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Abstract

Evidence from animal models and epidemiological studies has linked prenatal alcohol exposure 

(PAE) to a broad range of long-term cognitive and behavioural deficits. However, there is a 

paucity of evidence regarding the nature and levels of PAE associated with increased risk of 

clinically significant cognitive deficits. To derive robust and efficient estimates of the effects of 

PAE on cognitive function, we have developed a hierarchical meta-analysis approach to synthesize 

information regarding the effects of PAE on cognition, integrating data on multiple outcomes from 

six U.S. Iongitudinal cohort studies. A key assumption of standard methods of meta-analysis, 

effect sizes are independent, is violated when multiple intercorrelated outcomes are synthesized 

across studies. Our approach involves estimating the dose–response coefficients for each outcome 

and then pooling these correlated dose–response coefficients to obtain an estimated “global” 

effect of exposure on cognition. In the first stage, we use individual participant data to derive 

estimates of the effects of PAE by fitting regression models that adjust for potential confounding 

variables using propensity scores. The correlation matrix characterizing the dependence between 

the outcome-specific dose–response coefficients estimated within each cohort is then run, while 

accommodating incomplete information on some outcome. We also compare inferences based on 

the proposed approach to inferences based on a full multivariate analysis.

Correspondence: Tugba Akkaya Hocagil, Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON N2L 
3G1, Canada. takkayahocagil@uwaterloo.ca. 

HHS Public Access
Author manuscript
Stat (Int Stat Inst). Author manuscript; available in PMC 2023 December 01.

Published in final edited form as:
Stat (Int Stat Inst). 2022 December ; 11(1): . doi:10.1002/sta4.462.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

Cognition; fetal alcohol syndrome; hierarchical model; multiple outcomes; prenatal alcohol 
exposure; synthesis of evidence; two-stage estimation

1 | INTRODUCTION

Meta-analysis is commonly used to synthesize quantitative evidence across studies to 

generate a summary exposure or treatment effect that is more precise than estimates 

obtainable from individual studies alone. Traditionally, meta-analysis is based on estimated 

effect sizes. Although it is cost-effective and easy to implement, this approach has been 

criticized on the grounds that it is prone to ecological and confounding bias (Riley & 

Steyerberg, 2010; Simmonds & Higgins, 2007). Individual participant data (IPD) meta-

analysis can help mitigate such biases and accommodate missing data at the participant 

level (Riley et al., 2010). Moreover, with access to individual level data, a choice can be 

made between a fully specified multivariate IPD and a two-stage IPD approach. The full 

multivariate approach generally uses mixed-effects multilevel regressions to model between 

and within heterogeneity and quantify the effect of interest in a single model. Although this 

approach is considered flexible, it may be challenging for conducting and communicating 

the findings, particularly visualization using the hallmark forest plot. The alternative IPD 

approach involves modelling the data in two stages. In the first step, effect size estimates 

for each study are obtained using separate regression models. In the second step, standard 

methods of meta-analysis are used to obtain an overall estimate. A key assumption with 

standard methods of meta-analysis is that effect sizes are independent. This assumption 

is violated when multiple outcomes correlated are synthesized across studies. To avoid 

the dependence of the effect sizes, several ad-hoc methods have been proposed including 

averaging the effect sizes or selecting one effect size per study. A major disadvantage of 

these ad-hoc approaches is that they do not make use of all available data to address the 

relevant research questions (Cheung, 2019).

More principled approaches have been proposed to deal with correlated effects when 

conducting IPD meta-analysis. These advances include multivariate meta-analysis which 

has been used to jointly synthesize the outcomes observed across studies to estimate 

multiple pooled effects simultaneously (Riley et al., 2007). However, using multivariate 

meta-analysis is less straightforward when studies do not consistently report on the same 

outcomes (Van den Noortgate et al., 2014). Another approach is the three-level meta analytic 

model (Cheung, 2013; Konstantopoulos, 2011; Van den Noortgate et al., 2013), which has 

been used to adjust for dependence of effect sizes within clusters. This approach treats 

participants within each cluster as contributing only one effect size, so the nonindependence 

is handled within the nested structure of the effects (Cheung, 2019). An alternative approach 

is based on a two-stage meta-analysis that uses summary measures. In this approach, 

dependency among effect sizes is handled via robust variance estimation in which the 

dependence between the outcomes is not explicitly modelled, but instead the standard errors 

for the overall treatment effect or meta-regression coefficients are adjusted (Hedges et al., 
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2010). This approach may require making a reasonable guess about the between-outcome 

correlations to estimate the between-study variance and to approximate the optimal weights.

In this paper, we propose an innovative approach: a hierarchical meta-analysis for the 

settings in which each cohort study provides multiple outcomes, resulting in correlated 

estimated effect sizes. The work is motivated by a project that involves the integration 

of data from six longitudinal cohorts, each of which used multiple interrelated tests 

and assessment tools to measure child cognition. Cognition is not directly observable 

since there is no single measure that can be regarded as a highly reliable indicator of 

cognition. These six longitudinal cohorts were conducted independently and used different 

neuropsychological test batteries to assess IQ and the same domains of cognitive function, 

including learning and memory, executive function, and academic achievement in reading 

and in mathematics (Jacobson et al., 2021). All these tests provide a comprehensive 

assessment of the child’s cognitive function. A major strength of the proposed approach 

is that it facilitates the synthesis of data across diverse outcomes within each cohort, and 

thereby an assessment of consistency of patterns across cohorts. Furthermore, by including 

multiple correlated responses from each child, the analyses make full use of available data 

to maximize the efficiency of estimation and enhance power of associated tests for effects. 

Robust variance estimation ensures valid inferences at each stage of the analysis.

In the proposed approach, we first derive the estimates and the standard errors by fitting 

regression models for each separate outcome of interest. By contrast to existing methods 

of two-stage IPD analysis, we account for the correlated effect sizes within each cohort 

at this stage. Specifically, within-study robust covariance matrices are obtained at this 

stage to be combined at the second stage. Within each cohort, not all outcomes were 

observed for all children. This additional complexity was addressed in the estimation of 

robust covariance matrices. Specifically, we derived a formula for pairwise correlation 

between the estimated effects using an adjustment that accounts for the fact that we have 

partially observed outcome measures for some children. In the second stage, we combine 

the summary measures within each cohort using a random-effects model. In the last stage 

of our hierarchical meta-analytic approach, we combine the independent, cohort-specific 

effect size estimates in a random-effects model to obtain a global measure of the effect size 

across cohorts (Lin & Zeng, 2010; Whitehead, 2002). We compare and contrast the findings 

from our proposed approach to those obtained using a full multivariate analysis in order to 

determine the degree to which the results of these two models coincide.

The remainder of the article is organized as follows. In Section 2, we introduce our 

motivating application which is a meta-analysis of correlated outcomes used to assess the 

effect of prenatal alcohol exposure (PAE) on cognition in six cohort studies. In Section 3, 

we introduce notation and describe the two-stage analysis and modelling framework used 

to combine multiple correlated outcomes within a single cohort. In Section 4, we present 

the modelling framework used to combine pooled effect size estimates across cohorts. In 

Section 5, we compare and contrast the proposed approach with the corresponding one-stage 

approach using simulation studies. In Section 6, we illustrate our method using data from 

our motivating application. Finally, in Section 7, we discuss the strengths and limitations of 

our method.
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2 | EFFECT OF PRENATAL ALCOHOL EXPOSURE ON COGNITION

Evidence from animal models and epidemiological studies has linked PAE to a broad range 

of cognitive and behavioural deficits, growth restriction, and physical anomalies, which 

are known collectively as fetal alcohol syndrome disorders (FASD) (Carter et al., 2016; 

Jacobson et al., 2004, 2008; Mattson et al., 2019). Fetal alcohol syndrome (FAS), the most 

severe of the FASD, is characterized by distinctive cranio-facial dysmorphology (small 

palpebral fissures, flat philtrum, thin vermillion), small head circumference, and growth 

restriction (Hoyme et al., 2005; Stratton et al., 1996) while partial FAS (PFAS) is diagnosed 

in the presence of the characteristic alcohol-related facial dysmorphology, a history of 

PAE and growth restriction, small head circumference, or central nervous system (CNS) 

impairment. Individuals with PAE who lack the characteristic pattern of dysmorphic features 

but exhibit cognitive and/or behavioural impairment are diagnosed as having alcohol-related 

neurodevelopmental disorder (ARND), which is the most prevalent FASD. Although the 

diagnosis of ARND requires a confirmed history of maternal alcohol consumption during 

pregnancy, there is no information in the scientific literature regarding the levels of PAE 

associated with an increased risk of clinically significant adverse effects.

Between 1975 and 1993, the National Institutes of Health (NIH) funded six longitudinal 

cohort studies in four U.S. cities–Detroit (Jacobson et al., 1993), Pittsburgh (Day et al., 

1991; Richardson et al., 1999) (two cohorts), Atlanta (Brown et al., 1998; Coles et al., 2006) 

(two cohorts), and Seattle (Streissguth et al., 1981); these are described briefly in Appendix 

A. To enhance efficiency when examining the effects associated with different levels and 

patterns of PAE, the data are synthesized across the studies. The sample sizes in the 

individual longitudinal cohort studies range between 138 and 720. Participant retention was 

good to excellent from childhood to adolescence median  = 90.3%;  range  = 86.4 to 96.3%  . 

Retention from adolescence to young adulthood was excellent (≥ 91.5%) in the Atlanta-1, 

Seattle, and 2 Pittsburgh cohorts. The Detroit young adult follow-up, which focused on 

neuroimaging, was funded to assess only a subsample (43.6%) of the cohort. In all but 

one of these studies, mothers were recruited and interviewed prospectively about their 

alcohol use during pregnancy, and their children were followed longitudinally from infancy 

through young adulthood; one of the Atlanta cohort studies (Schuetze et al., 2007) recruited 

the mothers shortly following delivery, interviewed them about their drinking during 

pregnancy, and followed the children through early childhood. The number of maternal 

interviews varies by cohort. In these interviews, detailed information regarding quantity 

and frequency of drinking during pregnancy and dose per occasion were obtained. Data 

on alcohol consumption during pregnancy from all six cohorts are summarized in terms of 

ounces of absolute alcohol averaged across pregnancy (oz AA). In all studies, investigators 

administered a variety of neuropsychological tests to assess IQ and four domains of 

cognitive function: learning and memory, executive function, and academic achievement 

in reading and in mathematics.

Although there was some variation in the particular auxiliary covariates collected across the 

different studies, data on a broad range of covariates were provided by each cohort.
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3 | NOTATION AND MODEL FORMULATION

Let Y ijk be the random variable representing response k for individual j in cohort 

i, k = 1, …, Ki, j = 1, …, Ji, where Ji is the number of individuals in cohort i, i = 1, …, l. Let 

Aij be the exposure of interest (i.e., prenatal alcohol exposure) for individual j in study i and 

Sij be their corresponding propensity score.

Y ijk = αik + BikAij + γikSij + Eijk, (1)

where Bik is the effect of a one-unit increase in Aij (alcohol volume) on the mean for response 

k in cohort i given the propensity score Sij, j = 1, …, J, k = 1, …, K, i = 1, …, l.

Because the sets of covariates measured differ between cohorts, the propensity score 

is estimated separately for each cohort using the two-part generalized propensity score 

(Akkaya Hocagil et al., 2021). By using the two-part generalized propensity score, we 

model the causal effect of a semicontinuous exposure variable A on an outcome Y  in 

the presence of a set of confounding variables Z = Z1, …, Zp ′. Specifically, we let A+ =
I A > 0  indicates a positive value for A, and π Z = E A+ ∣ Z . We consider a binary 

regression model defined by the link function g ⋅  mapping the interval [0,1] onto the real 

line and setting g π Z; α1 = Z‾ ′α1 where Z‾ = 1, Z′ ′ and α1 = α10, α11, …, α1p ′.

We also let P A ≤ a ∣ A+ = 1, Z; α2 = F+ a ∣ Z; α2  denote the cumulative distribution function 

for the positive part of A given Z, and A+ = 1 is indexed by a p + 1 × 1 parameter α2. The 

full distribution for A is therefore indexed by α = α1
′ , α2

′ ′. A key requirement of the model for 

A ∣ Z, A+ = 1 is that it involves a simple way to compute E A ∣ Z, A+ = 1; α2 = μ Z; α2 ; we 

adopt a generalized linear model and ultimately compute

S = E A ∣ Z; α = π Z; α1 μ Z; α2 (2)

as the marginal mean for A ∣ Z based on the two-part model formulation (Akkaya Hocagil et 

al., 2021).

After we estimated the propensity score, we assume here that conditioning on the propensity 

score renders the exposure variable independent of all confounders and so that it is sufficient 

to condition on Sij in (1) rather than the confounders themselves to mitigate the effect of 

confounding (Rosenbaum & Rubin, 1983).

The parameter γik characterizes the effect of the propensity score on outcome k in study i
(for a given level of alcohol exposure) and Eijk is the error term which has mean zero and 

variance σik
2 , k = 1, …, K, i = 1, …, l.

We suppose that the effects Bik, the effect of prenatal alcohol exposure on the mean for 

response k in cohort i, vary about some average exposure effect in cohort i with

Bik ∣ βi N βi, ϕi , (3)
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where βi is the exposure effect for cohort i and ϕi represents the heterogeneity of the 

response-specific exposure effects within cohort i.

We suppose that the average cohort-specific exposure effects are independent and vary about 

an overall exposure effect β0 with,

βi N βo, η2 ; (4)

here, βo represents the “average effect” of a one-unit increase in the exposure across all 

cohorts and is our parameter of ultimate interest. The variance η2 in (4) reflects the extent of 

heterogeneity of the cohort-specific exposure effects.

In the next two subsections, we describe a two-stage approach to estimation and inference 

with data from a single cohort, and in Section 4, we show how to synthesize cohort-specific 

exposure effects to obtain an estimate for the average effect of a one-unit increase in the 

exposure across all cohorts.

3.1 | Stage I estimation for a single cohort

In this section, we temporarily omit the subscript i and describe a two-stage approach to 

estimate the average exposure effect for a single cohort where the effects are correlated. 

Before model fitting, we standardize the responses so that they have the same first two 

moments as the full-scale IQ variable which has a mean of 100 and a standard deviation of 

15. By conducting this standardization, the exposure effects can be expressed in terms of the 

decrement in IQ associated with a one-unit increase in prenatal alcohol exposure (Axelrad et 

al., 2007).

For the first stage, we fit separate linear models for each response, assuming

Y jk = αk + BkAj + γkSj + Ejk, (5)

where Bk is the effect of a one-unit increase in Aj (alcohol in our application) on the 

mean for response k, given the propensity score Sj, j = 1, …, J, k = 1, …, K. The parameter γk

characterizes the effect of the propensity score for a given level of alcohol exposure and Ejk

is the error term that has mean zero and variance σk
2, k = 1, …, K.

We suppose that the effects Bk, k = 1, …, K vary about some average exposure effect, with

Bk N β, ϕ , (6)

independently and identically distributed and β is the average exposure effect. The variance 

ϕ reflects the extent of heterogeneity of the response-specific exposure effects for a single 

cohort.

If we let Xjk = 1, Aj, Sj ′ be the covariate vector, we can write

Y jk = Xjk
′ θk + Ejk, (7)
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where θk = αk, Bk, γk ′. We assume Ejk ⫫ Aj, Bk, Sj  with Ejk N 0, σk
2  are i.i.d. for 

j = 1, …, J, k = 1,2, …, K. Note that Xjk does not vary by the response type because the 

exposure variable Aj and the propensity score Sj are individual level covariates, but we retain 

this notation for generality.

We next define K × 1 vectors Y j = Y j1, Y j2, …, Y jK ′, α = α1, …, αK ′, B = B1, …, BK ′ and 

γ = γ1, …, γK ′ and a K × 3K covariate matrix

Xj
′ =

Xj1
′ 0 0 … 0

0 Xj2
′ 0 … 0

⋮ ⋱ 0
0 … 0 0 XjK

′

, (8)

The model given by (7) can then be represented in a unifying model

Y j = Xj
′θ + Ej (9)

where θ = θ1
′ , …, θK

′ ′ is a 3K × 1 vector of parameters, Ej = Ej1, …, EjK ′ and Ej N 0, Σ , 

where Σ is a K × K covariance matrix with diagonal entries Σkk = σk
2 = var Ejk . The 

off-diagonal entries Σkl = σkl = cov Ejk, Eje  accommodate a conditional dependence (given 

Xjk, Xjj, B) between the responses from the same individual.

Following the separate fit of the K linear models at Stage I, we have estimates 

θ̂k, σ̂k
2 , k = 1,2, …, K. The covariance term characterizing the dependence between errors 

are then estimated to facilitate estimation of a robust covariance matrix characterizing the 

dependence between the Stage I estimators θ̂1, …, θ̂K . The elements of interest in θ̂ are the 

parameter estimates B̂1, …, B̂K, which are consistent for B1, …, BK, respectively. In the second 

stage of estimation, these estimates are pooled over to obtain a single estimate of the global 

measure of the causal effect denoted by β in (3)

We begin the second stage by estimating the covariance between the errors 

cov Ejk, Ejl = σkl, I ≠ k = 1, …, K, characterizing the dependence between the Stage I 

estimators θ̂1, …, θ̂K. The challenge in estimating the covariance between the errors 

cov Ejk, Ejl = σk, I ≠ k = 1, …, K is that not all responses were observed for all children in 

the study. We assume that the responses are missing at random (MAR) (Little & Rubin, 

2019). To accommodate the fact that not all individuals contribute data for all responses, we 

introduce the indicators Rjk = I Y jk is observed , k = 1, …, K.

Specifically, if Sjk θk = Xjk Y jk − Xjk
′ θk  is the desired contribution from individual j to the 

score function for θk given B, the observed data score equation for estimating θk at Stage I 

can be written as
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Sk θk =
j = 1

J
RjkSjk θk = 0, (10)

the solutions to which are

θ̂k =
j = 1

J
Rjk XjkXjk

′ −1XjkY jk, k = 1, …, K . (11)

Then we can obtain the maximum likelihood estimate of σk
2 in the presence of partially 

observed outcomes as

var Ejk = σ̂k
2 = j = 1

J
Rjk Y jk − Xjk

′ θ̂k
2

nk
, (12)

where nk = ∑j = 1
J Rjk is the number of individuals contributing to the estimation of 

θk, k = 1,2, …, K. Similarly, we also obtain the maximum likelihood covariance estimate as

cov Ejk, Ejl = σ̂kl = j = 1
J RjkRjl Y jk − Xjk

′ θ̂k Y jl − Xjl
′ θ̂l

nkl
, (13)

where nkl = ∑j = 1
J RjkRj, which is consistent under a missing at random assumption (Little & 

Rubin, 2019).

We then let Σ̂ denote the estimated covariance matrix for the errors where σk
2 and σkl are 

replaced by (12) and (13), respectively.

3.2 | Stage II: Synthesis across responses within a cohort

To consider the synthesis of estimators across all responses, we note that

E B̂k − β = E B̂k − Bk + Bk − β = 0,

so B̂ is composed of K dependent unbiased estimators of β. Thus,

B̂ MVN μ β , Ψ ϕ (14)

asymptotically, where μ β  is a K × 1 vector with each element equal to β
and Ψ̂ ϕ = J−1Γ̂ + Δϕ denotes the unconditional covariance matrix for B̂ where 

Ψkk ϕ = var B̂k = J−1Γkk + ϕ, k = 1, …, K, Ψkl ϕ = cov B̂k, B̂l = J−1Γklk ≠ I = 1, …, K, Δ is a 

K × K identity matrix and ϕ reflects the extent of heterogeneity of the response-specific 

exposure effects for a single cohort. We provided detailed derivation of the covariance 

matrix for B̂ in Appendix B.

Then, we specify a pseudo-likelihood PL β, ϕ  for β, ϕ  given by
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PL β, ϕ ∝ 1

(2π)
K
2 Ψ̂ ϕ ∣

exp − 1
2(B̂ − μ(β))′Ψ̂−1(ϕ)(B̂ − μ(β)) . (15)

Note that (15) could be maximized with respect to β, ϕ , but we proceed in a 

computationally convenient iterative approach based on (15). Given an estimate ϕ r , we 

compute an estimate β r  based on a linear combination of B̂1, …, B̂K. The most efficient 

linear estimator of β has the form

β̂ = 1′ Ψ ϕ −1B̂ / 1′ Ψ ϕ −11 . (16)

Here, we replace Ψ ϕ , the covariance matrix of B̂, with an estimator Ψ̂ ϕ r = J−1Γ̂ + Δϕ r . 

We could invert Ψ̂ ϕ r , but in practice, it may be difficult and while a generalized inverse 

could be used, the weights resulting from this approach were often found to vary greatly in 

magnitude and even in sign. A more stable linear estimate using inverse variance weights, 

whereby we replace Ψ ϕ  with diag J−1Γ̂kk + ϕ r , k = 1, …, K  in (16) to obtain β̂ r . We 

then maximize PL β̂r, ϕ  with respect to ϕ to obtain ϕ r + 1 , with which we recompute 

β̂ r + 1  and repeat iteratively until convergence; we let β̂, ϕ̂  denote the estimates upon 

convergence. A robust variance estimate is then obtained for β̂ based on Ψ̂ ϕ̂ , which is given 

by var β̂ = I′Ψ̂ ϕ̂ I −1
.

3.3 | An alternative one-stage (fully specified multivariate) approach

The parameters estimated in Sections 3.1 and 3.2 can alternatively be fitted in one step 

via software for fitting hierarchical mixed effect linear models. To do so, we define K − 1
covariates T jkr = I k = r , r = 2, …, K, which indicates the response k, k = 2, …, K. We may put 

these K − 1 indicators in vector format and define the K − 1 × 1 vector T jk = T jk2, …, T jkk ′. 
We consider the first outcome as the reference type and let T ik2 = 1 for the second outcome, 

T ik3 = 1 for the third endpoint, and so on. Then we fit the model

Y jk = α + BkAj + γSj + τ′T jk + Ejk, k = 1, …, K,

where τ = τ2, …, τK ′ is K − 1 × 1 vector with τr = αr − α1 and r = 2, …, K. We assume 

Bk N β, ϕ  as specified in (3) where Bk is the effect of a one-unit increase in Aj on the 

mean of response k given the propensity score Sj, β is the parameter of ultimate interest 

representing the “average causal effect” of a one-unit increase in the exposure across all 

responses within the cohort, and ϕ characterizes the degree of heterogeneity in the effect 

across responses. We also assume Ej = Ej1, …, EjK ′ is a K × 1 error term with Ej MVN 0, Σ
with Σ a K × K covariance matrix as in Section 3.1. The one-step approach involves 
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simultaneous estimation of all fixed effects, β, ϕ, and Σ at once. This can be fitted using 

software for fitting hierarchical linear mixed effects models.

After fitting hierarchical linear mixed effects model for each cohort separately, we let βi

denote the estimate of βi obtained from fitting the hierarchical model to the data from cohort 

i and V i βi  denote the corresponding variance estimate based on the observed information 

matrix, i = 1, …, l.

4 | SYNTHESIS ACROSS COHORTS

In the previous section, we described methods for synthesizing data across multiple 

outcomes to obtain estimates of the global causal effect using a two-stage approach based 

on fitting a hierarchical mixed effect model. These methods were based on analysing data 

from a single cohort. Here, we describe how to combine cohort-specific estimates to obtain 

an overall estimate of a causal effect while accommodating possible heterogeneity. The 

approach described in Section 3.2 is an extension of the approach described by Viechtbauer 

and implemented in the metafor package (Viechtbauer, 2010) which deals with independent 

estimates; Section 3.2 adapted the methods to deal with dependent effect estimates so what 

follows is a simplification of the approach for the last stage of the data synthesis. We 

describe it briefly as follows:

We consider βi as the global causal effect of exposure in cohort i reflecting the impact 

of an increment in the volume of prenatal alcohol exposure on the common underlying 

construct; we let β̂i be the corresponding estimate. Note that the studies draw individuals 

from different populations and so the composition of the samples varies across cohorts. 

Moreover, the methods used to measure exposure and the specific outcome measures differ 

between studies, even though they were measuring the same latent attributes regarding 

cognition. We therefore wish to accommodate a component of variation between studies 

(heterogeneity) for the true effects which we accomplished by use of a random effects model 

of the form

β̂i = βi + ϵi, (17)

βi = β∘ + ui, (18)

where we let ϵi N 0, V̂ i β̂i  reflect the sampling variation of the estimator from cohort i

about the true effect βi, and ui N 0, η2  reflects the heterogeneity of the global cohort-specific 

causal effects across studies. The parameter βo represents the overall global effect, which 

is the parameter of ultimate interest. Through this variance decomposition then upon 

introducing the heterogeneity between studies, we have var β̂i = V̂ i β̂i + η2. The synthesis 

is achieved in a similar spirit to Section 3.2 whereby we consider a pseudo-likelihood of the 

form
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PL β∘, η ∝
i = 1

I 1
(2π)I /2 V̂ i β̂i + η2

exp −
β̂i − β∘

2

2 V̂ i β̂i + η2 . (19)

The pooled exposure effect estimate β̂ 。 is obtained as a weighted average of the β̂i terms 

with cohort weights equal to the inverse of V̂ β̂i + η̂2 where η̂2 is obtained as the solution 

to iteratively maximizing (19). The R package “metafor” can be used to carry out this final 

stage of the data synthesis. If the linear model of Section 3.3 is used for simultaneous 

estimation of the overall causal effect, then βi and V i βi  can be used in a similar fashion to 

obtain the estimator β0.

5 | SIMULATION STUDIES

For the simulation studies, we consider k correlated continuous outcomes from a single 

study. We generated outcomes from the following linear regression model:

Y jk = αk + βkXj + γkZj + Ejk, (20)

where Y jk is the random variable representing response k for individual 

j, k = 1, …, K, j = 1, …, J, and βk is the effect of a one-unit increase in Xj on the mean for 

response k given the covariate Zj. We let βk vary about some average exposure effect 

within a study, with βk N β, τ2 . The parameter γk characterizes the effect of the covariate 

for a given level of exposure, Xj. We also assume Ej = Ej1, …, EjK  is a K × 1 error term 

with Ej MV N 0, Σ  with Σ a K × K covariance matrix. The simulations were performed 

in different scenarios. We generated the effect size for the exposure, βk, from the normal 

distribution with mean 3 and variance τ2. Scenarios were created by manipulating the 

number of outcomes k  and varying between-study heterogeneity τ2 . We consider the 

scenarios in which the number of outcomes is equal to 3, 5, and 10 and τ2 takes the values 

0.10, 0.25, and 0.50. For each combination of the simulation parameters, we generated 1000 

datasets with the sample size of 500 for each outcome. For each dataset, we performed the 

two types of meta-analysis, that is, the one based on the proposed approach versus the full 

multivariate analysis.

We evaluated the performance of the proposed approach in simulation settings previously 

described, over 1000 iterations. The estimates of interest were the average exposure effect. 

To allow for a comprehensive comparison, performance was assessed on a range of 

metrics: empirical mean bias (EBIAS), average model based standard error (ASE), empirical 

standard error (ESE), and coverage probability (CP). The results are summarized in Table 1 

and some interesting patterns emerge.

Overall, both methods performed well in terms of empirical mean bias. There was a 

suggestion that one-stage method had lower bias when τ2 was very low, though both 

methods had low bias in this case as well. As τ2 increased, the bias seems to increase for the 
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one-stage method. The similarity between ASE and ESE suggests that inference is working 

well for the hierarchical meta analysis method, over a wide range of scenarios (including 

numbers of outcomes and the value of τ). Coverage probability for the proposed method 

was about the nominal 0.95 for all scenarios considered in this paper. However, the coverage 

probabilities were less reliable for the one-stage method. There was no particularly clear 

pattern, though a sense that things became a bit more unstable as τ2 increased. Empirical 

standard errors tend to be slightly larger than the average model-based standard errors, 

especially as τ2 becomes larger. This most likely reflects the limitations in standard mixed 

model software.

Overall, the patterns seen in Table 1 reflect the classic variance/bias tradeoff. Our proposed 

approach has an appealing robustness; however, the cost of this robustness is a slight 

increase in standard errors in settings (small τ2) when the one-stage method is working well.

6 | PRENATAL ALCOHOL EXPOSURE AND COGNITIVE FUNCTION IN 

CHILDREN

We now come back to our motivating application that involves data from six longitudinal 

cohort studies to assess the effects of PAE on intelligence quotient (IQ), which is a measure 

of cognitive function. The proposed hierarchical meta-analytic approach is well suited to 

assess the effect of PAE on IQ measure because it enables us to pool data from diverse, 

correlated outcomes across cohorts. Table 2 lists the tests used to measure IQ that are 

considered in this paper along with the summary statistics. As it has been shown in Table 

2, these six cohorts used different IQ tests including the Wechsler Intelligence Scale for 

Children (WISC), Stanford–Binet Intelligence Scales, Kaufman Assessment Battery for 

Children, and Differential Ability Scales (DAS). Together, all these subtests provide a 

comprehensive assessment of child’s IQ.

To yield sufficiently precise estimates of effect sizes, we considered a broad set of potential 

confounders when fitting separate linear models for each outcome. Because each cohort 

provided a somewhat different set of control variables, we employed a propensity score 

approach to adjust for potential confounders (Akkaya Hocagil et al., 2021). We estimated the 

propensity score for each cohort separately and included the propensity score in the linear 

model as an additional covariate as in model (5).

For each outcome in each study, the effect of alcohol was estimated from model (5). Table 

3 lists the estimated effect size and standard errors from the first stage of the hierarchical 

meta-analytic approach. With the exception of WISC Freedom from Distractibility, and 

Kaufman ABC simultaneous processing in Detroit and Atlanta Cohort 1, respectively, none 

of the effects of PAE on IQ were statistically significant. The aim of the second stage of 

the proposed methods was to pool the estimates of the PAE and estimate the cohort specific 

overall true mean effect βi while adjusting for the fact that outcomes are correlated within 

a cohort and accommodating incomplete information on some outcomes. Table 4 shows the 

estimated effect sizes and standard errors for each cohort. Table 4 also shows the estimated 

effect sizes for each cohort obtained from the fully specified multivariate model that was 
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constructed using SAS procedure “proc mixed.” The two methods provided impressively 

similar estimates for effect sizes and the standard errors. Although the difference was not 

substantial, these two methods did provide slightly different estimates for the between 

outcomes heterogeneity τ2  and there was no observed heterogeneity between outcomes in 

Seattle and the two Pittsburgh cohorts.

To combine the independent effect size estimates across cohorts and obtain a global effect 

size estimate of PAE on IQ at age 7 years, we used the R package “metafor” to pool 

the estimates resulted from our hierarchical meta-analysis and from the fully specified 

multivariate model (Table 5). For the completeness, we also conducted conventional meta-

analysis, which ignores the correlation among outcomes and synthesizes information across 

cohorts in one step. The resulting global effect sizes from our hierarchical meta-analysis and 

the full multivariate model were almost identical with similar estimates of the heterogeneity 

parameter τ2. Use of the conventional meta-analytic approach (ignoring the dependence 

across the outcomes within cohorts) led to a larger effect size estimate and a more 

conservative standard error. Thus, ignoring the dependence across outcomes alters the final 

pooled estimate and the associated standard error and provides a very different impression of 

the extent of the between cohort heterogeneity.

7 | DISCUSSION

In this paper, we propose the use of a hierarchical meta-analysis to synthesize data 

on multiple outcomes from multiple studies. The studies we included were conducted 

independently and used different neuropsychological test batteries to assess IQ and the 

same domains of cognitive function. The approach was particularly helpful in terms of 

synthesizing data across diverse outcomes within each cohort. Furthermore, by including 

multiple correlated responses from each child, the analyses make full use of available data 

to maximize the efficiency of estimation and enhance power of associated tests for effects. 

Robust variance estimation ensures valid inferences at each stage of the analysis.

Our hierarchical meta-analysis consists of three stages. In the first stage, we obtain effect 

size estimates for each outcome separately, while adjusting for control variables via a 

propensity score approach. In the second stage, we obtain cohort-specific pooled effect size 

estimates while adjusting for between-outcome correlation and incomplete data. In the last 

stage, we combine effect sizes across the cohorts employing a random-effects model. Our 

procedure follows the same steps as conventional methods for two-stage IPD analysis for 

making inferences about the effect size but extends these analyses by accounting for the 

correlation between outcomes and by accommodating incomplete data on some outcomes.

Our approach has several advantages over the one-stage IPD meta-analysis. First, it builds 

upon the two-stage IPD meta-analysis that practitioners are already familiar with. Second, 

with our approach, one can create forest plots to visualize the estimated effect sizes for each 

outcome. Third, our approach is less likely to encounter convergence problems compared 

with the one-stage IPD meta-analysis. Finally, our approach uses the known within study 

variances, which helps to provide more precise estimates.
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We evaluated and compared our approach with a fully specified multivariate analysis. 

Previous studies evaluated this question in different settings. Olkin and Sampson (1998) 

showed that in the case of comparing multiple treatments and a control with respect to a 

continuous outcome, the traditional meta-analysis based on estimated treatment contrasts is 

equivalent to the least squares regression analysis of individual patient data if there are no 

study-by-treatment interactions and the error variances are constant across trials. Mathew 

and Nordstrom (1999) claimed that the equivalence holds even if the error variances are 

different across trials. Empirically, meta-analysis using original data has been found to be 

generally similar but not identical to meta-analysis using summary statistics. Whitehead 

(2002) and Lin and Zeng (2010) showed that for all commonly used parametric and 

semiparametric models, there is no asymptotic efficiency gain by analysing original data 

if the parameter of main interest has a common value across studies, the nuisance parameters 

have distinct values among studies, and the summary statistics are based on maximum 

likelihood. More recently, Kontopantelis (2018) conducted a comprehensive simulation 

study to compare one-stage and two-stage IPD analysis and concluded that a fully specified 

one-stage model is preferable especially when investigating interactions. We extend the 

results from these existing studies to the setting in which there are correlated outcomes 

within multiple cohorts. In simulation scenarios considered in this paper, we observed 

that the proposed approach can successfully reduce bias relative to the fully specified 

multivariate approach. Our simulation results suggest that, when the number of outcomes is 

small and the between outcomes variance is large, our proposed approach outperforms the 

multivariate analysis.

We illustrated our approach using data on childhood IQ from six cohorts. We included 

18 outcomes from these cohorts. We showed how to extend two-stage IPD meta-analysis 

in the presence of correlated effect size estimates and how to address missing data on 

outcomes by providing an adjustment formula for the pairwise correlation. With this new 

approach, one can conduct two-stage IPD meta-analysis in the presence of correlated effect 

size estimates while taking advantage of visualization via forest plots. Our hierarchical 

meta-analysis consists of three stages. In the first stage, we obtained effect size estimates for 

each outcome separately while adjusting for control variables via propensity score approach. 

In the second stage, we employed our proposed approach to obtain cohort-specific pooled 

effect size estimates while adjusting for between-outcome correlation and incomplete data. 

In the last stage, we combined effect sizes across the cohorts employing a random-effects 

model. We compared the results from our approach with the results from the fully specified 

multivariate approach and the conventional meta-analysis that ignores the fact that the effect 

sizes are being combined are dependent. In this comparison, we showed that ignoring 

within-cohort correlation can markedly alter meta-analysis results in important ways. When 

we compare our method with the full multivariate approach, our method performed well and 

thus provides a useful innovative tool for performing and interpreting meta-analyses with 

the correlated effect sizes. While the proposed approach empirically performs very well in 

the scenarios we considered in the simulation studies, there may be situations that we did 

not consider where the performance does not share the simplicity and efficiency as was seen 

here.
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APPENDIX A: DETAILED DESCRIPTION OF THE SIX COHORT STUDIES

In this appendix, we provide a detailed description of the six cohort studies that we use 

data from in our application. We specifically provide information on study design, sampling 

selection, and sample size for each cohort.

Detroit Cohort birth years: 1986–1989

All women N > 6400  enrolling in the antenatal maternity clinic at a large, inner-

city hospital were interviewed regarding their alcohol use at their first prenatal visit 

(M = 23.4-week gestation; SD = 7.9), using a timeline follow-back interview (Jacobson et 

al., 2002). Moderate and heavy drinking women were overrepresented in the sample by 

including all women reporting at least 0.5 oz AA at conception and a random sample of 

approximately 5% of the lower level drinkers and abstainers. The timeline follow-back 

interview was repeated at each prenatal clinic visit M = 5.4 visits). To reduce the risk that 

alcohol might be confounded with cocaine exposure, 78 heavy cocaine (<2 days/week), light 

alcohol (<7 drinks/week) users were also included in the final sample, which consisted of 

480 pregnant women and their children. Participants were followed up at 6.5, 12, and 13 

months and 7, 14, and 19 years.

Pittsburgh Cohort 1 birth years: 1983–1986

Participants were recruited from the prenatal clinic at a maternity hospital if they were 

English speaking, age 18 or older, and in their fourth or fifth gestational month.

The birth sample consisted of 763 live singleton infants. The alcohol, tobacco, and drug 

use interview was repeated in the seventh gestational month and at delivery, when second 

and third trimester substance use information was obtained. The cohort consisted of women 

who were pre-dominantly low income and of fairly equal numbers of Caucasian and African 

American women. Participants were followed up at 8 and 18 months, and 3, 6, 10, 14, 16, 

and 22 years.
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Pittsburgh Cohort 2 birth years: 1988–1993

English-speaking women in their fourth or fifth month of pregnancy attending the prenatal 

clinic at a large inner-city hospital who were 18 years old or older were interviewed 

regarding their usual, maximum, and minimum consumption of cocaine, alcohol, marijuana, 

tobacco, and other drugs prior to pregnancy and during the first trimester. Every woman who 

reported any cocaine/crack use during the first trimester was enrolled in the study cohort, 

as was the next woman interviewed who reported no cocaine or crack use during both the 

year prior to pregnancy and the first trimester. Although crack/cocaine use was the criterion 

for recruitment, a large proportion of these women also drank moderate-to-heavy levels of 

alcohol. The alcohol and drug use interview was repeated at the end of the second and third 

trimesters, and offsprings were assessed at 1, 3, 7, 10, 15, and 21 years. The birth cohort 

consisted of 295 women and infants; the women were predominantly of low socio-economic 

status and were roughly equally divided by Caucasian and African American race.

Atlanta Cohort 1 birth years: 1980–1986

Five hundred twenty-seven low socioeconomic status (SES), pregnant women were recruited 

at their first prenatal visit at an urban Atlanta hospital serving a primarily African American, 

low income population. Women who reported drinking at least 1 oz AA/week during 

pregnancy were recruited. Nondrinkers, who were similar in demographic background, were 

recruited at the same time to serve as controls. Women were interviewed at recruitment 

about their alcohol and drug use; the majority reported drinking on weekends in a “binge” 

pattern. Infants were evaluated following birth. Subsamples were followed up at 6 and 12 

months and 7, 14, and 22 years.

Atlanta Cohort 2 birth years: 1992–1994

Three hundred six mothers and their infants were recruited shortly after delivery at an urban 

Atlanta hospital; 111 reported having drunk alcohol during pregnancy, 71 of whom also had 

used cocaine (based on self-report or urine screen); 44 used cocaine but no alcohol; 151 

did not drink alcohol or use cocaine. All participants were English speaking, 19 years or 

older, and had singleton births; most were African American and low SES. The infants were 

assessed at 2 and 8 years.

Seattle Cohort birth years: 1975–1976

All women who were enrolled in prenatal care by the fifth month of pregnancy at two 

large Seattle hospitals were eligible to participate. To ascertain PAE, participating mothers 

N = 1529  were administered a Quantity-Frequency-Variability interview (Cahalan & Cisin, 

1968) regarding alcohol, tobacco, and drug use for two time periods: during pregnancy and 

just prior to pregnancy recognition; 462 newborns were selected based on an algorithm 

derived from maternal absolute alcohol (AA)/day, alcohol use/occasion, volume variability, 

and frequency of intoxication constructed to overrepresent infants born to heavier drinkers. 

Controls included both abstainers and light drinkers. Infants were followed up at 8 and 18 

months and 4, 7, 11, 14, 21, 25, and 30 years. Although cohort retention was high (e.g., 82% 
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at 14 years), other children not initially selected whose mothers had been interviewed during 

pregnancy were added at follow- up assessments to keep the sample size close to 500 at each 

examination.

APPENDIX B: DERIVATION OF THE COVARIANCE MATRIX FOR B̂
In this appendix, we provided detailed derivation a robust covariance matrix characterizing 

the dependence between Stage I estimators (i.e., θ̂1, θ̂2, …, θ̂K . This derivation prove the 

results in Section 3.2 of the main text.

The expression for the covariance between θ̂k and θ̂l is obtained based on a general formula 

for robust variance estimation. If Sjk θk = Xjk Y jk − Xjk
′ θk  is the desired contribution from 

individual j to the score function for θk given B, the observed data score equation for 

estimating θk at Stage I can be written as

Sk θk =
j = 1

J
RjkSjk θk = 0, (B1)

the solutions to which are

θ̂k =
j = 1

J
Rjk XjkXjk

′ −1XjkY jk, k = 1, …, K . (B2)

If we stack the score function in (B1), we obtain S θ = S1
′ θ1 , …, SK

′ θK ′.

Then given B = B1, …, BK ′, we note that

J θ̂ − θ
d
MVN 0, A−1 θ ℬ θ A−1 θ (B3)

as J ∞, where A θ = E − ∂S θ / ∂θ′  is a block diagonal 3K × 3K matrix of the form

A θ =

A11 θ1 0 … 0
0 A22 θ2 … 0
⋮ ⋱ ⋮
0 AKK θK

,

where the kth 3 × 3 diagonal submatrix is given by

Akk θk = E − ∂Sk θk / ∂θk
′ = E

j = 1

J
RjkXjkXjk

′ = JE XjkXjk
′ ∣ Rjk = 1 P Rjk = 1 ,

k = 1, …, K. If we let Ωkk = P XjkXjk
′ ∣ Rjk = 1  be a 3 × 3 matrix, we can then write

Hocagil et al. Page 17

Stat (Int Stat Inst). Author manuscript; available in PMC 2023 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Akk θk = JΩkkP Rjk = 1 . (B4)

Note that ℬ θ = E S θ S′ θ  is also a 3K × 3K matrix. Under the assumption that the 

response data are missing at random (i.e., Rjk ⊥ Y jk ∣ Xjk), the diagonal elements of ℬ θ
are the covariance matrices of the score functions for θk, ℬkk θ = cov Sk θk ∣ B , k = 1, …, K, 

where

ℬkk θ = E
j = 1

J
RjkSjk θk Sjk

′ θk = E
j = 1

J
RjkXjkXjk

′ var Ejk ,

because the error terms are assumed independent of the covariates. This can then be written 

as

ℬkk θ = JΩkkP Rjk = 1 σk
2, k = 1, …, K . (B5)

In a similar fashion, we note that

ℬkl θ = cov Sk θk , Sl θl ∣ B = E
j = 1

J
RjkRjlE Sjk θk Sjl

′ θl ∣ Xjk, Xjl, Rjk = Rjl = 1

= E
j = 1

J
RjkRjlXjkXjl

′ cov Ejk, Ejl

= JE XjkXjl
′ ∣ Rjk = Rjl = 1 P Rjk = Rjl = 1 σkl

= JΩklP Rjk = Rjl = 1 σkl,

where Ωkl = E XjkXjl
′ ∣ Rjk = Rjl = 1  is a 3 × 3 matrix. If Xjk = Xjl as in this setting, this 

becomes

ℬkl θ = cov Sk θk , Sl θl ∣ B = JΩkkP Rjk = Rjl = 1 σkl (B6)

because Ωkk = Ωkl = Ω for all k ≠ l.

If we wish to estimate the covariance of J θ̂k − θk  and J θ̂l − θl  given B, we note that this 

has the general form

cov J θ̂k − θk , J θ̂l − θl ∣ B = Akk
−1 θ Bkl θ All

−1 θ .

Inserting the derived expressions gives the k, l , 3 × 3 submatrix of the full covariance 

matrix in (B3) as

cov J θ̂k − θk , J θ̂l − θl ∣ B = σklΩ−1P Rjk = Rjl = 1
P Rjk = 1 P Rjl = 1 . (B7)
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We estimate (B7) as follows. Because Xjk = Xj is available for all individuals, 

we estimate Ω = Ωkk = Ωklsimply as Ω̂ = ∑j = 1
J XjkXjk

′ /J. Moreover, we estimate 

P Rjk = Rjl = 1  empirically as P̂ Rjk = Rjl = 1 = nkl/J where nkl = ∑j = 1
J RjkRjl, and likewise let 

P̂ Rjk = 1 = nk/J where nk = ∑j = 1
J Rjk, k = 1, …, K. Replacing unknown quantities with their 

estimates gives

cov J θ̂k − θk , J θ̂l − θl ∣ B = σ̂kl

J−1
j = 1
J XjkXjl

′

Jnkl

nknl
, (B8)

where σ̂kl is given by (13).

Let μ β = Iβ where I is a K × 1 vector of ones and β is a scalar. We then let 

cov J B̂ − μ β ∣ B = Γ, where Γ is the covariance matrix for B̂ obtained by selecting 

the corresponding elements of (B7) related to the coefficients of the exposure variable in 

the K marginal least squares estimates. We aim to use cov J B̂ − μ β ∣ B  to combine the 

estimates across all responses, but we note there is an additional component of variation in 

the estimators of the exposure effects because the Bk terms are themselves independent and 

identically distributed (i.e., Bik N βi, ϕi ).

Thus, cov B̂ ∣ B = J−1Γ, where Γ is a K × K matrix with diagonal elements Γkk and off-

diagonal elements Γkl, I = 1, …, K, k = 1, …, K,

var B̂k = J−1Γkk + ϕ, k = 1, …, K, (B9)

and because Bk ⊥ B1,

cov B̂k, B̂l = J−1Γkl, k ≠ I = 1, …, K . (B10)

We denote the unconditional covariance matrix for B̂ as cov B̂ = Ψ ϕ = J−1Γ + Δϕ where 

Ψkk ϕ  is given by (B9), Ψkl ϕ  is given by (B10), and Δ is a K × K identity matrix. Given an 

estimate of ϕ, we estimate this covariance matrix by

Cov B̂ = J−1Γ̂ + Δϕ̂ = Ψ̂ ϕ̂ .

REFERENCES

Akkaya Hocagil T, Cook RJ, Jacobson SW, Jacobson JL, & Ryan LM (2021). Propensity score 
analysis for a semi-continuous exposure variable: A study of gestational alcohol exposure and 
childhood cognition. Journal of the Royal Statistical Society: Series A (Statistics in Society), 184, 
1390–1413. 10.1111/rssa.12716

Axelrad DA, Bellinger DC, Ryan LM, & Woodruff TJ (2007). Dose-response relationship of prenatal 
mercury exposure and IQ: An integrative analysis of epidemiologic data. Environmental Health 
Perspectives, 115(4), 609–615. [PubMed: 17450232] 

Hocagil et al. Page 19

Stat (Int Stat Inst). Author manuscript; available in PMC 2023 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Brown JV, Bakeman R, Coles CD, Sexson WR, & Demi A (1998). Maternal drug use during 
pregnancy: Are preterm and full-term infants affected differently? Developmental Psychology, 34, 
540–554. [PubMed: 9597363] 

Cahalan D, & Cisin IH (1968). American drinking practices: Summary of findings from a national 
probability sample. I. Extent of drinking by population subgroups. Quarterly Journal of Studies on 
Alcohol, 29(1), 130–151. 10.15288/qjsa.1968.29.130

Carter RC, Jacobson JL, Molteno CD, Dodge NC, Meintjes EM, & Jacobson SW (2016). Fetal 
alcohol growth restriction and cognitive impairment. Pediatrics, 138(2), e20160775. 10.1542/
peds.2016-0775

Cheung MW-L (2013). Multivariate meta-analysis as structural equation models. Structural Equation 
Modeling, 20(3), 429–454.

Cheung MW-L (2019). A guide to conducting a meta-analysis with non-independent effect sizes. 
Neuropsychology Review, 29, 387–296. [PubMed: 31446547] 

Coles C, Platzman K, Raskind-Hood C, Brown R, Falek A, & Smith I (2006). A comparison 
of children affected by prenatal alcohol exposure and attention deficit, hyperactivity disorder. 
Alcoholism: Clinical and Experimental Research, 21, 150–161.

Day N, Sambamoorthi U, Taylor P, Richardson G, Robles N, Jhon Y, Scher M, Stoffer D, Cornelius 
M, & Jasperse D (1991). Prenatal marijuana use and neonatal outcome. Neurotoxicology and 
Teratology, 13(3), 329–334. [PubMed: 1886543] 

Hedges LV, Tipton E, & Johnson MC (2010). Robust variance estimation in meta-regression with 
dependent effect size estimates. Research Synthesis Methods, 1(1), 39–65. [PubMed: 26056092] 

Hoyme HE, May PA, Kalberg WO, Kodituwakku P, Gossage JP, Trujillo PM, Buckley DG, Miller 
JH, Aragon AS, Khaole N, Viljoen DL, Jones KL, & Robinson LK (2005). A practical clinical 
approach to diagnosis of fetal alcohol spectrum disorders: Clarification of the 1996 Institute of 
Medicine Criteria. Pediatrics, 115(1), 39–47. [PubMed: 15629980] 

Jacobson JL, Akkaya-Hocagil T, Ryan LM, Dodge NC, Richardson GA, Olson HC, Coles CD, Day 
NL, Cook RJ, & Jacobson SW (2021). Effects of prenatal alcohol exposure on cognitive and 
behavioral development: Findings from a hierarchical meta-analysis of data from six prospective 
longitudinal U.S. cohorts. Alcoholism: Clinical and Experimental Research, 45, 2040–2058. 
10.1111/acer.14686 [PubMed: 34342030] 

Jacobson JL, Jacobson SW, Sokol RJ, Martier SS, Ager JW, & Kaplan-Estrin MG (1993). Teratogenic 
effects of alcohol on infant development. Alcoholism: Clinical and Experimental Research, 17(1), 
174–183. 10.1111/j.1530-0277.1993.tb00744.x [PubMed: 8452200] 

Jacobson SW, Chiodo LM, Sokol RJ, & Jacobson JL (2002). Validity of maternal report of prenatal 
alcohol, cocaine, and smoking in relation to neurobehavioral outcome. Pediatrics, 109(5), 815–
825. [PubMed: 11986441] 

Jacobson SW, Jacobson JL, Sokol RJ, Chiodo LM, & Corobana R (2004). Maternal age, alcohol 
abuse history, and quality of parenting as moderators of the effects of prenatal alcohol exposure 
on 7.5-year intellectual function. Alcoholism: Clinical and Experimental Research, 28(11), 1732–
1745. 10.1097/01.ALC.0000145691.81233.FA [PubMed: 15547461] 

Jacobson SW, Stanton ME, Molteno CD, Burden MJ, Fuller DS, Hoyme HE, Robinson LK, 
Khaole N, & Jacobson JL (2008). Impaired eye-blink conditioning in children with fetal 
alcohol syndrome. Alcoholism: Clinical and Experimental Research, 32(2), 365–372. 10.1111/
j.1530-0277.2007.00585.x [PubMed: 18162064] 

Konstantopoulos S (2011). Fixed effects and variance components estimation in three-level meta-
analysis. Research Synthesis Methods, 2(1), 61–76. [PubMed: 26061600] 

Kontopantelis E (2018). A comparison of one-stage vs two-stage individual patient data meta-analysis 
methods: A simulation study. Research Synthesis Methods, 9(3), 417–430. 10.1002/jrsm.1303 
[PubMed: 29786975] 

Lin DY, & Zeng D (2010). On the relative efficiency of using summary statistics versus individual-
level data in meta-analysis. Biometrika, 97(2), 321–332. 10.1093/biomet/asq006 [PubMed: 
23049122] 

Little RJA, & Rubin DB (2019). Statistical analysis with missing data, 3rd edition. Hoboken, NJ: John 
Wiley & Sons.

Hocagil et al. Page 20

Stat (Int Stat Inst). Author manuscript; available in PMC 2023 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Mathew T, & Nordstrom K (1999). On the equivalence of meta-analysis using literature and using 
individual patient data. Biometrics, 55(4), 1221–1223. [PubMed: 11315071] 

Mattson SN, Bernes GA, & Doyle LR (2019). Fetal alcohol spectrum disorders: A review of the 
neurobehavioral deficits associated with prenatal alcohol exposure. Alcoholism: Clinical and 
Experimental Research, 43(6), 1046–1062. 10.1111/acer.14040 [PubMed: 30964197] 

Olkin I, & Sampson A (1998). Comparison of meta-analysis versus analysis of variance of individual 
patient data. Biometrics, 54(1), 317–322. [PubMed: 9544524] 

Richardson GA, Hamel SC, Goldschmidt L, & Day NL (1999). Maternal drug use during pregnancy: 
Are preterm and full-term infants affected differently? Pediatrics, 104, 540.

Riley RD, Abrams KR, Sutton AJ, Lambert PC, & Thompson JR (2007). Bivariate random-
effects meta-analysis and the estimation of between-study correlation. BMC Medical Research 
Methodology, 7(1), 3. 10.1186/1471-2288-7-3 [PubMed: 17222330] 

Riley RD, Lambert P, & Abo-Zaid GMA (2010). Meta-analysis of individual participant data: 
rationale, conduct, and reporting. BMJ, 340, c221. [PubMed: 20139215] 

Riley RD, & Steyerberg EW (2010). Meta-analysis of a binary outcome using individual participant 
data and aggregate data. Research Synthesis Methods, 1(1), 2–19. 10.1002/jrsm.4 [PubMed: 
26056090] 

Rosenbaum PR, & Rubin DB (1983). The central role of the propensity score in observational studies 
for causal effects. Biometrika, 70(1), 41–55. 10.1093/biomet/70.1.41

Schuetze P, Eiden RD, & Coles CD (2007). Prenatal cocaine and other substance exposure: Effects on 
infant autonomic regulation at 7 months of age. Developmental Psychobiology, 49(3), 276–289. 
10.1002/dev.20215 [PubMed: 17380506] 

Simmonds MC, & Higgins JPT (2007). Covariate heterogeneity in meta-analysis: Criteria for deciding 
between meta-regression and individual patient data. Statistics in Medicine, 26(15), 2982–2999. 
10.1002/sim.2768 [PubMed: 17195960] 

Stratton K, Howe C, & Battaglia FC (1996). Fetal alcohol syndrome: Diagnosis, epidemiology, 
prevention, and treatment. Washington, D.C.: National Academy Press.

Streissguth AP, Martin DC, Martin JC, & Barr HM (1981). The seattle longitudinal prospective study 
on alcohol and pregnancy. Neurobehav Toxicol Teratol, 2(3), 223–233.

Van den Noortgate W, López - López JA, Marín-Martínez F, & Sánchez-Meca J (2013). Three-level 
meta-analysis of dependent effect sizes. Behavior Research Methods, 45, 576–594. [PubMed: 
23055166] 

Van den Noortgate W, López-López J, Marín-Martínez F, & Sanchez-Meca J (2014). Meta-analysis of 
multiple outcomes: A multilevel approach. Behavior research methods, 47, 1274–1294.

Viechtbauer W (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical 
Software, 36(3), 1–48. https://www.jstatsoft.org/v36/i03/

Whitehead A (2002). Meta-analysis of controlled clinical trials. West Sussex, England: John Wiley & 
Sons.

Hocagil et al. Page 21

Stat (Int Stat Inst). Author manuscript; available in PMC 2023 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.jstatsoft.org/v36/i03/


A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hocagil et al. Page 22

TABLE 1

Results of a simulation study assessing the performance of our hierarchical meta-analysis and a full 

multivariate analysis in estimating the effect size for the exposure in a variety of settings

Hierarchical meta-analysis One-stage method

τ2 k EBIAS ASE ESE ECP (%) EBIAS ASE ESE ECP (%)

0.10

10 0.007 0.16 0.14 96.0 <0.001 0.10 0.14 92.0

5 0.006 0.20 0.20 96.0 <0.001 0.13 0.14 99.0

3 0.009 0.23 0.25 95.0 <0.001 0.14 0.14 93.0

0.25

10 <0.000 0.11 0.10 95.0 0.020 0.18 0.24 88.0

5 <0.000 0.13 0.13 95.0 0.030 0.19 0.21 91.0

3 0.010 0.15 0.15 95.0 0.020 0.21 0.23 94.0

0.50

10 0.004 0.16 0.15 95.0 0.040 0.26 0.29 96.0

5 0.009 0.21 0.20 94.0 0.060 0.27 0.30 97.0

3 0.010 0.23 0.24 94.0 0.120 0.31 0.34 92.0
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TABLE 2

IQ related outcomes assessed at age 7 in the six cohorts

Cohort Endpoints Mean (SD)

Detroit (n = 336

WISC Verbal IQ 87.4 (12.4)

WISC Performance IQ 83.6 (13.0)

WISC Freedom from distractibility 93.6 (14.9)

Pittsburgh 1 (n = 720)

Stanford-Binet Verbal reasoning 100.0 (11.8)

Stanford-Binet Abstract reasoning 85.0 (13.9)

Stanford-Binet Quantitative reasoning 98.0 (18.0)

Stanford-Binet Short-term memory 92.6 (15.2)

Pittsburgh 2 (n = 268)

Stanford-Binet Verbal reasoning 96.3 (12.2)

Stanford-Binet Abstract reasoning 88.0 (16.2)

Stanford-Binet Quantitative reasoning 94.4 (18.4)

Stanford-Binet Short-term memory 91.4 (15.6)

Atlanta 1 (n = 223)

Kaufman ABC Simultaneous processing 88.6 (14.1)

Kaufman ABC Sequential processing 89.1 (14.1)

Atlanta 2 (n = 138)

DAS Verbal standard score 79.6 (15.2)

DAS Nonverbal standard score 87.7 (14.9)

DAS Spatial standard score 81.7 (14.2)

Seattle (n = 510)

WISC Verbal IQ 106.3 (15.5)

WISC Performance IQ 107.8 (13.9)
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TABLE 3

Estimated outcome-specific IQ-related effects at age 7 from Stage I estimation

Cohort Response type Effect size SE

Detroit WISC Verbal IQ −4.2 3.2

Detroit WISC Performance IQ −3.7 3.2

Detroit WISC Freedom from distractibility −10.3 3.1

Pittsburgh Cohort 1 Stanford Binet Verbal reasoning −5.8 3.0

Pittsburgh Cohort 1 Stanford Binet Abstract reasoning −5.0 3.0

Pittsburgh Cohort 1 Stanford Binet Quantitative reasoning −1.9 3.0

Pittsburgh Cohort 1 Stanford Binet Short term memory −5.3 3.0

Pittsburgh Cohort 2 Stanford Binet Verbal reasoning −0.3 3.1

Pittsburgh Cohort 2 Stanford Binet Abstract reasoning −1.8 3.0

Pittsburgh Cohort 2 Stanford Binet Quantitative reasoning −1.1 3.1

Pittsburgh Cohort 2 Stanford Binet Short term memory −3.5 3.1

Atlanta Cohort 1 Kaufman ABC Simultaneous processing −6.9 2.9

Atlanta Cohort 1 Kaufman ABC Sequential processing −1.9 2.9

Atlanta Cohort 2 DAS Verbal standard score −5.9 3.2

Atlanta Cohort 2 DAS Nonverbal standard score 1.7 3.3

Atlanta Cohort 2 DAS Spatial standard score −0.9 3.3

Seattle WISC Verbal IQ −0.5 2.6

Seattle WISC Performance IQ −1.9 2.6
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TABLE 4

Pooled effect size estimates of prenatal alcohol exposure for each cohort at Stage II

Hierarchical Approach Multivariate Approach

Cohort Effect Size SE τ2 Effect Size SE τ2

Detroit −6.1 3.2 7.8 −6.1 3.1 6.2

Pittsburgh Cohort 1 −4.3 2.4 0.0 −4.0 2.6 0.0

Pittsburgh Cohort 2 −1.6 2.5 0.0 −1.6 2.5 0.0

Atlanta Cohort 1 −4.4 3.0 5.1 −4.4 3.4 6.2

Atlanta Cohort 2 −1.9 3.0 7.8 −2.0 3.2 8.2

Seattle −1.2 2.3 0.0 −1.2 2.3 0.0
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TABLE 5

Stage III estimated effect sizes of prenatal alcohol exposure on IQ at age 7

Method Global effect size SE τ2 se
Hierarchical meta-analytic approach −3.2 0.8 1.0 (2.3)

One-stage (full multivariate approach) −3.1 0.8 0.9 (2.3)

Conventional meta-analysis (ignoring the correlation) −3.5 0.6 4.7 (2.7)
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