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Abstract

Spatio-temporal models can be used to analyze data collected at various spatial locations 

throughout multiple time points. However, even with a finite number of spatial locations, there 

may be a lack of resources to collect data from every spatial location at every time point. We 

develop a spatio-temporal finite-population block kriging (ST-FPBK) method to predict a quantity 

of interest, such as a mean or total, across a finite number of spatial locations. This ST-FPBK 

predictor incorporates an appropriate variance reduction for sampling from a finite population. 

Through an application to moose surveys in the east-central region of Alaska, we show that the 

predictor has a substantially smaller standard error compared to a predictor from the purely spatial 

model that is currently used to analyze moose surveys in the region. We also show how the model 

can be used to forecast a prediction for abundance in a time point for which spatial locations have 

not yet been surveyed. A separate simulation study shows that the spatio-temporal predictor is 

unbiased and that prediction intervals from the ST-FPBK predictor attain appropriate coverage. 

For ecological monitoring surveys completed with some regularity through time, use of ST-FPBK 

could improve precision. We also give an R package that ecologists and resource managers could 

use to incorporate data from past surveys in predicting a quantity from a current survey.
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1 Introduction

1.1 Background

Spatio-temporal data are indexed by both a spatial index, which we will refer to as a “site,” 

and by a temporal index, which we will refer to as a “time point.” Common examples of 

spatio-temporal data include infections from a disease in a country or region collected over 

a time period (e.g. Martínez-Beneito, López-Quilez, and Botella-Rocamora 2008; Sahu and 

Böhning 2022) or climate variables that are recorded through time at multiple locations 

(Lemos and Sansó 2009).

Models for spatio-temporal data have applications in a wide variety of scientific fields (see 

Wikle, Zammit-Mangion, and Cressie 2019 for many examples), and these models also have 

various ways to model covariance. A few common formulations include the product model, 

the sum model, and the product-sum model. If we consider Cov hs, ℎt  to be the covariance 

between two data points with spatial separation hs and temporal separation ℎt, then a product 

model for this covariance (also known as a “separable” model) is Covs hs Covt ℎt , where 

Covs hs  only depends on the spatial separation and Covt ℎt  only depends on the temporal 

separation (Posa 1993). On the other hand, a sum model for Cov hs, ℎt  adds together the 

spatial and temporal covariance as Covs hs + Covt ℎt  (Rouhani and Hall 1989). A product-

sum model for combines the product model and the sum model:

Cov hs, ℎt = w1Covs hs Covt ℎt + w2Covs hs + w3Covt ℎt , (1)

where w1, w2, and w3 are non-negative weights (De Cesare, Myers, and Posa 2001; S. De 

Iaco, Myers, and Posa 2002). In general, the product-sum model is more flexible than the 

product model and the sum model. Stein (2005) examine some properties of these models, 

among others, while Chen, Genton, and Sun (2021) provide a review for general modeling 

of spatio-temporal data.

One application of spatio-temporal modeling is ecological monitoring of a particular 

resource, such as animal or plant abundance, rainfall, concentration of a compound in soil 

samples, etc. A common goal of ecological monitoring is to predict the total abundance of 

a resource at the most recent time point using data collected in a subset of the region of 

interest at the most recent time point and in past time points. Often, the region of interest 

is divided into a finite number of areal sampling units and data is collected on a subset of 

these areal sampling units, leaving the remaining units unsampled. We refer to the goal of 

predicting abundance in the most recent time point as spatio-temporal abundance prediction.

Conn et al. (2015) offer a review of methods and issues with spatio-temporal abundance 

prediction, comparing Bayesian formulations of a few different hierarchical models. 

Bayesian hierarchical models have been used for spatio-temporal abundance prediction 

by Ver Hoef and Jansen (2007) for Harbor seals in Alaska, Sauer and Link (2011) for 

birds in North America, Davy, Squires, and Zimmerling (2021) for bats in Canada, Adde 

et al. (2020) for waterfowl in Canada, and Schmidt et al. (2022) for moose in Alaska. 

While a Bayesian hierarchical model allows for a large amount of flexibility in the model 

formulation and are thus powerful tools for statistical inference, Conn et al. (2015) note 
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that “care must be taken to tailor models to match the study population and survey data 

available.” We discuss Bayesian hierarchical models for abundance prediction more in 

Section 5.

Spatio-temporal predictions can also be constructed in a frequentist framework. For 

example, Ross, Hooten, and Koons (2012) use Integrated Nested Laplace Approximation 

(INLA) to model spatio-temporal abundance data in a hierarchical framework while Breivik 

et al. (2021) use a Gaussian model to predict abundance of cod in the Barents Sea. While 

a prediction for the total abundance is fairly straightforward to obtain in the frequentist 

setting by making predictions for the response at each unobserved site and then summing 

the observed response values and the predictions, obtaining the prediction variance is more 

challenging. If the number of sites in the region of interest is finite, then the spatio-temporal 

abundance prediction variance should incorporate a finite population correction such that, 

if all spatial sites are sampled in the most recent time point, the prediction variance for the 

total abundance in the most recent time point is equal to 0.

Ver Hoef (2008) developed Finite Population Block Kriging (FPBK) to predict a linear 

function of the realized values of a response variable, such as the total abundance, for 

a survey at one particular time point, incorporating a finite population correction to the 

variance of the predictor. In this paper, we extend the approach of Ver Hoef (2008) to the 

spatio-temporal context, appropriately adjusting the finite population prediction variance 

correction and allowing for the covariance matrix of the response vector to include spatio-

temporal structure.

1.2 Motivating Example

To motivate the development of the predictor in Section 2, we consider moose surveys, 

which are performed annually or every other year in many regions of Alaska and western 

Canada. The most common goal of these surveys is to predict moose abundance, the total 

number of moose, in some finite region to inform harvest regulations (Kellie, Colson, and 

Reynolds 2019). The region of interest is divided into a finite number of areal polygons. 

Because of time and money constraints, only some polygons, or sites, in the region of 

interest are selected to be in the survey at a particular time point. Biologists fly to these 

selected sites, count the number of moose, and then use FPBK to find a prediction for 

the finite abundance for that year. Note that the interest is in predicting the realized total 

abundance so that, if there were enough resources to survey every site in a year, we would 

know the abundance in that year exactly. These surveys are historically analyzed with the 

“WinfoNet” site developed by DeLong (2006), which calculates the “GeoSpatial Population 

Estimator” (GSPE) for a given survey. The GSPE is an application of the FPBK predictor 

developed by Ver Hoef (2008).

Though many of these surveys are completed regularly, most are analyzed completely 

independently of surveys from previous years (e.g. Gasaway et al. 1986; Kellie and DeLong 

2006; Boertje et al. 2009; Peters et al. 2014). For example, a model for a survey conducted 

in the year 2019 constructs a prediction for total abundance only from counts on sites that 

were sampled in that year. However, using counts from previous years in a model that 

incorporates both spatial and temporal (spatio-temporal) correlation while also using a finite 
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population correction factor based on the proportion of sites surveyed in the most recent year 

could result in a prediction for the realized total that is more precise than predictions from a 

purely spatial model. Shortly, we describe such a predictor.

The rest of this paper is organized as follows. In Section 2, we couple spatio-temporal 

modeling with finite population prediction to develop the Best-Linear-Unbiased-Predictor 

(BLUP) and its prediction variance for any linear function of a general response variable, 

including the total abundance across all sites at a particular time point. We call this predictor 

the ST-FPBK (spatio-temporal Finite Population Block Kriging) predictor. In Section 3, we 

apply the ST-FPBK to a moose data set in the east-central region of Alaska. In Section 4, we 

conduct a simulation study to examine the properties of the ST-FPBK predictor and compare 

its performance to a predictor from a purely spatial model and a simple random sample 

design-based estimator. Finally, in Section 5. we offer additional thoughts on the application 

and simulation, and we give directions for future research.

2 Methods

We now give details on the development of the spatio-temporal model and subsequently 

use this model to extend the approach of Ver Hoef (2008), developing a finite population 

correction factor to give a Best-Linear-Unbiased-Predictor (BLUP) and its prediction 

variance for any linear function of the response vector.

2.1 Spatio-temporal Model

Let Y si, tj ,  i = 1,2, …, ns and j = 1,2, …, nt, be a random variable indexed by a spatial site and 

a time point, where the vector si contains the coordinates for the itℎ spatial site, ns is the 

number of unique sites, tj is the time index for the jtℎ time point, and nt is the number of 

unique time points. If each site is represented at every time point, a vector of the Y si, tj , 

denoted y, has length ns ⋅ nt ≡ N. Note that, the above formulation assumes that each site 

is observed at each time point. We choose to make this assumption here because doing so 

ensures cleaner notation throughout the model development; however, in subsection 2.2, we 

no longer assume that the response is recorded at every site-time point combination. Then, a 

spatio-temporal model for y is

y = Xβ + ϵ, (2)

where X is a design matrix for the fixed effects and β is a parameter vector of fixed effects. 

As in Dumelle et al. (2021), we can decompose the error vector ϵ into spatial, temporal, 

and spatio-temporal components, each of which will be explained in detail in the subsequent 

paragraphs:

ϵ = Zsδ + Zsγ + Ztτ + Ztη + ω + ν . (3)

In the spatial component of equation 3   Zsδ + Zsγ , the matrix Zs is an N × ns matrix of 

0’s and 1’s, where the values in a row corresponding to a data point at site si are 1 in the 

ith column and 0 in all other columns. δ is a random vector with mean 0 and covariance 
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cov δ = σδ
2Rs, where Rs is an ns × ns spatial correlation matrix and σδ

2 is called the spatial 

dependent error variance (or spatial partial sill). The random vector γ also has mean 0 but 

has covariance cov γ = σγ
2Is, where Is is the ns × ns identity matrix and σγ

2 is called the spatial 

independent error variance (or spatial nugget).

In the temporal component of equation 3 Ztτ + Ztη , Zt is an N × nt matrix of 0’s and 1’s, 

where the values in a row corresponding to a data point at time point tj are 1 in the jtℎ

column and 0 in all other columns. τ is a random vector with mean 0 and covariance 

cov τ = στ
2Rt, where Rt is an nt × nt temporal correlation matrix and στ

2 is called the temporal 

dependent error variance (or temporal partial sill). η is also a random vector with mean 0 but 

has covariance cov η = ση
2It, where It is the nt × nt identity matrix and ση

2 is called the temporal 

independent error variance (or temporal nugget).

In the spatio-temporal component of equation 3 ω + ν , ω is a random vector with mean 

0 and covariance cov ω = σω
2Rst, where Rst is an N × N spatio-temporal correlation matrix 

and σω
2 is sometimes called the spatio-temporal dependent error variance (or spatio-temporal 

partial sill). ν is also a random vector with mean 0 but has covariance cov ν = σν
2Ist, where 

Ist is the N × N identity matrix and σν
2 is sometimes called the spatio-temporal independent 

error variance (or spatio-temporal nugget).

Though there are a few types of models for the errors that can be built from equation 3 

by setting certain error variances to 0 (e.g. a sum-with-error model sets σω
2 = 0) and/or by 

allowing Rst to take certain forms (e.g. a separable model sets all covariance parameters 

equal to 0 except σω
2 and uses the structure for Rst given in equation 4 below), we focus only 

on the product-sum model (De Cesare, Myers, and Posa 2001; Sandra De Iaco, Myers, and 

Posa 2001). In a common formulation of the product-sum model, Rst is

Rst ≡ ZsRsZs
′ ⊙ ZtRtZt

′, (4)

where ⊙ is the Hadamard product operator. Note that, in order to save on the number of 

parameters, we will assume that the Rs and Rt that form Rst are the same as the Rs and Rt

associated with δ and τ, respectively, although this is not necessary in general. Rs can be 

parameterized in different ways, but one common assumption is to assume the covariance 

function generating Rs is second-order stationary (ie. the covariance between two data 

points is a function only of the separation vector between two sites) and isotropic (ie. the 

covariance is a function of the distance only and does not depend on the direction of the 

separation vector). For example, the exponential covariance function is defined as follows. 

For observations at sites i and i′ at ℎii′ distance apart, row i and column i′ of Rs is equal to

exp −ℎii′/ϕ , (5)

where exp x  is equivalent to ex and ϕ is a spatial range parameter controlling the decay rate 

of the covariance as distance between two sites increases (Cressie 2015).
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Similarly, one common assumption when parameterizing Rt is to assume the covariance 

function generating Rt is second-order stationary (ie. the covariance is a function only of the 

temporal distance). For example, the exponential covariance function is defined as follows. 

For observations at time points j and j′ at mjj′ units apart, row j and column j′ of Rt is equal 

to

exp −mjj′/ρ , (6)

where ρ is a temporal range parameter controlling the decay rate of the covariance as time 

units between two data points increases. Note that the exponential form of Rt is equivalent 

to an AR 1  time series model if the time points are equally spaced and the correlation 

parameter in the AR(1) series is greater than zero (Schabenberger and Gotway 2017).

The product-sum model for y si, tj  is then

y si, tj = Xβ + Zsδ + Zsγ + Ztτ + Ztη + ω + ν, (7)

where δ, γ, τ, η, ω, and ν are mutually independent, y si, tj  has mean Xβ, and y si, tj  has 

covariance

var y ≡ Σ = σδ
2ZsRsZs

′ + σγ
2ZsIsZs

′ + στ
2ZtRtZt

′ + ση
2ZtItZt

′ + σω
2Rst + σν

2Ist . (8)

There are a few reasons for why we choose to solely focus on the product-sum model. First, 

as long as Rs and Rt are positive definite and either σω
2 > 0 or σν

2 > 0, then the covariance 

matrix in equation 8 is also positive definite (De Cesare, Myers, and Posa 2001; Sandra De 

Iaco, Myers, and Posa 2001). Also, the product-sum model is flexible in its ability to model 

many kinds of spatial and temporal correlation (S. De Iaco, Palma, and Posa 2015; Dumelle 

et al. 2021). Xu and Shu (2015) claim that the product-sum model is the most widely used 

spatio-temporal model used in practical applications.

2.2 Finite Population Block Kriging

The model that we developed in the previous section in equation 7 is for the N-length vector 

y. However, often we do not have the resources to sample or observe every spatial site during 

every time point. Therefore, we may have an interest in prediction of the response values on 

sites that were not observed, particularly sites in the most recent time point. Throughout this 

section, let the subscript o denote data points that were “observed” or sampled, the subscript 

u denote data points that were “unobserved” or not sampled, and the subscript a denote “all” 

data points. Then, we can re-order the response vector y so that

y ≡ ya = yu
′ , yo

′ ′ . (9)

Our primary goal is to use the model developed for ya in equation 7 to find optimal weights 

q′ to apply to the observed realizations of yo such that q′yo is the Best Linear Unbiased 

Predictor (BLUP) for ba
′ ya, a linear function of ya. The N-length vector ba

′  is, for example, a 

Higham et al. Page 6

J Agric Biol Environ Stat. Author manuscript; available in PMC 2024 August 07.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



vector of 1’s, in which case we would be predicting the total response across all sites and all 

time points.

Unbiasedness implies that E q′yo = E ba
′ ya  for all β. So, denoting Xo as the no × p design 

matrix for the observed data points (where p is the number of fixed effects) and Xa as 

the design matrix for all data points, q′Xoβ = b  a
′ Xaβ for every β, implying that q′Xo = b  a

′ Xa. 

Kriging weights are then found by finding λo, an no × 1 column vector, where no is the number 

of observed data points, such that

E q′yo − ba
′ ya

2 − E λo
′yo − ba

′ ya
2

(10)

is greater than 0 for all q′. The prediction equations are

Σo, o Xo

Xo
′ 0

λ
m =

Σo, o Σo, u

Xo
′ Xu

′

bo

bu
, (11)

where m is a p-length column vector of the Lagrange multipliers due to the unbiasedness 

constraint and the subscripts o and u denote observed and unobserved data points. For 

example, Σo, o denotes the no × no submatrix of Σ (from equation 8) corresponding only to 

rows and columns of observed data points and Σu, o denotes the N − no × no submatrix of Σ
corresponding to rows of data points that were not observed and columns of data points that 

were observed. Solving the prediction equations, the optimal prediction weights that are both 

unbiased and have the smallest possible prediction variance compared to any other linear 

predictor are

λo
′ = bo

′ + bu
′ Σu, oΣo, o

−1 − Σu, oΣo, o
−1 XoWo

−1Xo
′Σo, o

−1 + Xu
′Wo

−1XoΣo, o
−1 , (12)

where Wo = Xo
′Σo, o

−1Xo. The BLUP for ba
′ ya is then

ba
′ ya = λo

′yo, (13)

which is equivalent to

bo
′ yo + bu

′ yu,

where ŷu = Σu, oΣo, o
−1 yo − μ̂o + μ̂u with μ̂o = Xoβ̂ and μ̂u = Xuβ̂ . β̂ is the generalized least squares 

estimator Xo
′Σo, o

−1Xo
−1Xo

′Σo, o
−1yo. We can see then that the predictor multiplies the observed 

data yo with relevant weights from the bo vector, and then adds in the kriged predictions ŷu

multiplied with relevant weights from the bu vector.

The prediction variance of the predictor in equation 13 is

E λo
′yo − ba

′ ya
2 = λo

′Σo, oλo − 2ba
′ Σa, oλo + ba

′ Σa, aba . (14)

We call the predictor in equation 13 with Σ in equation 8 the ST-FPBK predictor.
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A common predictor of interest is the total abundance in the most current time point of the 

survey. In this scenario, ba is a vector of 1’s and 0’s, where the kth element of ba is equal to 

1 if the kth element of ya is from the most recent time point of the survey and the ktℎ element 

of ba is equal to 0 otherwise. If we order ya by (1) the unobserved data points from past 

surveys, (2) the unobserved data points from the current survey, (3) the observed data points 

from past surveys, and (4) the observed data points from the current survey, then

ba = bup
′ , buc

′ , bop
′ , boc

′ ′ = 0′, 1′, 0′, 1′ ′, (15)

where the subscripts up, uc, op, and oc denote unobserved sites in past surveys, unobserved 

sites in the current survey, observed sites in past surveys, and observed sites in the current 

survey, respectively.

Though we are interested in predicting ba
′ ya in the development above so that we are 

predicting a single quantity of interest and obtaining a single prediction variance, we can 

also predict for multiple quantities of interest and obtain a prediction covariance matrix with 

B′ya, where B is an N × npred matrix and npred is the number of different quantities we wish 

to predict. One setting where such development is potentially useful is predicting the total 

abundance for each time point in the study, as is done in Section 3 in Figure 3.

2.3 Estimation

In practical applications, the covariance matrix Σ in equation 8 that is partitioned into the 

various sub-matrices in equations 13 and 14 needs to be estimated from the observed data 

yo. The spatio-temporal model in equation 7 does not have any distributional assumptions: 

we only need to specify the mean and variance of yo. Restricted Maximum Likelihood 

(REML) can be used to estimate the covariance parameters in Σ, which we will refer to as 

θ ≡ σδ
2, σγ

2, ϕ, στ
2, ση

2, ρ, σω
2, σν

2 ′ (Patterson and Thompson 1971; Harville 1977). Even if ya is not 

multivariate normal, the REML estimator for the parameter vector θ is still unbiased (Heyde 

1994; Cressie and Lahiri 1993).

However, REML estimation can be computationally burdensome, particularly for large 

spatio-temporal data sets with many observed sites and time points. To speed up estimation 

of θ, Dumelle et al. (2021) iteratively apply the Sherman-Morrison-Woodbury formula 

(Sherman and Morrison 1950; Woodbury 1950) on the Stegle eigendecomposition (Stegle 

et al. 2011) of Σ to more quickly obtain Σ−1 during the optimization process. When 

the response is not observed in at least one space-time point combination, Helmert-Wolf 

blocking (Wolf 1979) is also incorporated to retain computational efficiency during 

estimation. To give a rough idea of the computational efficiency gained, Dumelle et al. 

(2021) found that the computation time for a single matrix inversion for 13,000 data points 

was about 60 seconds with their methodology, compared to over 1000 seconds for an 

inversion computed with the standard Cholesky decomposition. We use these developments 

in the application, the simulations described in the next section, and the accompanying R 

package to speed up estimation of θ.
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3 Application

We now apply the ST-FPBK predictor to a moose data set described below. Moose surveys 

throughout Alaska and Canada are often conducted regularly, making them good candidates 

for incorporating temporal correlation.

3.1 Data Description

The Taylor Corridor in the east-central region of Alaska is a popular area for moose hunters. 

Within the Taylor Corridor, abundance surveys for moose are performed annually so that 

biologists can assess annual abundance and monitor the moose population size. In particular, 

surveys were conducted from 2014 through 2020 in every year except 2016, during which 

there was not sufficient snow cover to perform a survey. The spatial sampling frame for our 

study area consists of 381 sites. There are a total of 7 unique time points represented in the 

data, including the missing year of 2016. Therefore, N is 2667.

In each year of the survey, a team of biologists stratifies all of the spatial sites into a “High” 

stratum and a “Low” stratum based on wildlife biologist knowledge of moose density in 

the region and counts from previous surveys, which sites have land cover more suitable to 

moose habitat, and, in some years, stratification flights done on a portion of the region of 

interest prior to that year’s survey (Figure 1). The stratification scheme therefore can change 

from year to year, though the majority of spatial sites are classified into the same stratum in 

every year. Biologists then randomly select some of the 381 sites to survey, and subsequently 

select a few additional sites non-randomly in such a way that there are no large areas in 

the region of interest without a sampled site. The non-randomly selected sites are a small 

proportion of the overall sample size (about 10–15% of the sites are selected non-randomly), 

and these sites are not selected preferentially by the number of expected moose or observed 

moose counts in previous survey years. The operations manual by Kellie and DeLong (2006) 

provides more details about how sites are selected for a survey in a particular year. The total 

number of sites that were selected varies from a low of 76 in the year 2019 to a high of 

90 in the year 2020. Throughout the 7 unique years, some sites were sampled as many as 

five different times while others were never sampled at all. The number of units sampled 

throughout all survey years, n, was 487 units. Figure 1 and all remaining figure graphics are 

constructed with the ggplot2 R package (Wickham 2016).

The goal of the following analysis is to predict the total abundance of moose across all sites 

in the year 2020, the most recent year of the survey, using stratum as a covariate in the 

spatio-temporal model.

3.2 Model Fitting

We fit the product-sum covariance model defined in equation 7 using REML with stratum 

as a covariate in the design matrix. To select the spatial and temporal correlation structures, 

we examined the AIC values for each of the nine crossed combinations of the exponential, 

spherical, and gaussian spatial correlation structures (Cressie 2015) and the exponential, 

spherical, and gaussian temporal correlation structures to assess model fit. The combination 

with the lowest AIC was the “gaussian spatial - exponential temporal” model. However, in 
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this application, we opted to use the “exponential spatial - exponential temporal” model, 

with the exponential spatial correlation structure defined in equation 5 and the exponential 

temporal correlation structure defined in equation 6 so that the application correlation 

structure matches that of the simulations in 4 (which are easier to conceptualize when both 

the spatial and temporal correlations decay according to the same function). Additionally, 

the AIC value for this “exponential spatial - exponential temporal” model was within four 

points of the best model, indicating that the quality of the model fits are not too different 

anyway.

Table 1 gives the estimated parameters from the model fit with the exponential correlation 

structures.

To help interpret what some of these fitted covariance parameter estimates mean, we can 

construct a fitted covariance plot (Figure 2). As the spatial distance between two sites 

increases (dark colour to light colour), the covariance of two random errors decreases to 0, 

with the ϕ̂ parameter estimate controlling the rate of decay. In fact, the model estimates the 

covariance to be nearly 0 when the centroids of two sites are 20 or more kilometers apart, 

no matter what the temporal distance is. The covariance between two errors that are six 

years apart is still estimated to be positive if the two errors come from the same site or from 

adjacent sites.

The estimated vector of fixed effects, using “High” as the reference group, is 

β̂′ = β̂0, β̂1 = 9.62, − 4.55 . The standard error for β̂0 is 1.01 while the standard error for 

β̂1 is 0.93. Therefore, the overall mean for sites in the “High” stratum is estimated to be 9.62 

moose while the overall mean for sites in the “Low” stratum is estimated to be 5.07 moose.

3.3 Prediction

We now use the fitted spatio-temporal model with the BLUP from equation 13 and weights 

given in equation 15 to predict the total abundance across all sites in the year 2020, the most 

recent year of the survey. Plugging in estimates of the covariance parameters into equations 

13 and 14 and letting elements of ba be equal to 1 for data points in 2020 and equal to 0 

otherwise, we obtain a prediction of 3001 moose and a standard error (the square root of the 

prediction variance) of 217 moose. The prediction for the total and the prediction variance 

were fairly robust to other combinations of correlation functions to model the spatial and the 

temporal correlation, with the prediction never deviating from 3001 by more than 100 moose 

for any of the other 8 spatial and temporal correlation function combinations discussed at the 

beginning of Subsection 3.2.

A 90% normal-based prediction interval for the total abundance in 2020 (with the 

exponential spatial and temporal correlation) is (2644,3357) moose. Note that, though the 

response in this example is a count, a normal-based prediction interval for the total is still 

appropriate through an application of the central limit theorem for dependent data (Smith 

1980). Sitewise predictions for sites in 2020 are given in the map in Figure 1.

For comparison, we use the spatial sptotal package (Higham et al. 2021) to compute the 

spatial FPBK prediction (Ver Hoef 2008) for the total abundance of moose in the year 2020 
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with stratum as a covariate. Note that the widely used GSPE software for moose surveys 

allows for the strata to have different covariance parameters and does not treat stratum as 

a covariate (DeLong 2006). For the application of moose abundance prediction, analyzing 

each stratum individually often results in better precision. The separate-stratum analysis is 

discussed in more detail in the Supplementary Material in the Appendix.

We also use the stratified random sampling design-based estimator

∑
i = 1

2
Ni ⋅ yi

where y‾i is the sample mean for the observed data in 2020 in the ith stratum and Ni is the 

total number of sites in 2020 in the ith stratum. The stratified random sampling design-based 

estimator has a variance for the total abundance of

∑
i = 1

2
Ni

2 ⋅ 1 − ni
Ni

⋅ si
2

ni
,

where si
2 is the sample variance of the observed data points in 2020 in the itℎ stratum and ni is 

the number of observed data points in 2020 in the itℎ stratum. Both the purely spatial model 

fit with sptotal and the stratified random sampling design-based estimator use data only from 

2020. Note that the stratified random sampling estimator is not actually appropriate for this 

application because not all sites are randomly selected within each stratum. However, the 

number of sites that are not randomly selected is small, so we still include the stratified 

random sampling estimator for a baseline comparison estimator.

For the purely spatial model with stratum as a covariate, the prediction for the total number 

of moose in 2020 in the region is 2870 moose with a standard error of 319 moose. For 

the stratified random sampling design-based estimator, the estimated total number of moose 

in 2020 in the region is 2853 moose with a standard error of 371 moose. While the 

predictions for the total moose abundance are similar across the three methods, we see that 

the spatio-temporal model is most efficient SE = 217 moose compared to 319 moose for the 

purely spatial model that ignores previous surveys and 371 moose for the stratified random 

sampling design-based estimator that ignores both previous surveys and spatial correlation in 

the current survey).

In addition to making a prediction for the abundance in the most recent survey, we can 

also use the spatio-temporal model to backcast predictions for the abundance in past survey 

years, interpolate predictions for years during which a survey was not completed, and 

forecast predictions for future years. For example, in the Taylor Corridor surveys, there 

was no survey conducted in the year 2016 because of insufficient snow cover. Leveraging 

the temporal structure of the ST-FPBK predictor, we can still construct a prediction and 

corresponding standard error though, as expected, this standard error is larger than the 

standard errors of years where a survey was completed (Figure 3). Also, in Figure 3, we see 
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a forecasted prediction and corresponding standard error for the abundance in 2021. Again, 

the standard error associated with the forecasted prediction is larger than the standard errors 

for the years with completed surveys.

4 Simulation

4.1 Description

To evaluate performance of the ST-FPBK predictor, we conduct a simulation study. We 

simulate a response vector y of length N = 1000 on a 10 × 10 grid of 100 spatial sites on the 

unit square ([0,1] × [0,1]) and 10 equally-spaced time points in the interval [0,1], so that 

each spatial site has a response value at each time point. The random vector y is multivariate 

normal with mean 0 and product-sum covariance matrix Σ defined in equation 8 with the 

covariance parameters given in Table 2.

The three scenarios in the table correspond to (1) all-dev: a scenario where a substantial 

proportion of the overall variance comes from the spatial, temporal, and spatio-temporal 

dependent error variance parameters σδ
2, στ

2, and σω
2; (2) t-iev: a scenario where there the 

overall variance is dominated by the temporal independent error variance parameter, ση
2; 

and (3) spt-iev: a scenario where all of the variability comes from σν
2 so that errors are 

independent regardless of spatial and time indices. In all scenarios, summing all six variance 

parameters gives a total variance equal to two.

Both Rs and Rt are generated from the exponential correlation function with ϕ and ρ as the 

range parameters in equations 5 and 6. The values 0.471 and 0.3333 are chosen for ϕ and 

ρ, respectively, so that the effective ranges, 3ϕ and 3ρ, are equal to the maximum distance 

between two data points in space 2 = 1.414  and the maximum distance between two data 

points in time (1). A value of 0 for ϕ (or) sets the Rs (or the Rt) matrix to the identity matrix. 

Figure 4 shows the model covariance of the errors used to generate data for the “all-dev” 

scenario.

Each of these three scenarios is replicated for two different sample sizes: n = 250 and 

n = 500. A simple random sample is chosen from the 1000 total data points.

Finally, the simulation experiment is repeated for a continuous skewed response variable and 

for a skewed response variable of discrete counts. To create the continuous skewed response 

variable for the setting called “skewed,” a normally-distributed response is simulated 

according to the parameters given in Table 2, except that each of the variance parameters 

(not including ϕ and ρ) is divided by 2.89 so that the total variance is equal to 0.6931. 

This variable is then exponentiated so that the total variance after exponentiation is equal 

to 2. Note that, not only does exponentiation result in a right-skewed response variable, but 

exponentiating also allows for an assessment of how the ST-FPBK predictor performs when 

the covariance is mis-specified, as the resulting response variable is now simulated with an 

intractable covariance function that is not used in the model fitting. To create the skewed 

response variable of discrete counts for the setting called “poisson,” for each response value, 
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we take a Poisson draw with the continuous skewed response value as the mean (conditional 

on the mean, each Poisson draw is done independently of all other Poisson draws).

Therefore, the simulation study has 18 total settings coming from a 3×2×3 (scenario × 

sample size × distribution) factorial design. For each setting, we simulate 1000 realizations 

of the response vector y. For each realization, we use three methods to predict the total 

response for the “most current” time point, which is when the time index is equal to 1 on 

the interval 0,1 . We will henceforth call this “total response for the most current time point 

quantity” the “current total.”

The first method uses the ST-FPBK predictor in equation 13 with the spatio-temporal model 

covariance in equation 8. REML estimation with the observed data yo is used to obtain 

estimates for the covariance parameter vector θ. The second method is the FPBK spatial 

model fit with the sptotal R package (Higham et al. 2021) that only uses data from the most 

current time point.

The third method uses a simple random sample (SRS) design-based estimator with data from 

the most current time point. The SRS design-based estimator for the total is 100 ⋅ y‾, where 

y‾ is the sample mean of the response in the most current time point. The variance of the 

estimator (Lohr 2021) is 1002 ⋅ s2
n1

⋅ 1 − n1
100 , where s2 is the sample variance of the response 

variable in the most current time point and n1 is the number of sampled locations in the most 

current time point.

The SRS method gives an estimator, not a predictor, and a corresponding confidence 

interval, not a prediction interval, because the SRS design-based estimator treats the 

observed data as fixed, not as a random realization from a process (Brus 2021; Dumelle et 

al. 2022). However, in the remaining text and tables, we refer to the “current total” response 

quantity obtained from the three methods as a “prediction” and to the corresponding interval 

as a “prediction interval” to limit unnecessarily verbose text and tables.

For each method, we calculate the root-mean-squared-prediction-error (rMSPE) as 
1

1000 ∑i = 1
1000 T i − T̂ i

2 , where T i and T̂ i are the realized and predicted current totals, 

respectively, in the ith iteration. Bias is recorded as 1
1000 ∑i = 1

1000 T i − T̂ i . We also create 

a normal-based 90% prediction interval for the realized current total and record 
1

1000 ∑i = 1
1000 I LBi < T i < UBi , where I LBi < T i < UBi  is an indicator variable that is equal 

to 1 if the realized total in iteration i, T i, is between the lower bound, LBi, and the upper 

bound, UBi, of the itℎ prediction interval.

4.2 Results

Tables A1, A2, and A3 in the Appendix give the rMSPE, bias, and interval coverage of 

the three methods in all 12 simulation settings. In Figure 5, we see that the ST-FPBK 

predictor outperforms both the purely spatial FPBK predictor and the simple random sample 
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design-based estimator in all of the “all-dev” and “spt-iev” scenarios. In general, rMSPE 

improvement is larger for the smaller sample size.

We see little gains in rMSPE for the ST-FPBK predictor in the “t-iev” scenario. This 

setting was chosen to explore how the spatio-temporal model would perform when most of 

the variability in the response comes from ση
2. In this scenario, the mean of the response, 

conditional on the random effects, can fluctuate drastically from time point to time point. 

Therefore, in a model without any fixed effects, the realized total is susceptible to time point 

to time point increases and decreases more than the realized total is in the other scenarios. 

As expected, the ST-FPBK predictor performs no better than a purely spatial model or the 

SRS design-based estimator for the “t-iev” scenario because the information from data in 

other time points is not as useful. However, we can also say that the added complexity of the 

spatio-temporal model is not detrimental.

All methods appear relatively unbiased in all simulation settings: Table A2 shows that the 

bias of each method is small compared to the squares of the rMSPE values given in Table 

A1.

The normal-based prediction intervals (Smith 1980) for the abundance in the most recent 

time point from the ST-FPBK method maintain close to appropriate coverage (90%) for all 

of the simulation settings used, including the scenarios where the response is skewed right 

and the covariance model is mis-specified and the scenarios where the response is both 

discrete and skewed right (Table A3). The spatial model and the SRS design-based estimator 

have lower than nominal coverage in some settings because of the small sample size used 

(recall that the n = 250 observed samples span 10 unique time points so that, on average, the 

spatial model and SRS design-based estimator only have 25 observed responses to use in the 

current time point).

5 Discussion

We see in the moose application in Section 3 that there is substantial reduction in the 

standard error of the predictor for the total moose abundance in 2020 when incorporating 

data from surveys in previous years. In the simulation study in Section 4, we find that 

the ST-FPBK predictor has lower rMSPE than the FPBK predictor from a purely spatial 

model and an SRS design-based estimator in many settings. The ST-FPBK predictor is less 

beneficial when the temporal independent error variance contributes a large proportion to 

the overall variance. Additionally, the ST-FPBK predictor maintains appropriate interval 

coverage in all settings tested, even when the covariance for the errors is mis-specified.

An additional possible benefit of using the ST-FPBK predictor compared to a purely spatial 

FPBK predictor is the potential for forecasting abundance before a survey is completed. In 

Figure 3, we see the forecasted prediction for abundance in the year 2021. While there is 

a (presumed) loss in precision by constructing a prediction for a year that has no observed 

samples, the prediction could still be useful to wildlife managers for decision-making before 

a survey from that year is completed and analyzed. Constructing a prediction for years or 
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time points at which a survey is not completed can be applied to other contexts as well, 

including temporal interpolation (e.g., the year 2016 in Figure 3).

The ability to predict the abundance (or other quantity) in time points that were not 

surveyed also allows biologists to investigate how much efficiency is lost from, for example, 

sampling every other year instead of every year. These types of surveys are often expensive, 

so perhaps the drop in efficiency from sampling every other year is worth the cost of 

completing those surveys annually.

We would also like to give our perception of the benefits and drawbacks of our approach 

with using a Bayesian hierarchical model. For example, Schmidt et al. (2022) use a Bayesian 

hierarchical model with spatial radial basis functions that are estimated per year and with 

time as a trend component in the fixed effects to make predictions for moose abundance. 

We argue that our approach is both simpler for practitioners and less likely to yield an 

unreasonable abundance prediction than a Bayesian hierarchical model is. In general, fitting 

a Bayesian hierarchical model with a complex covariance structure on the link scale requires 

careful thought in formulating the model and the prior distributions used for all of the 

covariance parameters used to model covariance on the link scale (Conn et al. 2015).

Conn et al. (2015) also note that the need to tailor the model used to the richness of the 

particular data set at hand is especially important when using the log link function, as 

abundance estimates can become unrealistically large when back-transforming. Indeed, Ver 

Hoef et al. (2021) fit a Bayesian hierarchical model to marine mammal counts using a 

truncated normal distribution for the random errors on the log scale instead of the typical 

normal distribution. Applying a Bayesian hierarchical model to this data set with normally 

distributed random errors on the link scale and non-informative prior distributions resulted 

in predicted counts well above what any biologist familiar with the region would consider 

reasonable. Conn et al. (2014) and Ver Hoef and Jansen (2007) provide more evidence that 

applying a hierarchical model with a log link function could result in unrealistically high 

predictions, particularly when a small proportion of the region of interest is sampled. All of 

these examples indicate that a Bayesian hierarchical model may need significant adjustment 

based on the particular data set at hand.

Another benefit of our approach is a faster fitting time, as there is no need to construct and 

implement the time-consuming Markov chain Monte Carlo sampler. The moose application 

model in Section 3 takes about 10 minutes to fit. There is a trade-off here between how 

many surveys to incorporate into the model (the Alaska Department of Fish and Game 

has done surveys with this structure since the late 1990’s) and how long the model will 

take to fit. We expect there to be diminishing returns in precision when incorporating older 

surveys, though the rate at which the returns diminish is dependent upon the application at 

hand. Additionally, with the shorter fitting time and the supplementary R package provided 

to fit the models, integrating this approach with the current GSPE software is much more 

reasonable. Finally, our approach is easier to assess in a simulation study, which would be 

too time-prohibitive for the Bayesian model. Biometricians could use simulation with our 

approach to answer various questions given proposed values of covariance parameters like 

how much efficiency would drop if a survey was only conducted every other year.
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Bayesian hierarchical models, including the model by Schmidt et al. (2022), however, 

offer features that would be harder to implement in our approach. These models allow 

for incorporation of more levels in the model structure, allowing, for example, for 

imperfect detection of animals from a separate detectability survey. Additionally, the 

Bayesian hierarchical model can use a Poisson or negative binomial model for the counts. 

Therefore, an appropriate prediction interval for the response on one particular site could 

be constructed. On the other hand, for our approach, we rely on the central limit theorem 

for dependent data to form a prediction interval for the total, which would not apply to a 

prediction interval for the response on just one site.

We have developed a finite population block kriging predictor for spatio-temporal data, 

which adjusts the variance of the predictor to be appropriate for sampling from a finite 

population. The resulting predictor is generally at least as good as the predictor from a 

purely spatial model, and, is often much better. Monitoring programs that use regularly 

scheduled surveys should consider incorporating data from past surveys to improve 

precision in the predictor for the most current survey.

Future work in this area includes developing a frequentist model for which imperfect 

detection of units through time is incorporated into the predictor or how best to select 

sites to sample for future surveys given proposed values for the spatio-temporal covariance 

parameters. Additionally, for moose surveys in particular, updating the GSPE software 

to include analysis for spatio-temporal data could be useful for practitioners. Though we 

recognize that doing so would be a substantial undertaking, the R package that we provide 

could be a useful starting point for the integration.
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Appendix

A.1: Simulation Tables

Table A1:

root-mean-squared-prediction-error (rMSPE) for the ST-FPBK predictor, the FPBK 

predictor, and the SRS estimator for each of the 18 simulation settings. In all settings, the 

rMSPE for the ST-FPBK predictor is approximately equal to or lower than the rMSPE for 

the other two methods.

Simulation Setting rMSPE

scenario n Response Type SRS FPBK ST-FPBK

spt-iev 250 normal 24.85 25.19 14.99

t-iev 250 normal 11.44 11.01 10.88

all-dev 250 normal 17.91 15.33 11.38

spt-iev 500 normal 14.53 14.63 11.06

t-iev 500 normal 6.55 6.10 6.05

all-dev 500 normal 9.68 8.13 5.87

spt-iev 250 skewed 26.21 27.28 15.73

t-iev 250 skewed 12.60 12.98 12.69

all-dev 250 skewed 21.42 19.10 16.19

spt-iev 500 skewed 14.86 15.01 10.91

t-iev 500 skewed 7.45 6.84 6.80

all-dev 500 skewed 11.75 10.71 8.68

spt-iev 250 poisson 33.63 34.57 20.19

t-iev 250 poisson 24.39 25.84 24.73

all-dev 250 poisson 30.78 29.32 27.14

spt-iev 500 poisson 18.60 18.84 14.21

t-iev 500 poisson 14.13 14.09 13.82

all-dev 500 poisson 17.12 16.99 15.90

Table A2:

Bias (Realized Current Total - Predicted Current Total) for the ST-FPBK predictor, the 

FPBK predictor, and the SRS estimator for each of the 18 simulation settings. In all settings, 

all methods appear fairly unbiased.

Simulation Setting Bias

scenario n Response Type SRS FPBK ST-FPBK

spt-iev 250 normal −0.40 −0.63 0.34

t-iev 250 normal −0.28 −0.48 −0.38

all-dev 250 normal −0.30 −0.45 −0.36

spt-iev 500 normal −0.30 −0.35 0.05

t-iev 500 normal −0.20 −0.21 −0.20

all-dev 500 normal 0.11 −0.08 −0.19
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Simulation Setting Bias

scenario n Response Type SRS FPBK ST-FPBK

spt-iev 250 skewed −0.58 −1.72 −0.14

t-iev 250 skewed −0.49 −1.02 −0.82

all-dev 250 skewed −0.19 −0.74 −0.47

spt-iev 500 skewed −0.44 −0.69 −0.15

t-iev 500 skewed −0.23 −0.33 −0.30

all-dev 500 skewed 0.18 −0.08 −0.01

spt-iev 250 poisson −0.72 −1.79 −0.03

t-iev 250 poisson −0.70 −1.25 −1.01

all-dev 250 poisson −0.52 −1.34 −0.67

spt-iev 500 poisson −0.28 −0.43 0.07

t-iev 500 poisson −0.61 −0.69 −0.61

all-dev 500 poisson 0.57 0.30 0.61

Table A3:

Prediction interval coverage for the ST-FPBK predictor, the FPBK predictor, and the SRS 

for each of the 18 simulation settings. All intervals are normal-based and have a nominal 

coverage level of 0.90.

Simulation Setting Coverage

scenario n Response Type SRS FPBK ST-FPBK

spt-iev 250 normal 0.89 0.88 0.91

t-iev 250 normal 0.88 0.87 0.89

all-dev 250 normal 0.88 0.87 0.90

spt-iev 500 normal 0.89 0.88 0.90

t-iev 500 normal 0.89 0.88 0.89

all-dev 500 normal 0.91 0.88 0.90

spt-iev 250 skewed 0.86 0.83 0.90

t-iev 250 skewed 0.88 0.86 0.90

all-dev 250 skewed 0.86 0.86 0.89

spt-iev 500 skewed 0.86 0.86 0.90

t-iev 500 skewed 0.89 0.88 0.92

all-dev 500 skewed 0.89 0.86 0.90

spt-iev 250 poisson 0.86 0.84 0.91

t-iev 250 poisson 0.89 0.87 0.90

all-dev 250 poisson 0.87 0.86 0.85

spt-iev 500 poisson 0.88 0.87 0.90

t-iev 500 poisson 0.89 0.88 0.91

all-dev 500 poisson 0.87 0.86 0.88
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A.2: Supplementary Analysis

As mentioned in Section 3, moose surveys in Alaska are often stratified into “High” 

and “Low” sites. When using stratum as a covariate in a spatio-temporal (or spatial, if 

performing a purely spatial analysis) model, we assume that all errors in the model are 

generated from the same underlying spatio-temporal (or spatial) parameters. However, for 

many moose surveys, it is more reasonable to allow the sites in the High stratum to have a 

different set of spatio-temporal (or spatial) parameters than the sites in the Low stratum.

If we allow the strata to have different covariance parameters, then, to construct the ST-

FPBK predictor, we simply fit the model once for each stratum. If we assume that there is no 

cross-covariance (i.e. errors from sites in different strata are not correlated), then the BLUP 

for ba
′ ya is

ba
′ ya = λo, l

′ yo, l + λo, ℎ
′ yo, ℎ, (16)

where λo, l and λo, ℎ
′  are the kriging weights for the Low and High strata, respectively (equation 

13, and yo, l and yo, ℎ are the vectors of observed responses for the Low and High strata, 

respectively.

Again assuming that there is no cross-covariance, the prediction variance is simply the sum 

of the prediction variances of λo, l
′ yo, l and λo, ℎ

′ yo, ℎ using equation 14.

We can use the purely spatial model and FPBK as well as the spatio-temporal model and 

ST-FPBK to predict the total moose abundance in 2020, using separate covariance models 

for the strata in the moose data set in Section 3. Table A4 shows the results.

Table A4:

Prediction and standard error for total abundance in 2020 using a model that allows errors in 

separate strata to be modeled with different covariance parameters. For reference, the 

prediction and standard error from the models with stratum as a covariate are also given.

method Prediction SE

FPBK Sep. Strat. 2900 297

ST-FPBK Sep. Strat. 2867 242

FPBK 2870 319

ST-FPBK 3001 217

The spatio-temporal predictors still have a smaller standard error than their purely spatial 

model counterparts. Interestingly, the purely spatial FPBK predictor has a slightly lower 

standard error when fitting strata separately while the ST-FPBK predictor has a slightly 

lower standard error when using stratum as a covariate. Whether it makes more sense for 

stratum to be a covariate or for the strata to be fit separately is application dependent.

For the moose application data, fitting separate covariance models to each stratum is 

probably the better choice, as the errors for sites in the high stratum have much more overall 
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variability than the errors in the low stratum. However, we chose to have the separate-strata 

model in the supplementary materials for two reasons. First, the method can be applied to 

any data set with spatio-temporal covariance and a finite number of sites, and applications 

in other domains may not have stratification at all. Second, the syntax in the development of 

the ST-FPBK predictor is much cleaner when stratum is treated as a covariate than when the 

strata are fit separately. Using the model with stratum as a covariate allows for a better focus 

on the proposed method itself.
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Fig. 1: 
A map of the sites composing the Taylor corridor in eastern-central Alaska. Each site is 

roughly 4 kilometers in length and roughly 3.5 kilometers in width so that the centroids 

of two horizontally adjacent sites are about 4 kilometers apart and the centroids of two 

vertically adjacent sites are about 3.5 kilometers apart. (a). A map of the stratification for the 

sites in the year 2020. (b). A map of the predictions of sites in 2020 from the spatio-temporal 

model. A site with a grey dot in the center means that the site was sampled in 2020.
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Fig. 2: 
Estimated covariance of the errors from the estimated parameters in a spatio-temporal 

product-sum model. Distance between two sites is calculated from the site centroids; the 

centroids of two sites directly adjacent to one another are about 3.5 to 4 kilometers apart.
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Fig. 3: 
Moose abundance predictions for the Taylor Corridor from 2014 through 2021 with 

the stratified random sampling (StRS) estimator, the spatial FPBK predictor, and the ST-

FPBK predictor. Predictions are given with a diamond symbol; the bars surrounding each 

prediction are standard error bars. Because surveys were not conducted in 2016 and 2021, 

there is no StRS estimator or spatial FPBK predictor for those years. Also, the standard 

errors for the ST-FPBK predictor for those years is larger than the standard errors in the 

other years. The stratification scheme used for 2016 and 2021 in the ST-FPBK analysis was 

the same scheme used in 2015 and 2020, respectively.
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Fig. 4: 
The model covariance used in the simulations for the spatio-temporal scenario. Covariance 

is approximately 0 for errors from data points that are 2 distance units apart in space and 

1 distance unit apart in time. The spatial dependent error variance σδ
2 , spatial independent 

error variance σγ
2 , temporal dependent error variance στ

2 , and temporal independent error 

variance ση
2  are shown with grey lines.
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Fig. 5: 
root-mean-squared-prediction-error (rMSPE) for all simulation settings. The ST-FPBK 

predictor has the smallest rMSPE in all of the ‘all-dev’ and ‘spt-iev’ scenarios while the 

three methods perform similarly in all of the ‘t-iev’ scenarios.
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Table 1:

Estimated covariance parameters in the model. σ̂δ
2, σ̂γ

2, and ϕ̂ are the spatial dependent error variance, 

independent error variance, and range parameters, respectively. σ̂τ
2, σ̂η

2, and ρ̂ are the temporal dependent error 

variance, independent error variance, and range parameters, respectively. σ̂ω
2  and σ̂ν

2 are the spatio-temporal 

dependent error variance and spatio-temporal independent error variance.

Spatial Temporal Spatio-temporal

σ̂δ
2 σ̂γ

2 ϕ̂ σ̂τ
2 σ̂η

2 ρ̂ σ̂ω
2 σ̂ν

2

16.37 7.78 4.51 0.29 0 3.68 25.53 36.47
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Table 2:

Covariance parameters used to simulate data. σδ
2, σγ

2, and ϕ are the spatial dependent error variance, independent 

error variance, and range parameters, respectively. στ
2, ση

2, and ρ are the temporal dependent error variance, 

independent error variance, and range parameters, respectively. σω
2 and σν

2 are the spatio-temporal dependent 

error variance and spatio-temporal independent error variance. Note that both ϕ (and) appear in Rst; therefore, 

their values can change the underlying covariance even when σδ
2 (and στ

2) are equal to 0.

Spatial Temporal Spatio-temporal

scenario σδ
2 σγ

2 ϕ στ
2 ση

2 ρ σω
2 σν

2

all-dev 0.5 0.17 0.47 0.5 0.17 0.33 0.50 0.17

t-iev 0.0 0.00 0.47 0.0 1.50 0.00 0.25 0.25

spt-iev 0.0 0.00 0.00 0.0 0.00 0.00 0.00 2.00
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