi, Mursi, and Chabu) derived 98% 

and 2% of their ancestries from a population ancestral to the Hadza and a population 

ancestral to all modern human populations, respectively (Figure 4B). The latter may reflect 

Neanderthal introgression introduced into Ethiopians indirectly due to high levels of non-

African admixture (Figure 3E).36,37 Furthermore, 80% of the Omotic-speaking Dizi ancestry 

can be traced back to a Chabu-related population and 20% to an Amhara-related population 

(consistent with TreeMix results with 7 migration events) (Figure S3H). In addition, qpgraph 

indicates that the RHG derive 37% of their ancestry from a population ancestral to the San 

and 63% of their ancestry from a Niger-Congo-speaking population (Figure 4B) consistent 

with high levels of Bantu gene-flow to the RHG.38–40 The relationship of the Tikari and 

Herero with other populations is complex. They could be modeled as having 23% ancestry 

related to an archaic population that diverged prior to the divergence of all modern human 

populations (possibly reflecting introgression from an archaic population into modern 

populations) and 77% ancestry from a population related to the Nilo-Saharan-speaking 

Mursi. A similar pattern was observed in the ADMIXTURE analyses at K = 7 to 11 but with 

much lower inferred Nilo-Saharan-related ancestries in the Tikari and Herero (Figure S2). 
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The TreeMix analyses showed evidence of gene flow between the Mursi and the ancestors 

of the Tikari and Herero starting at 5 migration events (Figure S3F). The results indicating 

archaic introgression in a population ancestral to the Bantu-speaking lineage are consistent 

with previous studies based on ancient African samples which suggested that the West 

African Niger-Congo-speaking populations carry lineages ancestral to all modern human 

lineages.41 However, time-resolved demographic history models inferred using alternate 

methods (described below) suggest that the ancestors of San and RHG may have been the 

first to split from other modern human lineages.

Consistent with the ADMIXTURE results, TreeMix and qpgraph analyses detected 

extensive recent gene flow among African populations (Figures 4B and S3–4). For example, 

the Herero derived 7% of their ancestries from the !Xoo (consistent with TreeMix results 

with 10 migration events) (Figures 4B and S3K).42–44 The Fulani derived 50% of their 

ancestry from a population related to the Amhara and 50% from a population related to the 

Tikari (consistent with TreeMix results with 3 migration events) (Figure S3D). The latter 

results are consistent with the ADMIXTURE analyses discussed above (Figures 3E and S2) 

and previous studies based on nuclear genomic variation suggesting that the Fulani share 

ancestry with Afroasiatic-speaking populations and admixed with Niger-Congo-speaking 

populations as they migrated across the Sahel.3,21,32,45 Using DATES, which uses the decay 

of ancestry covariance along the genome to date recent gene flow events, we estimated that 

the Fulani admixture event occurred 90 ± 40 generations ago (1.4 to 3.8 kya, assuming 

29 years per generation), corresponding with later Holocene expansion events of nomadic 

pastoralists.46,47

Our WGS data also enabled detailed analyses of demographic history using two modeling 

approaches, MSMC and momi. Because MSMC analyses do not model gene flow, it 

likely underestimates divergence times in highly admixed populations. We began by 

investigating the population ancestral to all modern populations. Using momi we compared 

a model where the populations split from a single panmictic source to a model where the 

populations split from a structured population. Across all pairs of populations, we inferred 

that all modern humans descend from deeply structured populations and that they derive 

approximately 5–15% of their ancestry from a lineage that may have diverged as long ago as 

1–3 Mya (Figure 4C), consistent with previous findings suggesting archaic introgression in 

some African populations.48,49 However, such a model is also consistent with the population 

ancestral to modern humans being deeply structured.

We next dated the divergence times between modern human populations. To interrogate the 

oldest population splits we used momi to infer a time-resolved demographic model relating 

the San (Ju|’hoansi), East African Khoesan (Hadza), RHG (Baka), and Bantu-speaking 

(Tikari) populations. We tested models with RHG as an outgroup, with the San populations 

as outgroups, and with the RHG and San as a sister clade derived from a population 

ancestral to all other populations. The models which had the San and RHG as a sister clade 

consistently had the highest likelihood (Figure S5) indicating that the oldest split between 

these populations separated the San and RHG from the Hadza and Tikari as early as 285 kya 

(Figure 4C). Similarly, when comparing either San or RHG to any other African population, 

the MSMC CCR does not reach higher than 90% until 150 kya to more than 200 kya (Figure 
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S6). Together, these results indicate that the oldest split separated the San and RHG from all 

other populations, and this split occurred at least 150 kya and may have occurred as long as 

285 kya.

All other pairs of populations were inferred to split more recently, with momi inferring 

divergence times less than 68 kya and MSMC CCRs reaching 50% before 42 kya (Figures 

S6D–F). In particular, despite speaking language “isolates” controversially placed within the 

Khoesan family, we inferred more recent divergence times between the Hadza, Sandawe and 

non-San/non-RHG populations relative to divergence times between San, RHG and other 

populations. When comparing the Hadza to non-San/non-RHG populations, momi inferred 

divergence times 25–60 kya and MSMC inferred a 50% CCR between 29–42 kya (Figure 

S6G). Similarly, for the Sandawe, momi inferred divergence times between 25–45 kya, and 

MSMC inferred a 50% CCR between 23–30 kya (Figure S6H). We estimated divergence 

times between Afroasiatic-speaking and Nilo-Saharan-speaking populations to be around 

22–35 kya using momi and MSMC (Figure S6E).

Even within language groups, we observed evidence of ancient population structure. For 

example, between the Bantu-speaking Tikari and Herero, momi inferred a divergence time 

of 20 kya and the MSMC CCR reaches 50% at 11 kya (Figure S6I). We estimated that 

the divergence times between the Khoesan-speaking Ju|’hoansi and !Xoo are 18 kya and 

24 kya using momi and MSMC, respectively (Figure S6J), consistent with prior estimates.8 

Additionally, the East African Khoesan-speaking Hadza and Sandawe were inferred to have 

diverged ~23 and 25 kya using MSMC and momi, respectively. The Afroasiatic-speaking 

Amhara and Dizi were inferred to have diverged 30 kya using momi and 22 kya using 

MSMC (Figure S6E). Finally, the Nilo-Saharan-speaking Chabu and Mursi were inferred 

to have diverged 22 kya using momi and 17 kya using MSMC (Figure S6E). All pairwise 

momi results are presented in Table S2 and are based on the models in Figure S7.

Temporal dynamics of effective population size in Africa

Using PSMC and SMC++, we observed the emergence of effective population size (Ne) 

differences as early as ~200 kya (Figure 5). From 200–50 kya, the RHG and San have 

greater Ne compared to other populations (Figure 5A). The Amhara and Dizi have the 

lowest Ne compared to other African populations (Figure 5A). Four populations, including 

Hadza, Chabu, Herero, and Fulani, experienced dramatic population size declines 1–10 kya 

(Figure 5B). In particular, the Ne of both the Hadza and Chabu dropped from ~10,000 to 

~200 (Figure 5B), consistent with their current census sizes of ~1,000.

Local adaptation in Africans

To identify candidate loci that may play a role in local adaptation to diverse environments 

and diets, we identified loci that have highly differentiated allele frequencies in each 

population compared to other African populations using the Di statistic. We calculated Di 

value for each SNP and defined outliers falling in the 99.9th percentile as Di-SNPs. The 

functional impact of genes near Di-SNPs was inferred using GREAT (Table S3). We also 

identified Di-SNPs that overlap GWAS associations from populations with African ancestry 
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using the EBI GWAS catalog and studies using UKBB samples.50,51 We observed evidence 

for local adaptation for different traits in diverse populations (Figure 6).

We found that the San, who have lighter skin than other African populations52, have 

enrichment for Di-SNPs near genes involved in skin pigmentation, including OCA2, 
TYRP1, SLC24A5, MITF, and other skin phenotypes, including keratin loci (e.g., KRT25, 

KRT27, and KRT71) (Table S3). Previous studies show that mutations in OCA2, TYRP1, 
SLC24A5 and MITF can cause ocular albinism type 2, type 3, and type 6, as well as 

Tietz albinism-deafness syndrome.53,54 In the gene body of OCA2, we identified 112 

Di-SNPs, including one synonymous, one nonsynonymous, and 110 intronic mutations. 

While the nonsynonymous variant (rs1800417) at OCA2 was previously reported to not 

be associated with skin pigmentation variation in the San55, rs1800404, a synonymous 

variant in exon 10, associates with skin pigmentation and eye color variation across multiple 

ethnicities.52,56,57 The light-pigmentation associated allele rs1800404-T, which is a splicing 

QTL of OCA252,58, is most frequent in the San (83%) compared to all other populations in 

the present study and gnomAD except for the Finnish population (frequency of 84%;Table 

S4).

We also observed 22 Di-SNPs in the San within the gene body of PDPK1 (Figure 7A). 

PDPK1 is an important regulator of melanocyte proliferation and loss of PDPK1 reduces 

skin pigmentation in mice.59 Interestingly, one Di-SNP, rs77665059, overlaps a melanocyte-

specific open chromatin region in the intron of PDPK1 (Figure 7A). The ancestral allele, 

rs77665059-C, shows higher frequencies in the Ju|’hoansi (0.67) and !Xoo (0.83) compared 

with other populations (average frequency of 0.14 and 0.03 in the non-San populations 

of the present study and the global populations in gnomAD, respectively) (Figure 7B). 

ChIP-seq data revealed that this region is enriched for H3K27ac and H3K4Me1 signals 

in melanocytes, and binding sites for the transcription factors MITF, SOX10 (involved 

in melanocyte development and expression of pigmentation genes60,61) and SMARCA4 

(chromatin remodeler) (Figure 7A). Based on luciferase expression assays in two melanoma 

cell lines: MNT-1 (highly pigmented) and WM88 (lightly pigmented). We observed that the 

ancestral C allele is associated with increased enhancer activity compared to the derived 

A allele in both cell lines (Figure 7C), consistent with the C allele being associated with 

lower expression of PDPK1 in fibroblasts in GTEx (Figure 7D).58 Individuals with the 

C allele have lighter skin pigmentation compared to individuals with the A allele in the 

San (Figure 7E). Furthermore, CRISPR inhibition of this enhancer indicates significantly 

reduced expression of PDPK1 and melanin levels in MNT-1 cells (P-value <0.001, one-way 

ANOVA post hoc test) (Figure 7F). These observations indicate that SNP rs77665059 

is within an enhancer active in melanocytes that impacts pigmentation in vitro and may 

influence skin color in the San by regulating the enhancer activity and gene expression of 

PDPK1.

We also observed enrichment for Di-SNPs in the San near genes involved in hair follicle 

development and “narrow eye opening” in mice (Table S3). This observation is consistent 

with descriptions of unique hair follicle morphology (tightly spiraled) and narrow eye 

morphology in the San.62,63 One SNP of particular interest is a non-synonymous variant, 

rs111298318, in KRT74. Mutations at KRT74 are known to cause a “wooly hair” phenotype 
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in humans.64 The rs111298318-C variant is at > 0.73 frequency in the San, is <0.05 

frequency in other African populations in the present study and is almost absent in non-

African super-populations in gnomAD.

In the RHG we found enrichment for Di-SNPs near genes involved in bitter taste receptor 

activity (e.g., TAS2R1, TAS2R10) and immune response (e.g., HLA-DOA, IL2, and 

IL4R) consistent with previous studies.23,39 Additionally, we observed enrichment for 

Di-SNPs near genes involved in bone growth and chondrocyte differentiation (Table S3) 

including CISH/DOCK3/MAPKAPK3, GHR, IGF1, BMP4, BMP6, ANKRD11, TRPS1, 

and ACAN23,50,65–69, potentially involved in the short stature of the RHG. Notably, 75 

out of 76 Di-SNPs in a 15 Mb region of chromosome 3 (between 45–60 Mb) that were 

significantly associated with height variation in the RHG23,65 were predicted to be eQTLs 

of DOCK3 or MAPKAPK3 in GTEx. Further, 312 Di-SNPs (Table S5) were significantly 

associated with height (P-value < 1e-8) in previous GWAS51,70,71, suggesting that the short 

stature phenotype in the RHG likely evolved due to positive selection at multiple loci.

We observed an enrichment for Di-SNPs near genes that play a role in immune-related 

pathways in the Fulani and Chabu (Figure 6 and Table S3). Studies have shown that 

the Fulani are more resistant to severe malaria relative to other ethnic groups in similar 

environments.72,73 In the Fulani, we observed significant enrichment for Di-SNPs near 

genes involved in the “Cellular response to interleukin 6” including IL6, IL6R, and IL6ST 
(Table S3). Previous studies based on gene expression analysis suggest that genes in the 

IL6 signaling pathway may play a role in relative resistance to malaria observed in the 

Fulani.74,75 The rs1889314-A, rs10908834-T, and rs12118634-T alleles of three Di-SNPs 

are more frequent in the Fulani than other African populations in our study or in the 

gnomAD database (Table S4) and are significantly associated with increased expression of 

IL6R compared to the alternative alleles.58

In the Chabu, we observed enrichment for Di-SNPs near genes involved in positive 

regulation of immune effector processes, positive alpha-beta T cell activation and 

differentiation (Table S3) reflecting an adaptation to a different environment and different 

pathogens, compared to the Fulani. We also detected 318 Di-SNPs within or near 

the MICA locus (±50 kb), including 8 missense mutations (rs1063630, rs1051786, 

rs1051792, rs1051794, rs1131898, rs1051798, rs1051799, rs61738275). SNPs rs1063630 

and rs61738275 are in one LD group (R2 = 1), while the other six SNPs are in a separate LD 

group (R2 = 1). MICA is a ligand of NKG2D and triggers the cytotoxicity of natural killer 

cells and CD8 T cells, acting as an important component of the innate immune response.76

In the Hadza, we observed enrichment for Di-SNPs near genes that play a role in pathways 

related to cardiac function and development, including BMP2, HEY1, MYH6, RYR2, 

PITX2, and TPM1 (Table S3). Previous studies have shown that genes in cardiac-related 

pathways are enriched for being targets of positive selection in RHG populations in Africa 

and Asia.77 The Hadza are one of the few populations globally that continue to practice a 

traditional hunting and gathering lifestyle and are well-known for the remarkable distance 

that they travel daily; on average men walk 13 km per day hunting animals and gathering 
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honey, and women walk 8 km per day foraging for plant foods.78 Thus, selection at loci 

involved in heart development could be adaptive in this population.

The Di-SNPs in the Sandawe are near genes involved in facial and skeletal muscle 

development, such as regulation of skeletal muscle fiber development, embryonic cranial 

skeleton morphogenesis, and cranial and craniofacial suture morphogenesis (Table S3). 

For example, we detected Di-SNPs near MEF2C79, TBX380, and HIF1AN81, which are 

involved in skeletal muscle development as well as FGFR282, TGFBR283, TBX1584, 

and TWIST185, which play important roles in cranial development and morphology. The 

adaptive significance of these loci is unclear.

We observed Di-SNPs in Herero and Tikari at loci that play roles in hypertension, kidney 

disease, obesity, and diabetes (Table S3), diseases which are relatively common in African 

Americans compared to other ethnic groups in the U.S..86,87 In the Herero, ontologies 

such as regulation of systemic arterial blood pressure by baroreceptor feedback, positive 

regulation of blood pressure by epinephrine-norepinephrine, regulation of systemic arterial 

blood pressure by norepinephrine-epinephrine, and neurological system process involved in 

regulation of systemic arterial blood pressure, are significantly enriched for Di-SNPs. A set 

of 23 Di-SNPs in the Herero were significantly associated with blood pressure traits (e.g., 

systolic/diastolic blood pressure) in previous GWAS of UKBB samples.50 For example, 

rs7821832-G is most frequent in the Herero compared to other populations in our study 

and to populations in gnomAD (Table S4) and is significantly associated with systolic 

blood pressure (P-value=5.4x10−20) and diastolic blood pressure (P-value= 8.2x10−9) in the 

UKBB samples.50 In the Tikari, we observed enrichment for Di-SNPs near genes involved 

in long-chain fatty acid import (Table S3). For example, one of the Di-SNPs, rs2717609-T, 

is significantly associated with traits such as body fat percentage (P-value=1.1x10−10), 

whole body fat mass (P-value=4.9x10−10), trunk fat mass (P-value=7.6x10−12), and hip 

circumference (P-value=5.0x10−9) in a prior GWAS of UKBB samples.50

In the Mursi, Amhara, and Dizi (Table S3), we observed enrichment for genes involved in 

pathways related to kidney development and morphology which could reflect an adaptation 

to environments that are often arid, with little access to water. For example, we found that 

the Di-SNPs rs9823161, rs72841902, and rs4567493 in the Amhara, Dizi, and Mursi are 

significantly associated with traits related to kidney function in previous GWAS based on 

multi-ancestry samples.88 rs9823161-A and rs72841902-A are positively associated with 

estimated glomerular filtration rate, and rs4567493-A is negatively associated with blood 

urea nitrogen levels.

We also detected loci showing signatures of recent positive selection based on extended 

haplotype homozygosity using the integrated haplotype score statistic (Table S6). We 

defined the top 1% of windows with the highest fraction of extreme integrated haplotype 

scores as outliers and observed some loci that show a shared signature of recent positive 

selection (Table S6). For example, we observed a shared signature of positive selection 

at the MHC locus in the Chabu, Mursi and Dizi from Ethiopia (Table S6). We also 

identified population-specific positive selection signals. For example, genes located in 

the outlier windows showing strong iHS signals are significantly enriched (FDR adjusted 
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P-value <0.01) in pathways involved in alcohol dehydrogenase activity (e.g., ADH4, ADH5, 
ADH6, ADH7, and ADH1A) in the Amhara (Table S6), consistent with observations in 

this population based on SNP array data89, in bitter taste receptor activity (e.g.,TAS2R20, 

TAS2R30, TAS2R31, TAS2R43,TAS2R46, and TAS2R50) in the Hadza, and in growth 

hormone receptor binding (e.g., GH1, GH2, CSH1, CSH2, and CSHL1) in the Fulani (Table 

S6).

Discussion

In this study, we analyzed high-coverage whole-genome sequencing data from 180 

individuals from twelve indigenous African populations representing a wider range of 

cultural, linguistic, phenotypic, and genetic diversity in Africa than previous studies of 

Africans.3,90 We identified ~5.3 million previously unreported variants, many of which 

are predicted to be functional. Furthermore, we found that 44 out of 154 “Pathogenic” or 

“Likely Pathogenic” SNPs are common (frequency > 0.05) in one or more populations in 

this study but are rare (frequency < 0.01) in non-African populations. These results do 

not imply that African populations have a high frequency of pathogenic variants but likely 

reflect that low prevalence of variants is a factor for determining pathogenicity in current 

clinical studies, and bias toward non-African populations may result in the misclassification 

of pathogenic variants. These observations emphasize the importance of including ethnically 

diverse populations and developing unbiased genotyping (e.g., SNP arrays designed for 

samples of African ancestries) in human genetic studies.16,91

Our study depicts a complex demographic history of African populations, consisting of 

ancient population divergence, regional and cross-continental migration, and admixture 

events (Figures 3 and 4B–D). Although phylogenetic analyses indicate that the San descend 

from a population ancestral to all other modern humans, demographic modeling using 

momi, allowing for changes in effective population size and migration between populations, 

consistently supports a model in which the RHG and San form a sister clade deriving from 

a population ancestral to all other modern human populations. We find similar effective 

population sizes of the San and RHG from 50–200 kya (Figure 5), consistent with shared 

common ancestry. Similarly, ADMIXTURE analysis identifies shared ancestry between the 

San and RHG, particularly at low K values (Figure S2). On the other hand, qpgraph suggests 

that the RHG and Bantu populations derive a substantial portion of their ancestry from a 

population that is an outgroup to all modern populations (Figure 4B). One possibility to 

explain these observations is a model with multiple introgression events between a deeply 

diverged population (diverged >1 – 3 Mya) with the ancestors of all modern humans (Figure 

4C) and, more recently, with the ancestors of the RHG and Bantu populations (Figure 4D), 

consistent with previous reports of archaic introgression in African populations.23,24,34,41. 

However, these results could also be explained if the lineages related to modern-day African 

populations were part of a deeply structured ancestral population (a “multiregional” model 

of modern human origins in Africa which could have been facilitated by gene flow between 

structured populations). Sequencing ancient DNA from archaic hominid fossils in Africa, if 

it becomes feasible, may provide more direct evidence of archaic admixture in Africa as has 

been the case for Neanderthal and Denisovan introgression in non-Africans.36,92
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Thus, the early demographic history of the lineages leading to modern humans is complex 

with multiple episodes of gene flow between modern human lineages and possibly with 

other hominid lineages. When accounting for gene flow, we estimated that the deepest 

divergence among modern humans dates back to 285 kya, which is consistent with the 

estimates based on ancient African samples41,93 and fossil records in Africa.1 Without 

accounting for gene flow, however, our estimates from MSMC analyses are much more 

recent (~100–150 kya) but still quite deep. We also show that populations speaking all 

major language families diverged tens of thousands of years ago, consistent with long term 

population structure both within and between populations speaking languages from different 

phyla.34,94,95

Although their languages are highly divergent and their classification into the Khoesan 

phylum is still contentious, our analyses based on qpgraph, TreeMix, and momi identified 

signals of ancient gene flow between currently geographically isolated Khoesan-speaking 

hunter gatherer populations, the Hadza and Sandawe in East Africa and the Ju|’hoansi and !

Xoo who currently reside in southern Africa, as recent as within the last 12 ky. Evidence 

based on mtDNA and autosomal data from modern and ancient samples34,95–98 suggests the 

present-day San may have originated in Eastern Africa, then migrated into southern Africa 

and that there could have been a broader distribution of Khoesan-speaking populations 

in Africa. Therefore, there could have been continuous gene flow between the Khoesan-

speaking populations in Eastern and Southern Africa over long periods of time. In addition, 

we observed that Niger-Congo-related ancestries are highest in the Niger-Congo-speaking 

populations in West and Central Africa (e.g., Tikari), but are slightly lower in the Herero 

of Botswana, reflecting an origin of Bantu speaking populations in West and Central Africa 

with the past 5 ky and more recent migration of the Herero into southern Africa in the 

past 1 ky and subsequent admixture with Khoesan-speaking populations such as the !Xoo. 

We also observed Bantu ancestry in the Sandawe and !Xoo, reflecting admixture of Bantu-

speaking people with indigenous populations as they spread throughout Africa. Consistent 

with the linguistic and archeologic record, we observe evidence for migration and gene flow 

of Nilo-Saharan and Afro-Asiatic speaking populations from a homeland in present day 

Sudan/Ethiopia southward into Kenya and Tanzania (Figure 3). The local indigenous hunter 

gatherer populations were either assimilated or forced to move into harsh habitats leading 

to severe decreases in effective population size in the Hadza23 and Chabu27 but not the 

Sandawe, who assimilated with the neighboring Cushitic and Bantu speaking populations, 

resulting in high levels of gene flow, adoption of agro-pastoralism, and population growth. 

We also observed decreases in effective population size in the Fulani (consistent with a study 

based on mtDNA markers99) and Herero. German colonial soldiers nearly exterminated the 

Herero people of Namibia in the past 100 years, which likely explains the bottleneck in that 

population.

We identified loci that may play a role in phenotypic and physiological adaptation to 

diverse environments, diets, and pathogens across African populations. Some of these loci 

may affect disease susceptibility in current populations living in more urban environments. 

Combining in silico and in vitro data, we show that one of the Di-SNPs, rs77665059, may 

play a role in light skin color of the San by regulating expression of PDPK1, which could 

be adaptive in this population living relatively far from the equator. With ongoing deep 
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phenotyping of global populations based on multiple “-omics” data and the advances of in 
vitro and in vivo technologies, we expect the functions of adaptive variants in more human 

populations will be characterized in the future.21 The identification of genetic variants that 

differ in frequency in ethnically diverse populations is a complementary approach to GWAS 

for identifying functionally important variation, particularly in cases where that variation is 

strongly correlated with ancestry and where GWAS may have limited power due to small 

sample sizes and/or variants that are close to fixation in particular populations.

Limitations of the study

There are still some ambiguities in our inferences of African demographic history because 

we can only model simple demographic histories whereas the real demographic histories are 

likely to be much more complex. Additionally, given 15 samples per population, we may be 

underpowered to detect all loci that are under selection. Moreover, we may be missing some 

rare, but functionally important SNPs as well as SNPs that may be specific to populations 

from regions not well represented in the current study such as western and northern 

Africa. To deepen our understanding of complex evolutionary history of Africans, we must 

develop more efficient computational methods, include more indigenous populations and 

ancient samples at broad geographic and temporal scales, and integrate genomic data with 

paleobiological, archeological and linguistic data. Additional genomic data modalities, such 

as long read sequencing to uncover structural variants, may illuminate additional forms of 

genetic variation beyond SNPs and small insertions and deletions.

STAR+METHODS

Resource availability

Lead contact—Further information and requests for resources and information should 

be directed to and will be fulfilled by the Lead Contact, Dr. Sarah A. Tishkoff 

(tishkoff@pennmedicine.upenn.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability—The SNP data are publicly available through the dbGAP 

database (accession number: phs003096.v1.p1). Links to the software and algorithms in the 

present study were listed in the key resources table.

Experiment model and subject details—Before sample collection, permits were 

received from the Ministry of Health and National Committee of Ethics in Cameroon, 

COSTECH, NIMR in Dar es Salaam, Tanzania, the University of Addis Ababa and the 

Federal Democratic Republic of Ethiopia Ministry of Science and Technology National 

Health Research Ethics Review Committee; the University of Botswana and the Ministry 

of Health in Gaborone, Botswana. We obtained Informed consent from all research 

participants. In addition, appropriate IRB approval was obtained from the University of 

Pennsylvania. We merged the Baka and Bagyeli into one population, RHG. All the samples 

were males and > 18 years old.
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Method details

DNA Sequencing—We conducted whole genome sequencing of 180 individuals (fifteen 

unrelated samples per population) at high coverage (on average >30X) using Illumina 

HiSeq X Ten platform. All samples were processed using the same PCR-free library 

preparation and the same sequencing protocol, which reduces the potential for PCR bias 

and also minimizes artifactual differences caused by sample preparation. The samples were 

sequenced using paired-end sequencing with 150 bp at each end and a 350 bp insertion size.

Curation of Sequencing Data and short variant calling—We trimmed the 

sequencing adapters using trimadap (https://github.com/lh3/trimadap) and masked optical 

duplicate reads using SAMBLASTER119 (version 0.1.22). The reads were mapped to the 

decoy version of the human reference genome (hs37d5) with bwa mem mode (version 

0.7.10).116 SAMtools version 1.4130 was used to sort and index the mapping results. We 

also filtered out the reads with mapping quality < 20 using SAMtools. We conducted 

variant calling using Haplotypecaller module in GATK Toolkit (version nightly-2016–09-26-

gfade77f)117 following the best practice guidance of germline short variant discovery. In 

addition, we used a prior of (0.4995, 0.001, 0.4995) for the homozygous to reference, 

heterozygote, and homozygous non-reference allele were used in the Bayesian SNP calling 

step to generate reference-bias free genotypes following the recommendations of the Simons 

Genome Diversity Project (SGDP).105 The sample-level variant calling results were stored 

in intermediate files with genomic variant calling format (gVCF) that contain a record 

for every position of the examined regions in the genome. We then merged the sample-

level gVCF files using CombineGVCFs module. We performed joint genotyping using 

GenotypeGVCFs module, which generated one quality score for each variant site based on 

the inferred genotype likelihood across all the samples. We filtered the variants using a 

two-fold filtering strategy. First, SNPs from the 1000 Genomes project Phase 3104, Illumina 

Omini 5M SNP array52, and the HapMap project were used as the truth data in the GATK 

variant quality score recalibration (VQSR) step. For the INDEL VQSR, we used the curated 

genotypes from Mills et al131 as the training dataset. We obtained 33,360,065 SNPs and 

2,762,633 Indels after VQSR. Second, we further excluded the variants (28 SNPs and 

0 InDels) that locate in the potentially duplicated regions identified by Delly (version 

0.7.6)120, and are in the low complexity regions of the human reference genome (921,130 

SNPs and 0 InDels).132 Finally, we obtained 35,201,568 variants, consisting of 32,438,935 

SNPs and 2,762,633 InDels. We note that no variant violates HWE (p-value <1E-6) when 

calculating HWE for each population using Plink.133

SNP annotation—We used ANNOVAR version 2018–04-16 to annotate the bi-allelic 

SNPs. The novel SNPs are identified based on the comparisons to the variants in dbSNP100 

(version 155) and gnomAD (version 2.1) databases.101 The functional impacts of the SNPs 

in the coding regions were predicted based on RefSeq annotation of hg19.134 We intersected 

the SNPs in our dataset with the annotations of transcription factor binding sites (TFBS) 

and predicted chromatin state segmentations of GM12878 generated by the ENCODE 

project102. We also intersected our SNPs with the variants in the ClinVar database (as of 

2021–05-01).135 We reported the variants that were only labelled as “Pathogenic” or “Likely 

Pathogenic” in the Clinvar database.

Fan et al. Page 16

Cell. Author manuscript; available in PMC 2024 March 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/lh3/trimadap


Merging with the SGDP data—We first removed SNPs in linkage disequilibrium (LD) 

using Plink version v1.90b3j133 with parameters --indep-pairwise 50 10 0.1. The pruned 

data were recruited as query to extract the genotype information of 251 and 93 non-African 

and African samples, respectively, from the Simons Genome Diversity Project (SGDP)21,105 

using cTools (https://github.com/DReichLab/cTools). We used VCFtools129 version 0.1.17 

to merge the variants in our and SGDP datasets. A total of 12,443,243 SNPs were used in 

the ADMIXTURE and principal components analysis (PCA).

Quantification and statistical analysis

ADMIXTURE and PCA—The merged data were used as input for ADMIXTURE version 

1.3.0.118 The number of ancestral groups (K) was set from 2 to 16. We conducted 10 runs 

at each K value using the default parameters to avoid local optima and merged the results 

of the 10 runs at each K value using CLUMPP version 1.1.2.121 We performed PCA of our 

dataset with the global samples of the SGDP using smartpca in the EIGENSOFT toolkit 

version 6.0.1.114,115

Incorporation of ancient African DNA samples—We repeated the PCA incorporating 

genotypes from 55 ancient African samples from four studies.34,93,97,98 The genotype 

information of Prendergast et al were obtained from the authors directly. For the other 

three studies, we downloaded the bam files and conducted SNP calling using apulldown.py 

(https://github.com/mathii/gdc3/blob/master/apulldown.py), which conducts haploid calling 

for ancient samples. 345,065 transversion SNPs from the ancient samples were merged 

with our dataset. Using the lsq mode in smartpca114, we projected the ancient samples to 

present-day populations.

Phylogenetic relationship inference—We first extracted the orthologous base pairs in 

the chimpanzee genome from the alignment of human and chimpanzee genomes generated 

by the Ensembl database. 136 Using chimpanzee as outgroup, we inferred the phylogenetic 

relationship of African and non-African populations with the neighbor-joining method in 

MEGA version 11.122 We evaluated the robustness of the phylogeny using 100 bootstraps. 

We used Figtree version 1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/) to visualize the 

results from MEGA.

Effective population size and divergence time inference—We estimated effective 

population sizes using the pairwise sequentially Markovian coalescent (PSMC) version 

0.6.4-r49 with default parameters.109 Since the PSMC model is only capable of inferring the 

effective population size > 60 kya109, we also used the SMC++ model version 1.11.1 with 

default parameters110 to infer the recent effective population sizes of African populations. To 

convert from generations to years, we assumed a generation time of 29 years and 1.25×10−8 

mutations per site per year.

D-statistic analysis of the relationship of African and non-African populations
—We used D statistics to identify the potential out-of-Africa source population(s) and waves 

of admixture between African and non-Africans using D-statistics. D-statistics measure 

excess allele sharing between populations and are computed for a set of four populations. 
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For populations 1, 2, 3, and 4 D(1, 2; 3, 4) is computed as (p(ABBA) - p(BABA))/(p(ABBA) 

+ p(BABA)) where p(ABBA) represents the probability that for a randomly chosen biallelic 

site a randomly chosen individual from population 1 and a randomly chose individual from 

population 4 have the same allele (which we call A) while a randomly chosen individual 

chosen from population 2 and a randomly chosen individual from population 3 have the 

other allele (which we call B). Similarly, p(BABA) represents the probability that for a 

randomly chosen biallelic site randomly chosen individuals from populations 1 and 3 have 

the same allele (B) and randomly chosen individuals from populations 2 and 4 have the same 

allele (A). If the four populations are related by an unrooted tree such that populations 1 

and 2 are sister taxa and populations 3 and 4 are sister taxa, then both ABBA and BABA 

sites are discordant with the tree. That is, the individuals that share alleles are not from 

sister taxa, and hence the mutation must have either arisen independently in two different 

populations or have occurred in the population ancestral to all four populations. Since both 

ABBA and BABA sites are discordant, they should be approximately equally likely, and so 

D(1, 2; 3, 4) is approximately zero. In the case that populations 1 and 2 are not sister taxa, 

then population 1 must either be more closely related to population 3 than population 4, in 

which case p(BABA) will be larger than p(ABBA), or vice-versa, in which case p(ABBA) 

will be larger than p(BABA). In either case, D(1, 2; 3, 4) will differ significantly from 

zero. Therefore, we can interpret D-statistics that are close to zero as being consistent with 

populations 1 and 2 being sister taxa and populations 3 and 3 being sister taxa. We merged 

our dataset with the SGDP data21,105 and restricted our analyses to biallelic SNPs. All 

D-statistics106 were computed using admixtools2 version 2.0.0 (https://uqrmaie1.github.io/

admixtools/index.html), using the commands “extract_f2” with the options “minmaf=0.05” 

and “maxmiss=0.01” to precompute f2 statistics and using the “qpdstat” command to 

compute D-statistics. To obtain genetic distances between markers, we used the pyrho YRI 

recombination map, which was inferred to be a population-specific recombination map for 

the Yoruba in Ibadan Nigeria (YRI) as a proxy for the recombination rates in the present 

samples.137

Demographic inference based on momi—We performed two main types of analyses 

in momi.107,108 In one set of analyses, we considered “generic” models and fit these models 

to many sets of populations. These analyses used all 15 individuals from each population. 

We considered four different generic models (Figure S7).

Model 1 has two populations that start as a single population, and then population 2 splits 

from population 1 at an inferred divergence time. The ancestral population has some size, 

that changes 100kya to the present-day size of population 1 and population 2 has a constant 

size from the time of divergence onward. The divergence time and the three populations 

sizes are all inferred from the data.

Model 2 is identical to Model 1 in the recent past but at some time pre-dating the split of 

the two present-day populations, an unsampled “ghost” population splits from the ancestral 

population and at some point after this split but prior to the divergence of the two modern 

populations there is a pulse of gene flow from the ghost population into the population 

ancestral to the two modern populations. In this model, we infer all of the same parameters 

as in the first model but, additionally, the divergence time of the ghost population, the size 
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of the ghost population, and the timing and amount of pulse admixture from the ghost 

population into the ancestral population. Both Model 1 and Model 2 were fit using each 

possible pair of populations as the first and second population.

Model 3 was designed to account for pervasive gene flow between RHG and Tikari when 

computing divergence times between RHG and other populations. In this model, RHG and 

population 1 each diverge from an ancestral population at their own inferred divergence time 

and having their own population sizes after divergence. At an inferred time there is a pulse 

admixture of an inferred strength from the Tikari into RHG. The ancestral population has 

some size, which changes to the present-day size of the Tikari 100kya. In this model we 

infer the two divergence times, the four population sizes (three present day, one ancient), and 

the timing and strength of the pulse admixture event.

Model 4 is identical to Model 3 but with a ghost population added in the same way as going 

from Model 1 to Model 2. Models 3 and 4 were fit by including each non-Tikari, non-RHG 

population with Tikari and RHG populations.

In another set of analyses, we fit more complex models to specific sets of populations. 

Due to the complexity of these models, these were fit using only two arbitrarily chosen 

individuals per population. These models were initially based on qpgraph results or known 

historical events (e.g., the Bantu expansion). Using goodness-of-fit criteria from momi (f2 

and identity-by-state) additional admixture events, population size changes, or unsampled 

populations were added to the model. To investigate the deepest splits between populations, 

we considered models with Ju|’hoansi, RHG, Tikari, and Hadza and explored models where 

either RHG was the outgroup, Ju|’hoansi was the outgroup, or RHG and Ju|’hoansi were 

sister groups. Keeping this aspect of the tree topology fixed, we tried several different 

demographic models by adding admixture events to try to find a sensible model with that 

topology that produced a good likelihood and also had good goodness-of-fit.

In all cases, models were initialized randomly several times and re-optimized to avoid 

getting stuck in local optima. Both sets of analyses determined the derived allele based 

on the ancestral alleles provided by the 1000 Genomes Project104, although results were 

qualitatively similar when using the “folded” frequency spectrum obtained using the momi 

function “fold()”.

Demographic inference using qpgraph—We used the f2 statistics computed using 

admixtools2 (https://uqrmaie1.github.io/admixtools/articles/admixtools.html) as above (Out-

of-Africa Source Population) as the input to qpgraph as implemented in admixtools2. In 

particular, we used the “find_graphs” function in admixtools2. This performs an automated 

search similar to simulated annealing to find the best fitting admixture graph with a given 

number of admixture events, but can get stuck in local optima. To this end, we ran 

“find_graphs” 20 times per number of admixture events and stored the best fitting graph. We 

used the parameters “stop_gen=1000” and “numgraphs=25”, which determine the extent of 

the search for the optimal graph. For the graph with no admixture events, we initialized each 

search randomly. For graphs with one or more admixture graphs we initialized the search at 
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the best graph we found with one fewer admixture event. In all qpgraph analyses we used 

chimpanzee as an outgroup.

DATES analysis—The Fulani show clear signatures of being admixed with some ancestry 

similar to the Amhara and some ancestry similar to the Tikari. To date the timing of 

this admixture, we used the software DATES124. DATES uses the covariance of ancestry 

as a function of genetic distance between markers to estimate a time of admixture. We 

obtained the genetic distances between markers as described above in “Out-of-Africa Source 

Population”. We ran DATES version 753 using the parameters “binsize: 0.001”, “maxdis: 

1.0”, “qbin: 10”, “afffit: yes”, and “lovalfit: 0.45”.

Divergence time estimates based on MSMC—The SNPs in our dataset were phased 

with SHAPEIT version 2.r837138 using the haplotypes of African populations in the 1000 

Genomes Project phase 3104 as the reference panel (with parameters --no-mcmc, --input-ref, 

--include-grp AFR, -- effective-size 17469, -window 0.5). The heterozygous sites that were 

not reported in the 1000 Genomes Project were kept as unphased. We used a mutation rate 

2 μ =2.5 × 10−8 mutations per nucleotide per generation and generation time g = 29 years in 

the MSMC analysis.

Identification of signatures of positive selection—We employed the di statistic139 to 

identify signals of positive selection in different populations. di statistics normalizes the Fst 

values between populations and identifies the most differential variants in each population.

di = ∑j ≠ i Fst i, j − E Fst i, j /sd Fst i, j

where Fst (i,j) is the Fst value of an SNP site between populations, E[Fst(i, j)] and sd[Fst(i, 
j)] is the average and standard deviation of Fst value between populations. Here, we defined 

outliers falling in the 99.9th percentile of the empirical distribution of Di values as Di-SNPs. 

We functionally annotated the outlier SNPs using the Genomic Regions Enrichment of 

Annotations Tool (GREAT) version 3.0.111 We first run di using all 15 populations. Due to 

the recent divergence between Ju|’hoansi and !Xoo, we also performed di analysis using the 

merged Ju|’hoansi and !Xoo as a single group against other populations.

We also used integrated haplotype score (iHS) statistics140 to detect recent hard selection 

sweeps. The SNPs were phased with Shapeit4126 version 4.1.3 using the haplotypes of the 

1000 Genomes project104 as a reference panel. We calculated iHS for every SNP with minor 

allele frequency > 5% within each population using selscan version 2.0.0127 with default 

parameters. The unstandardized integrated haplotype scores were normalized in frequency 

bins across the genome using norm module in selscan. We partitioned the genome to 100 

kb non-overlapping windows. The top 1% of windows with the highest fraction of extreme 

integrated haplotype scores were defined as outliers.140 Using the genes located in the 

outlier windows in each population as query, we conducted GO enrichment tests using 

DAVID, an online functional annotation tool.128 We reported the GO ontologies with an 

FDR adjusted P-value <0.05.
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Functional analyses of rs77665059 at the PDPK1 locus

Cell culture—MNT-1 cells (ATCC, #CRL-3450), were obtained from Dr. Michael S. 

Marks at Children’s Hospital of Philadelphia Research Institute, were grown in DMEM 

(Gibco, #11965084) supplemented with 20% Fetal Bovine Serum (FBS), 1% GlutaMAX 

(Gibco, #35050061), 1% NEAA (Gibco, #10370021),1% penicillin/streptomycin (Gibco, 

#15140122), and 10% AIM-V (Gibco, # 12055–091). Cells were transfected using 

Lipofectamine 3000 Transfection Reagent (Invitrogen, #L3000150).

WM88, melanocytic patient-derived melanoma tumor cell line, was obtained from Dr. 

Ashani Weeraratna at Wistar institute, Philadelphia, PA, were cultured in Tumor Specialized 

medium (80% MCDB153, 20% Leibovitz’s L-15, supplemented with 2% fetal bovine serum 

(FBS) and 1.68 mM CaCl2) at 37°C with 5% CO2 in a humidified incubator.

Luciferase reporter assay—The MNT-1 and WM88 cell lines were used for luciferase 

reporter assays. The cells were plated in 24-well plates at 0.1M per well, and 500 ng 

firefly luciferase plasmid, 20 ng pRL Renilla luciferase plasmid (Promega, # E2231) and 

1.5 µL Lipofectamine 3000 (Invitrogen, #L3000150) were added to each well. 36 hours 

post transfection, luciferase activity was determined using the Dual-Luciferase Assay kit 

(Promega, # E1910) according to manufacturer instructions. The luminescence signal was 

detected in a white 96-well plate using SpectraMax i3x Multi-Mode Microplate Reader. The 

reporter gene activity of firefly luciferase was normalized to that of Renilla luciferase to 

determine the activity of functional elements.

Plasmid cloning—For the luciferase assay, human enhancer elements were cloned 

using genomic DNA extracted from MNT-1 cells. The amplified enhancer fragments were 

sequenced and ligated to PGL4.23 vector (Promega, #E8411) using Gibson assembly (NEB, 

#E2621). Candidate functional SNPs were introduced by mutated primers.

For CRISPR inhibition experiments, sgRNAs were designed using IDT (https://

www.idtdna.com/site/order/designtool/index/CRISPR_CUSTOM) or CRISPOR (http://

crispor.tefor.net/) and cloned into a pLKO5.sgRNA.EFS.GFP (Addgene, #57822) vector 

using FastDigest BsmBI (Fermentas) following the protocol (https://media.addgene.org/data/

plasmids/52/52961/52961-attachment_B3xTwla0bkYD.pdf).

CRISPR mediated inhibition—To perform enhancer CRISPR inhibition, we first 

constructed MNT-1 cells stably expressing dCas9-KRAB-MeCP2 (Addgene, #110821). 

We produced dCas9-KRAB-MeCP2 (CRISPRi) lentiviruses following the published 

protocol141. Then, MNT-1 cells were infected with each virus with 8 µg/mL Polybrene 

(Sigma CatNo.H9268). For CRISPR inhibition of the enhancer, we cultured MNT-1-dCas9-

KRAB-Mecp2 cells in 24-well plates at a density of 0.05M per well and cultured for 24h. 

We changed to fresh medium with 8 µg/mL Polybrene (MNT-1 cells) before infection. 

We added PLKO5-sgRNA (target to enhancer) virus at ~10 MOI, centrifuged at 1000g 

for 30min at 32 °C. 24hrs post infection, we replaced the medium using medium with 

Blasticidin (5 µg/mL), and changed the medium every 24hrs. 5 days after infection, we 

harvested the cells for total RNA extraction or melanin assay.
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RT-qPCR—Total RNA was purified from all the cultured cells (CRISPR KO, CRISPR 

inhibition, Overexpression) using Direct-zol RNA Miniprep Kits (Zymo, R2052) following 

manufacturer’s instruction, and concentration was determined by a Nanodrop.

For RT-qPCR, 200–500 ng RNA was used for reverse transcription using M-MLV Reverse 

Transcriptase (Promega, # M1701) and Random Primer Mix (NEB, S1330). qPCR was 

conducted using Luna Universal qPCR Master Mix (NEB, M3003) on a QuantStudio 6 Flex 

Real-Time PCR machine.

Melanin Assay—MNT-1 cells were washed with PBS twice and detached by 0.25% 

trypsin. The cells were pelleted at 300g for 3 mins and supernatant was remove gently. The 

cell pellet was washed once with PBS and lysed in 200μL lysis buffer (50 mM Tris-HCl, 

pH 7.4, 2 mM EDTA, 150 mM NaCl, 1 mM dithiothreitol) per million cells and vortexed 3 

times, every 5 minutes. We centrifuged the lysate at 12,000g, 10 min, 4°C. We used 50 μL 

supernatant for protein quantification (BCA assay, Thermo Scientific, #23225). Then, 150 

μL 2X Protease Lysis buffer (20mM Tris (pH 8), 200mM NaCl, 50mM EDTA, 1% SDS, 0.5 

mg/mL protease K) was added to the 150 uL cell lysate to digest the pellet. We rotated at 65 

°C for 5 hours and spun at 12,000g for 10 min at room temperature to collect melanin. We 

dissolved the melanin pellets in 0.45 mL 2M NaOH/20%DMSO and then incubated at 60°C 

for 30min with 850 rpm shaking. Once the melanin has fully dissolved (if not, we performed 

sonication for 5 mins), we vortexed to mix and read the absorbance at 450 nm. If necessary, 

we diluted the melanin with the buffer (2M NaOH/20%DMSO) so that the reading is less 

than 0.35.

Melanocyte epigenomic data—The chromatin accessibility data and ChIP-seq data 

of melanocytes or melanoma cells are collected from the Cistrome and ENCODE 

databases. The melanocyte data include DNase-Seq (Citrome: #41038), ATAC-Seq 

(Citrome: #79019), H3K27Ac ChIP-Seq (Citrome: #39849), H3K4Me1 ChIP-Seq 

(Citrome: #85888), H3K4Me3 ChIP-Seq (Citrome: #34310), MITF ChIP-Seq (Citrome: 

#42176). The melanoma (501-MEL) data include SOX10 ChIP-Seq (Citrome: #52549), 

MITF ChIP-Seq (Citrome: #52398), SMARCA4 ChIP-Seq (Citrome: #52555). The 

ENCODE cell line DNase data are from http://hgdownload.soe.ucsc.edu/gbdb/hg38/bbi/

wgEncodeRegDnase/SNP frequency plots were plotted using R packages ("ggplot2", 

"ggrepel", "ggspatial", "sf", "scatterpie","tidyverse","data.table") in R version 4.1.1.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

Whole genome sequencing of 180 Africans identifies millions of unreported variants

Complex African demographic history with ancient structure, admixture, and 

introgression

Southern and Central African hunter-gatherers share a unique ancient common ancestry

Signatures of local adaptation for skin color, immune response, height, and metabolism
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Figure 1. Geographic locations of the samples and summary of the variants identified in this 
study.
A: Points are populations, with color indicating language classification.

B: Number of SNPs across populations compared to the human reference genome (hg19).

C: Genetic diversity in terms of heterozygosity across populations.

D: Number of unreported and known SNPs and their potentially functional impacts. Here, 

unreported SNPs were identified by comparison to dbSNP100 (version 155) and gnomAD101 

(version 2.1) databases. Annotations of regulatory elements were generated by the Encode 

project102 based on predicted chromatin state of lymphoblastoid cells from the “GM12878” 

sample as well as conserved transcription factor binding sites (TFBS). These annotations 

were downloaded from the UCSC genome browser website.103

E: Pattern of shared unreported SNPs in different populations.

F: Number of population-specific unreported SNPs in each population.

G: Number of unreported SNPs identified in populations in the same country.

Fan et al. Page 33

Cell. Author manuscript; available in PMC 2024 March 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



H: Number of unreported SNPs identified in populations in different countries. “All” 

corresponds to SNPs that were shared by all 12 populations. RHG: rainforest hunter-

gatherers.
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Figure 2. A neighbor-joining phylogeny of African and representative global individuals based 
on whole genome sequence data.
Numbers at each node indicate bootstrap values based on 100 bootstraps. CEU: Northern 

Europeans from Utah. TSI: Toscani in Italia. CHB: Han Chinese in Beijing, China are from 

the 1000 Genomes Project.104 Papuan samples were sequenced by the SGDP.105
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Figure 3. Population structural analyses based on principal component analysis (PCA) and 
ADMIXTURE.
A-C: PCA of modern human populations from the present study with the SGDP.105

D: Projection of ancient samples from previous studies34,93,97,98 onto PCs 1 and 2. Points 

are individuals and colors indicate language classification (purple Afroasiatic, brown Nilo-

Saharan, red Niger-Congo, and yellow Khoesan).

E: ADMIXTURE result for K=16. Bars are individuals and colors indicate ancestry 

proportions.
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Figure 4. Demographic history of African populations modeled by qpgraph and momi.
A: Demographic history without admixture inferred by qpgraph.106

B: Demographic history with 10 admixture events inferred by qpgraph.106 Percentages on 

the dashed lines show ancestry proportions from the two source populations. Numbers on 

solid lines are inferred drift lengths. The percentages of archaic ancestries are boxed and 

highlighted in grey.

C: Divergence times and gene flow inferred by momi.107,108 Modeling San and RHG as a 

sister clade consistently had the highest likelihood compared to other topologies.

D: Summarization of the results of demographic analyses. Blue bars show inferred gene 

flow among modern human populations. OOA: out of Africa populations. Ghost: inferred 

introgression from a ghost population. We observe evidence of introgression from a deeply 

diverged population into the ancestor of all modern human populations. In addition, the 

Bantu-speaking and RHG populations show some ancestry that is very old, possibly 

reflecting subsequent introgression with a deeply diverged population.
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Figure 5. Inferred effective population sizes
A: the results of PSMC.109 B: the results from SMC++110, plotting effective population size 

against time, assuming a per-nucleotide, per-generation mutation rate of 1.25 × 10−8 and 

generation time of 29 years.
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Figure 6. Representative phenotypic and physiological traits shaped by positive selection due to 
local adaptation in African populations.
We identified signatures of positive selection in different populations using the di statistic. 

Representative traits and genes were selected based on functional annotation of outlier SNPs 

in different populations using GREAT.111
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Figure 7. rs77665059 affects the enhancer activity of PDPK1 and may contribute to light skin 
color of the San.
(A) rs77665059 overlaps a melanocyte-specific open chromatin region in the intron of 

PDPK1.

(B) Allele frequency of rs77665059 in 12 African populations. C is the ancestral allele, 

highlighted in green.

(C)Luciferase reporter assay of rs77665059 in MNT-1 and WM88 melanoma cells. N=10–

12.

(D) rs77665059 is an eQTL of PDPK1 in cultured fibroblast cells. Data from GTEx.

(E) CRISPRi of the enhancer inhibits PDPK1 gene expression.

(F) CRISPRi of the PDPK1 enhancer decreases the melanin level in MNT-1 cells.

(G)Melanin index for different genotypes of rs77665059 in the San. One-way ANOVA with 

pos hoc tests were used in C, E, and F. **** indicates p < 0.0001, *** indicates p < 0.001.
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Key resources table

REAGENT or RESOURCE SOURCES IDENTIFIER

Biological Samples

Whole blood samples N/A

Critical Commercial Sequencing platform

HiSeq X Ten Illumina

Deposited Data

Whole genome sequencing data dbGaP

Software and Algorithms

Plink 112 https://www.cog-genomics.org/plink/2.0/

Annovar 113 https://annovar.openbioinformatics.org/en/latest/

Eigensoft 114,115 https://github.com/DReichLab/EIG

Figtree http://tree.bio.ed.ac.uk/software/figtree/

ADMIXTOOLS2 https://uqrmaie1.github.io/admixtools/index.html

BWA 116 https://github.com/lh3/bwa

GATK 117 https://gatk.broadinstitute.org/

ADMIXTURE 118 http://software.genetics.ucla.edu/admixture/

trimadap https://github.com/lh3/trimadap

SAMBLASTER 119 https://github.com/GregoryFaust/samblaster

Delly 120 https://github.com/dellytools/delly

CLUMPP 121 https://web.stanford.edu/group/rosenberglab/clumpp.html

MEGA 122 https://www.megasoftware.net/

PSMC 109 https://github.com/lh3/psmc

MSMC 123 https://github.com/stschiff/msmc

SMC++ 110 https://github.com/popgenmethods/smcpp

GREAT 111 http://great.stanford.edu/public/html/

momi 107,108 https://github.com/popgenmethods/momi

qpgraph 106 https://uqrmaie1.github.io/admixtools/articles/admixtools.html

cTools 105 https://github.com/DReichLab/cTools

DATES 124 https://github.com/priyamoorjani/DATES

TreeMix 125 https://bitbucket.org/nygcresearch/treemix/wiki/Home

SHAPEIT4 126 https://odelaneau.github.io/shapeit4/

Selscan 127 https://github.com/szpiech/selscan

DAVID 128 https://david.ncifcrf.gov/tools.jsp
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REAGENT or RESOURCE SOURCES IDENTIFIER

VCFtools 129 https://vcftools.github.io/man_latest.html
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